
CSE 392: Matrix and Tensor Algorithms for Data Spring 2024

Lecture 8 — February 12, 2024
Instructor: Shashanka Ubaru Scribe: Anish Pandya

Last class, we were talking about leverage score sampling which improves the upper bound to
1 + ϵ (∥A − Ak∥2

2). This class, we began talking more about sketching and types of sketching
matricies. We first discussed Gaussian sketching, then the Approximate Matrix Multiplication and
JL Moment properties, and finally we discussed SRHT (Hadammard Transform). We plan to discuss
the Countsketch algorithm next class.

Gaussian Embedding

Definition. Embedding. A matrix S ∈ Rn×m is an ϵ−embedding of a set P ⊂ Rn if for every
y ∈ P,

∥Sy∥2 = (1 ± ϵ)∥y∥2

We say that S is the sketching matrix. Essentially, for a matrix to be an ϵ-embedding, we need to
show that it preserves the norm within ϵ for all ∥y∥2. At a high level, a lot of problems boil down
to finding a subspace embedding, as we will explore in the next couple classes. Problems like least-
squares and low rank approximation are some problems where subspace embedding techniques come
handy. Now, we consider vector embedding property also known as the distributional JL lemma:

Definition. Vector Embedding. Let S ∈ Rm×d have independent entries given by sij ∼
1√
m

N (0, 1). If m = O
(
log (1/δ)/ϵ2). Then, for any vector, y ∈ Rd, ϵ ∈ (0, 1]:

∥Sy∥2
2 = (1 ± ϵ)∥y∥2

2

with probability (1 − δ).

Proof. From the definition of the two norm, we have:

∥Sy∥2
2 = 1

m

m∑
i=1

(⟨si, y⟩)2

= 1
m

m∑
i=1

 d∑
j=1

sijyj

2

= 1
m

m∑
i=1

 d∑
j=1

1√
m

N (0, 1)yj

2

= 1
m3/2

m∑
i=1

(
N
(
0, ∥y∥2

2

))2

Notice that this is the χ2 distribution. Now, let’s use this property of the χ2 distribution:
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Remark 1. Let z be a χ2 random variable with m degrees of freedom, then:

P (|z − E[z] ≥ ϵE[z]) ≤ 2e−ϵ2m/8

Let z = ∥Sy∥2
2. E[∥Sy∥2

2] = ∥y∥2
2.

P
(
|∥Sy∥2

2 ≥ (ϵ + 1)∥y∥2
2

)
≤ 2e−ϵ2m/8 ≤ δ

Now, we can solve the inequality for m:

2e−ϵ2m/8 < δ

ϵ2m

8 > − ln
(

δ

2

)
m >

8
ϵ2 ln (2

δ
)

So then, m must be O
(
log (1/δ)/ϵ2).

P
(
(ϵ − 1)∥y∥2

2 ≤ ∥Sy∥2 ≤ (ϵ + 1)∥y∥2
2

)
= 1 − P

(
∥Sy∥2

2 ≥ (ϵ + 1)∥y∥2
2

)
P
(
(ϵ − 1)∥y∥2

2 ≤ ∥Sy∥2 ≤ (ϵ + 1)∥y∥2
2

)
≤ 1 − δ

Next, we considered the JL-lemma:

Lemma 1. JL-Lemma. Let S ∈ Rm×d have independent entries, sij ∼ 1
mN (0, 1). If m =

O(log (n)/ϵ2), then for any n data points, with probability at least 9/10:

(1 − ϵ) ∥xi − xj∥2 ≤ ∥Sxi − Sxj∥2 ≤ (1 + ϵ) ∥xi − xj∥2

We fix i, j ∈ [d]. Let y = xi − xj. By the Distributional JL ∥S(xj − xi)∥2 = (1 ± ϵ)∥xi − xj∥2. Let
δ = 1/n2. Then, there are less than n2 (i, j) pairs, by a union bound, we have ■

Theorem 1. Subspace Embedding. Let S ∈ Rm×n have independent entries, sij ∼ 1√
m

N (0, 1).
If m = O(d log (1/δ)/ϵ2, then for a given A ∈ Rn×d, with probability of at least 1 − δ.

Embedding a d−dimensional subspace U = span(A) = span(U) ∈ Rn. Then,

∥SUx∥2 = (1 ± ϵ)∥x∥2

or,

∥UT ST SU − I∥2 ≤ ϵ

From the epsilon-net argument, we know that |N (ϵ)| ≤ (1 + (2/ϵ))d. If S is distributional JL with
failure with probability δ′, taking the union of the ϵ−net size, we get the result:

m = O
(

d log (1/δ)
ϵ2

)
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Approximate Matrix Multiplication and JL Moment

Theorem 2. Given A ∈ Rn×d, A, n ≥ d, and B ∈ Rd′×n. Let r be the rank of A, and let ϵ and
δ ∈ R be greater than zero. Let S be chosen such that, with probability of at least 1 − δ:

∥BSTSA − BA∥F ≤ ϵ∥A∥F ∥B∥F

Then, S is an ϵr−embedding of span(A).

Proof. Let B = AT , and since S is chosen. Then,

∥ATSTSA − I∥2 ≤ ∥AT ST SA − I∥F ≤ ϵ∥A∥2
F = ϵr

■

Fact 1. JL Moment. A distribution on S ∈ Rm×d, has the (ϵ, δ, ℓ)−JL moment property if for
every y ∈ Rd with ∥y∥2 = 1,

E
[
|∥Sy∥2

2 − 1|ℓ
]

≤ ϵℓδ

Notably for ℓ = 2 and E [∥Sy∥2] = 1, we have:

Var
(
∥Sy∥2

2

)
≤ ϵ2δ

We will also need to recall the Polarization identity:

Fact 2. The polarization identity for two vectors a, b in Rn is:

⟨a, b⟩ = 1
4
(
∥a + b∥2

2 − ∥a − b∥2
2

)
= 1

2
(
∥a∥2

2 + ∥b∥2
2 − ∥a − b∥2

2

)
= 1

2
(
∥a + b∥2

2 − ∥a∥2
2 − ∥b∥2

2

)
Theorem 3. JL Moment and AMM. Given A ∈ Rn×d, B ∈ Rd′×n, and ϵ, δ > 0 in R, and S
satisfying the (ϵ, δ, ℓ)−JL moment property for ℓ ≥ 2, then we have the following with probability at
least 1 − δ:

∥SST SA − BA∥F ≤ 3ϵ∥A∥F ∥B∥F

Proof. We refer to the proof given of Theorem 2.8 in Dr. Woodruff’s text, which is also in the paper
by Kane and Nelson. Consider two vectors, x, y in Rd. Then, by the second polarization identity,

⟨Sx, Sy⟩
∥x∥2∥y∥2

= ∥Sx∥2
2 + ∥Sy∥2

2 − ∥S(x − y)∥2
2

2

The moment norm is defined as ∥X∥ℓ =
(
E[Xℓ]

)1/ℓ
. From the moment norm, we can use Minkowski’s

inequality to show the result. Minkowski’s inequality is the Triangle inequality for the moment
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norm. Let X = ∥⟨Sx̂, Sŷ⟩ − ⟨x̂, ŷ⟩∥ℓ, where we consider the unit vectors x̂, ŷ. Then, again from the
second Polarization identity, we see:

⟨Sx̂, Sŷ⟩ − ⟨x̂, ŷ⟩ = (∥Sx̂∥2
2 − 1) + (∥Sx̂∥2

2 − 1) −
(
∥S(x̂ + ŷ)∥2

2 − ∥x̂ + ŷ∥2
2
)

2

So then using the Minkowski inequality and the JL-moment property we see:

∥⟨Sx̂, Sŷ⟩ − ⟨x̂, ŷ⟩∥ℓ = 1
2
(
∥(∥Sx̂∥2

2 − 1) + (∥Sx̂∥2
2 − 1) −

(
∥S(x̂ − ŷ)∥2

2 − ∥x̂ + ŷ∥2
2

)
∥ℓ

)
≤ 1

2
(
∥(∥Sx̂∥2

2 − 1)∥ℓ + ∥(∥Sx̂∥2
2 − 1)∥ℓ − ∥

(
∥S(x̂ − ŷ)∥2

2 − ∥x̂ + ŷ∥2
2

)
∥ℓ

)
≤ 1

2
(
ϵδ1/ℓ + ϵδ1/ℓ − ∥x̂ + ŷ∥2

2 · ϵδ1/ℓ
)

≤ 3ϵδ1/ℓ

For arbitrary x, y, then we have the inequality:

∥⟨Sx, Sy⟩ − ⟨x, y⟩∥ℓ

∥x∥2y∥2
≤ 3ϵδ1/ℓ

Now, we define a random variable, where Ai

Xij = 1
∥Ai∥2∥Bj∥2

·
(
⟨SAi, SBj⟩ − ⟨Ai, Bj⟩

)
So then,

∥∥ATSTSB − ATB∥2
F ∥ℓ/2 = ∥

n∑
i=1

m∑
j=1

∥Ai∥2
2 · ∥Bj∥2

2X2
ij∥ℓ/2

≤
n∑

i=1

m∑
j=1

∥Bj∥2
2∥Ai∥2

2∥X2
ij∥ℓ/2

≤
(
3ϵδ1/ℓ

)2
∥A∥2

F ∥B∥2
F

If E[∥ATSTSB − ATB∥ℓ
F ] = ∥∥AT ST SB − AT B∥2

F ∥ℓ/2
ℓ/2, following Markov’s Inequality, we have:

P
(
∥AT ST SB − AT B∥F ≥ 3ϵ∥A∥F ∥B∥F

)
≤ 1

(3ϵ∥A∥F ∥B∥F )ℓ
E[∥ATSTSB − ATB∥ℓ

F ]

≤ δ

■

Subsapled Randomized Hadamard Transform (SRHT).

The SRHT is a matrix: PHD Let D ∈ Rn×n, H ∈ Rn×n, P ∈ Rm×n. D is a diagnol matrix. Then,
D is a diagnol matrix with entries that are independent and identidcally distrbuted with entries
either +1 or −1.H is a Hadamard Matrix, and P is a matrix that uniformly samples the rows of
HD.
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Now, let’s review some properties of H, a Hadamard matrix. Hadamard matricies have a recursive
structure, as defined by:

H0 = [1]

Hi+1 = 1√
2

(
Hi Hi

Hi −Hi

)

Another definition of the Hadamard matrix is HnHn
T = nIn, where In is the n × n identity. Note

some important properties of Hadamard matrixies:

Fact 3. Hadamard matricies are orthogonal:

HT
i Hi = In

Fact 4. For any x ∈ Rn, n = 2k, k ∈ N, we have ∥Hx∥2 = ∥x∥2 and ∥HDx∥2 = ∥x∥2

Fact 5. Matrix-vector multiplication can be computed in O(n log (n) time for x ∈ Rn, n = 2k for
some k ∈ N.

Fact 6. Let x = [x1, x2]T ∈ R2k for x1, x2 ∈ R2k−1. Then:

Hix =
(

Hix1 + Hix2
Hix1 − Hix2

)

This is a linear time operation from Hix1, Hix2.

Lemma 2. SRHT Mixing Lemma. Let H be an n × n Hadamard Matrix, D, a random diagnol
±1 matrix. Let z = HDx for x ∈ Rn. With probability 1 − δ, for all i, simultaneously, we have:

z2
i ≤ c log (n/δ))

n
∥z∥2

2

Theorem 4. Rademacher Concentration. Let r1, . . . , rn be Rademacher random variables.
Then for any a ∈ Rn,

P
[

n∑
i=1

riai ≥ t∥a∥2

]
≤ e−t2/2

Lemma 3. Fast JL. Let S = PHD ∈ Rm×n be a subsampled randomized Hadamard transform
(SRHT), with m = O

(
log (n/δ) log 1/δ

ϵ2

)
. Then, with any fixed x ∈ Rn, with probability 1 − δ,

∥Sx∥2
2 = (1 ± ϵ)∥x∥2

2

Theorem 5. SRHT Embedding. For S = PHD ∈ Rm×n, and A ∈ Rn×d, if m = O
(

d log (n/δ) log 1/δ
ϵ2

)
,

then with probability of at least 1 − δ,

∥SAx∥2 ≤ (1 ± ϵ)∥Ax∥2
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