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1 Randomized Methods via Sampling

Consider computing the inner product between two large vectors x,y ∈ Rn. One simple way of
accelerating the computation is to uniformly sample m� n entries x̂ of x and ŷ of y, and deliver
〈x, y〉 ≈ n

m 〈x̂, ŷ〉. This naive approach can have bad performance if the vectors are sparse, so
the sampled entries have a high probability not capturing significant information. There are two
approaches to improve this. First, one can use a randomized isometry U to make the entries in
Ux and Uy have similar magnitudes, and then do the uniform sampling. Second, one can use
importance sampling to capture larger entries in the vectors, say using a sampling probability
proportional to the magnitude of each entry. One example of the first approach is the subsampled
randomized Hadamard transform (SRHT), which will be discussed in later lectures. In this lecture,
the focus is on the second approach. In particular, we will introduce sampling based approximate
matrix multiplication and low rank approximation.

2 Sampling Based Approximate Matrix Multiplication

Matrix multiplications are nothing but a bunch of vector inner products. Consider two large
matrices A ∈ Rm×n and B ∈ Rn×p. To compute M = AB, we subsample c columns of A and
get the corresponding rows of B. Denote S ∈ Rn×c the column sampling operator, c � n, and
Â = AS ∈ Rm×c, B̂ = S>B ∈ Rc×p, then we deliver

AB ≈ ÂB̂ = ASS>B,

with some appropriate scaling included in the matrix S. We assume the choice of each column
sample is i.i.d. Denote pi the probability of sampling column i in sample. Using the idea of
importance sampling, one choice of pi is the length-squared sampling scheme where

pi =

∥∥A(:,i)

∥∥
2

∥∥B(:,i)

∥∥
2∑n

j=1

∥∥A(:,j)

∥∥
2

∥∥B(:,j)

∥∥
2

.

Denote zi the (random) index of sampled column in sample i, i = 1, . . . , c. Denote azi and bzi
the sampled column and row in sample i (viewed as column vectors). The approximated matrix
product from the sample is then

M = AB ≈ 1

c
·

c∑
i=1

1

pzi
azib

>
zi := M̂ (1)

The scaling constants are chosen so that the constructed approximation is unbiased. We can prove
this and bound the variance of M̂ .
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Theorem 2.1. Using the notation defined above, we have

EM̂ = M ;

E

∥∥∥M̂ −M
∥∥∥2
F
6

1

c
‖A‖2F ‖B‖

2
F .

Proof. To show the estimator is unbiased, we note that each rank one term in (1) has expectation
M . We are left to bound the variance. To this end, we have

E

∥∥∥M̂ −M
∥∥∥2
F

= E

∥∥∥1

c

c∑
i=1

(
p−1zi azib

>
zi −M

)∥∥∥2
F

=
1

c
E

∥∥∥p−1z1 az1b
>
z1 −M

∥∥∥2
F
6

1

c
E

∥∥∥p−1z1 az1b
>
z1

∥∥∥2
F
,

where we used the independence between the samples. It is then easy to check that

E

∥∥∥p−1z1 az1b
>
z1

∥∥∥2
F

= ‖A‖2F ‖B‖
2
F .

The proof is then complete. �

3 Sampling Based Low Rank Approximation

In matrix decomposition, CUR decomposition is faster than SVD or even QR. Given a matrix A,
it chooses c columns of the matrix, C, and c rows of the matrix, R. Denote T the intersection of
the c columns and c rows and denote U = T−1. The CUR decomposition is then

A = CUR.

If c = rank(A), then this decomposition is exact for any choice of columns and rows. Besides it
is faster to compute, one other important advantage of CUR is the factor matrices C and R are
submatrices of A, making the decomposition more interpretable and also sparse in the case A is
sparse. If c < rank(A), however, as opposed to Eckart-Young for SVD, there is no guarantee of
goodness of fit. It is then an open question on how to choose the subset of columns and rows, so
that we have a good chance of getting a good low rank approximation.

In order to find the correct rows and columns, we introduce the notion of leverage scores.

Definition 3.1 (leverage score). Given a linear subspace L ⊆ Rn. The ith leverage score is
`i(L) = supx∈L x2i /‖x‖

2, i = 1, . . . ,m.

Clearly, `i ∈ [0, 1] and
∑

i `i(L) = dim(L). The leverage scores measures how nicely behaved a
sampling method is on L. If the leverage scores are close to dim(L)/m, then for any vector in L, its
entries have similar magnitudes. On the other hand, if `1(L) = 1, then the first entry can dominate
over all other entries, and sampling method can fail if it does not capture this dominating entry.

When the subspace is given by the range of a matrix A, the leverage scores can be obtained by

`i(A) :=
∥∥U (i,:)

∥∥2
2
,
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where U is any orthonormal basis of the column space of A. Following the motivation of importance
sampling, we put more importance on entries that have a large leverage score, and put

pi =
`i(A)

rank(A)
.

Similarly, one can also define the leverage scores for the row space of A and define a sampler over
the rows.

When we choose the C factor using a leverage score sample, we have the following guarantee on
the goodness of fit.

Theorem 3.2. Let Ak be the best rank k approximation to A. Let C be a leverage score sample
of c columns of A. Denote PC the orthogonal projection to the column space of C. Then with
probability at least 0.9,

‖A− PCA‖F 6 (1 + ε)‖A−Ak‖F ,

provided that c = Ω
(
k
ε2

log
(
k
ε

))
.
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