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1 Eigenvalues and Eigenvectors

1.1 Introduction

Definition. Eigenvalue/eigenvector Given a square matrix A ∈ Cn×n, all vectors u and real λ ∈ C
that satisfy

Au = λu (1)
are eigenvectors of A, and λ are their corresponding eigenvalues.

Typically, the dominant eigenvalues or the largest and smallest eigenvalues are of the most interest.
Eigenvalues and eigenvectors find application in electronic structure calculations, Google’s pagerank,
etc.

1.2 Properties

1. λ is an eigenvalue =⇒ det(A-λI) = 0.

2. Eigenvalues are the roots of the characteristic polynomial, pA(λ) = det(A − λI).

3. The multiplicity of eigenvalues as roots of pA is called the algebraic multiplicty; whereas,
the number of linearly independent eigenvectors corresponding to an eigenvalue is called its
geometric multiplicity.

4. Geometric multiplicity ≤ Algebraic multiplicity.

5. Similarity: Two matrices A, B are similar if ∃ X st, A = XBX−1. A and B have the same
eigenvalues, whereas the eigenvectors of a are X−1uB

6. A is said to be diagonalizable if it is similar to a diagonal matrix.

7. The following transformations preserve eigenvectors

(a) Shift: A − ηI

(b) Polynomial: p(A)
(c) Inverse: A−1

(d) Shift and inverse: (A − ηI)−1

8. ∀ square symmetric matrices A ∈ ℜn×n, ∃ orthogonal U s.t.,

A = UΛUT

, where columns of U are the eigenvectors and Λ is a diagonal matrix containing the eigenvalues
(which are real).
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1.3 Min-max theorem

<Ax⃗,x⃗>
x⃗,x⃗ = RR is called the Rayleigh Ritz quotient of A and non-zero x. Then, the min-max theorem

states that,

λk = max
S,dim(S)=k

min
x∈S,x̸=0

RR = min
S,dim(S)=n−k+1

max
x∈S,x̸=0

RR (2)

where λk is the kth largest eigenvalue of A.

1.4 Interlacing theorem

For a principal submatrix B ∈ ℜm×m with eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µm of a symmetric matrix
A ∈ ℜn×n with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, the interlacing theorem states

λk ≥ µk ≥ λn+k−m ∀ k ∈ {1, · · · , m} (3)

2 Page Rank

Pagerank is an algorithm developed by Google for optimizing their search engine results. Each
webpage is viewed as a node, and the rank denotes the "importance" of the webpages, ie, the
likelihood that a person randomly clicking will arrive at that particular webapage, and it is given by:

PR(pi) = 1 − d

N
+ d

∑
pj∈M(pi)

PR(pj)
L(pj) (4)

where pi denote the webpages, M(pi) are the set of pages linking to pi, L(pj) is the number of
outbound links, N is the total number of pages and d is the damping factor.

The solution, r =


PR(p1)
PR(p2)

· · ·
PR(pn)

 is the solution of the below equation:

r =


PR(p1)
PR(p2)

· · ·
PR(pn)

 + d


l(p1, p1) l(p1, p2) · · ·
l(p2, p1) · · · · · ·

· · · l(pi, pj) · · ·
l(pN , p1) · · · l(pN , pN )

 r (5)

where the elements of the adjacency matrix l(pi, pj) are the number of outbound links from pi to pj ,
and

∑
i l(pi, pj) = 1. This is a stochastic matrix, and the solution to this system is closely related to

finding the stationary points in a Markov process.

3 Dimensionality Reduction

The idea is to find a map Φ : x ∈ ℜd → y ∈ ℜk where k ≪ d, to reduce noise and discover patterns
in data.
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3.1 Projection based Dimensionality Reduction

Map X ∈ ℜn×d to a Y ∈ ℜk×d with explicit mapping:

yi = VTxi (6)

Different projections based on the constraints on yi.

Eg: Principal component analysis (PCA). In PCA, the constraint is to find an orthogonal
map V st the projection VTX captures the maximum variance. This means:

V = argmaxk

∑
i

||yik −
∑

j yjk

n
||2 =

∑
i

||Vkxik −
∑

j Vkxik

n
||2 =

∑
i

||Vk(xik − x̄ik)||2

= ||VT
k X̄||F = Tr[VT

k X̄X̄TVk] (7)

The solution to this is columns of V, vi being the ith top singular columns of X̄.

3.2 Low rank approximation

For a data matrix X ∈ ℜn×d the best rank-K approximation of X is given by Eckhart-Young-Mirsky
as:

Xk = UkΣkVk = UkUT
k X = XVkVT

k (8)

Also,

min
Xk

||X − Xk||F =
n∑

k+1
σ2

i

.
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