Lecture 4 - 01/29/2024
Instructor: Shashanka Ubaru

1 Orthogonality and Projections

1.1 Orthogonality

The key concept in this lecture is orthogonality. Two vectors \mathbf{u} and \mathbf{v} are orthogonal if $\langle\mathbf{u}, \mathbf{v}\rangle=0$. For a set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{d}\right\}$, we say that it is orthogonal of $\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=0$ for $i \neq j$. If the set also has the property that $\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle=1$, then we say that it is orthonormal.

If these orthonormal vectors were to be made columns of a matrix $\mathbf{U} \in \mathbb{R}^{n \times d}$, then you can see that $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}$; we call such a matrix as an orthonormal matrix. If $d=n$ (square matrix), then $\mathbf{U}^{T}=\mathbf{U}^{-1}$ (since multiplying it by \mathbf{U} results in identity), so $\mathbf{U U}^{T}=\mathbf{I}$ as well.

The key property of an orthonormal matrix is that it preserves norms of vectors:

$$
\begin{equation*}
\|\mathbf{U y}\|_{2}^{2}=\mathbf{y}^{T} \mathbf{U}^{T} \mathbf{U y}=\mathbf{y}^{T} \mathbf{y}=\|\mathbf{y}\|_{2}^{2} \tag{1}
\end{equation*}
$$

1.2 Subspaces of a Matrix

Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ and consider its column space, $\mathcal{C}(\mathbf{A})$. The null space of \mathbf{A}^{T} is the orthogonal complement of $\mathcal{C}(\mathbf{A})$ in \mathbb{R}^{n} :

$$
\begin{equation*}
\mathcal{C}(\mathbf{A})^{\perp}=\operatorname{Null}\left(\mathbf{A}^{T}\right) \tag{2}
\end{equation*}
$$

This is because any $\mathbf{x} \in \mathcal{C}(\mathbf{A})^{\perp}$ if and only if $\langle\mathbf{A y}, \mathbf{x}\rangle=0$ for all \mathbf{y}. This is the same as saying $\left\langle\mathbf{y}, \mathbf{A}^{T} \mathbf{x}\right\rangle=0$ for all \mathbf{y}, in which case it must be true that $\mathbf{A}^{T} \mathbf{x}=0$.

Similarly, we also have:

$$
\begin{equation*}
\mathcal{C}\left(\mathbf{A}^{T}\right)=\operatorname{Null}(\mathbf{A})^{\perp} \tag{3}
\end{equation*}
$$

Thus:

$$
\begin{align*}
& \mathbb{R}^{n}=\mathcal{C}(\mathbf{A}) \bigoplus \operatorname{Null}\left(\mathbf{A}^{T}\right) \tag{4}\\
& \mathbb{R}^{d}=\mathcal{C}\left(\mathbf{A}^{T}\right) \bigoplus \operatorname{Null}(\mathbf{A}) \tag{5}
\end{align*}
$$

1.3 Projection

An important operator that makes use of orthogonality is the projector. The definition of the projection matrix of some matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ is a matrix \mathbf{P} that keeps any vector in the column space of \mathbf{X} unchanged and eliminates any vector that is orthogonal to the column space. In other words:

Definition. \mathbf{P} is a projection matrix of \mathbf{X} if:

- $\mathbf{v} \in \mathcal{C}(\mathbf{X}) \Rightarrow \mathbf{P v}=\mathbf{v}$
- $\mathbf{w} \in \mathcal{C}(\mathbf{X})^{\perp} \Rightarrow \mathbf{P w}=0$

For the matrix multiplication to work out, we see that $\mathbf{P} \in \mathbb{R}^{n \times n}$.
With the definition above, we can prove that the column spaces of \mathbf{X} and \mathbf{P} are equivalent.
Theorem 1. $\mathcal{C}(\mathbf{P})=\mathcal{C}(\mathbf{X})$
Proof. \Rightarrow Take a vector $\mathbf{v}_{1} \in \mathcal{C}(\mathbf{X}) \subseteq \mathbb{R}^{n}$. Then, by definition, $\mathbf{P}_{\mathbf{v}}^{1}=\mathbf{v}_{1} \in \mathcal{C}(\mathbf{P})$. Therefore, $\mathcal{C}(\mathbf{X}) \subseteq \mathcal{C}(\mathbf{P})$.
\Leftarrow Take a vector $\mathbf{v}_{2} \in \mathcal{C}(\mathbf{P}) \subseteq \mathbb{R}^{n}$. This means that $\mathbf{v}_{2}=\mathbf{P y}$ for some $\mathbf{y} \in \mathbb{R}^{n}$. Since $\mathcal{C}(\mathbf{X}) \subseteq \mathbb{R}^{n}$, we can write $\mathbf{y}=\alpha \mathbf{v}+\beta \mathbf{w}$, where $\mathbf{v} \in \mathcal{C}(\mathbf{X}), \mathbf{w} \in \mathcal{C}(\mathbf{X})^{\perp}$, and $\alpha, \beta \in \mathbb{R}$.

Then, $\mathbf{v}_{2}=\mathbf{P} \mathbf{y}=\mathbf{P}(\alpha \mathbf{v}+\beta \mathbf{w})=\alpha \mathbf{P} \mathbf{v}+\beta \mathbf{P} \mathbf{w}=\alpha \mathbf{P} \mathbf{v}=\alpha \mathbf{v} \in \mathcal{C}(\mathbf{X})$. So, $\mathcal{C}(\mathbf{P}) \subseteq \mathcal{C}(\mathbf{X})$.
Since $\mathcal{C}(\mathbf{X}) \subseteq \mathcal{C}(\mathbf{P})$ and $\mathcal{C}(\mathbf{P}) \subseteq \mathcal{C}(\mathbf{X}), \mathcal{C}(\mathbf{P})=\mathcal{C}(\mathbf{X})$

From the definition of a projection matrix above, notice that $(\mathbf{I}-\mathbf{P}) \mathbf{w}=\mathbf{w}$ and $(\mathbf{I}-\mathbf{P}) \mathbf{v}=\mathbf{0}$. Therefore, the matrix $(\mathbf{I}-\mathbf{P})$ is a projection matrix onto $\mathcal{C}(\mathbf{X})^{\perp}$, and we can show that $\mathcal{C}(\mathbf{X})^{\perp}=$ $\mathcal{C}(\mathbf{I}-\mathbf{P})$ following the proof above with $(\mathbf{I}-\mathbf{P})$.

1.3.1 Projection Matrices are Symmetric and Idempotent

Some key properties of a projection matrix are given by the following theorem:
Theorem 2. \mathbf{P} is a projection matrix onto $\mathcal{C}(\mathbf{P})$ if and only if $\mathbf{P}=\mathbf{P}^{2}=\mathbf{P}^{T}$

Proof. \Rightarrow Suppose \mathbf{P} is a projection matrix. For any \mathbf{v} and \mathbf{w}, we can write it as $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$ and $\mathbf{w}=\mathbf{w}_{1}+\mathbf{w}_{2}$, where $\mathbf{v}_{1}, \mathbf{w}_{1} \in \mathcal{C}(\mathbf{P})$ and $\mathbf{v}_{2}, \mathbf{w}_{2} \in \mathcal{C}(\mathbf{P})^{\perp}$.
Note that $(\mathbf{I}-\mathbf{P}) \mathbf{v}=(\mathbf{I}-\mathbf{P})\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=(\mathbf{I}-\mathbf{P}) \mathbf{v}_{1}+(\mathbf{I}-\mathbf{P}) \mathbf{v}_{2}=\mathbf{v}_{2}$. Similarly, $\mathbf{P} \mathbf{w}=\mathbf{P} \mathbf{w}_{1}=\mathbf{w}_{1}$. So,

$$
\begin{gathered}
(\mathbf{P} \mathbf{w})^{T}(\mathbf{I}-\mathbf{P}) \mathbf{v}=\mathbf{w}_{1}^{T} \mathbf{v}_{2}=0 \text { for any } \mathbf{v} \text { and } \mathbf{w} \\
\mathbf{P}^{T}(\mathbf{I}-\mathbf{P})=0
\end{gathered}
$$

$$
\mathbf{P}^{T}=\mathbf{P}^{T} \mathbf{P}
$$

Since $\mathbf{P}^{T} \mathbf{P}$ is symmetric, \mathbf{P}^{T} must also be symmetric. So, $\mathbf{P}=\mathbf{P}^{T}=\mathbf{P}^{T} \mathbf{P}=\mathbf{P}^{2}$.
\Leftarrow If $\mathbf{P}=\mathbf{P}^{T}=\mathbf{P}^{2}$, we show that the definitions of a projection matrix hold.

- For $\mathbf{v} \in \mathcal{C}(\mathbf{P}), \mathbf{v}=\mathbf{P b}$ for some \mathbf{b}. $\mathrm{So}, \mathbf{P v}=\mathbf{P}(\mathbf{P b})=(\mathbf{P P}) \mathbf{b}=\mathbf{P b}=\mathbf{v}$.
- For $\mathbf{w} \in \mathcal{C}(\mathbf{P})^{\perp}$, it is orthogonal to all the columns of \mathbf{P}. Therefore, $\mathbf{P}^{T} \mathbf{w}=\mathbf{P w}=0$.

Note that $\mathcal{C}(\mathbf{P})^{\perp}=\mathcal{C}\left(\mathbf{P}^{T}\right)^{\perp}=\operatorname{Null}(\mathbf{P})$ by Equation 3. So, $\overline{\mathbf{P}} \equiv(\mathbf{I}-\mathbf{P})$ is a projection matrix onto the null space of \mathbf{P}.

1.3.2 The Projection Matrix onto a Column Space is Unique

Suppose we have two matrices \mathbf{P}_{1} and \mathbf{P}_{2} that are both projection matrices onto $\mathcal{C}(\mathbf{X})$. Take an arbitrary vector $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$, where $\mathbf{v}_{1} \in \mathcal{C}(\mathbf{X})$ and $\mathbf{v}_{2} \in \mathcal{C}(\mathbf{X})^{\perp}$. Then, $\mathbf{P}_{1} \mathbf{v}=\mathbf{v}_{1}=\mathbf{P}_{2} \mathbf{v}$. Rearranging, $\left(\mathbf{P}_{1}-\mathbf{P}_{2}\right) \mathbf{v}=0$.

Since \mathbf{v} is arbitrary, it must be that $\mathbf{P}_{1}-\mathbf{P}_{2}=0$. Therefore, $\mathbf{P}_{1}=\mathbf{P}_{2}$.

1.3.3 Construction of a Projection Matrix with an Orthonormal Matrix

Suppose we want to construct a projection matrix \mathbf{P} onto $\mathcal{C}(\mathbf{X})$, and we have a matrix $\mathbf{U} \in \mathbb{R}^{n \times d}$ with orthonormal columns that span $\mathcal{C}(\mathbf{X})$. Then, the (unique) projection matrix onto $\mathcal{C}(\mathbf{X})$ is $\mathbf{P}=\mathbf{U U}^{T}$.

To prove this, we just need to show that Theorem 2 holds:

- $\mathbf{P}^{T}=\left(\mathbf{U} \mathbf{U}^{T}\right)^{T}=\left(\mathbf{U}^{T}\right)^{T} \mathbf{U}^{T}=\mathbf{U} \mathbf{U}^{T}=\mathbf{P}$
- $\mathbf{P}^{2}=\left(\mathbf{U U}^{T}\right)\left(\mathbf{U U}^{T}\right)=\mathbf{U}\left(\mathbf{U}^{T} \mathbf{U}\right) \mathbf{U}^{T}=\mathbf{U I U} \mathbf{U}^{T}=\mathbf{U U}^{T}=\mathbf{P}$

Since we showed in the previous section that the projection matrix onto a given column space is unique, $\mathbf{U U}^{T}$ is the one and only projection matrix onto $\mathcal{C}(\mathbf{X})$.

With \mathbf{u}_{i} as the i-th column of \mathbf{U} and a vector $v \in \mathbb{R}^{n}$, notice that

$$
\begin{equation*}
\mathbf{P} \mathbf{v}=\mathbf{U} \mathbf{U}^{T} \mathbf{v}=\left(\sum_{i=1}^{d} \mathbf{u}_{i} \mathbf{u}_{i}^{T}\right) \mathbf{v}=\sum_{i=1}^{d}\left(\mathbf{u}_{i} \mathbf{u}_{i}^{T} \mathbf{v}\right) \tag{6}
\end{equation*}
$$

With a set of orthonormal vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{d}\right\}$, projecting a vector \mathbf{v} onto their span is equivalent to projecting \mathbf{v} onto each individual \mathbf{u}_{i} and summing all the projections.

2 Gram-Schmidt and the QR Decomposition

2.1 Gram-Schmidt Process

One such process to find an orthonormal basis of a subspace is the Gram-Schmidt process. Given a matrix $\mathbf{A}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{d}\right]$ (assume full rank for illustration), we would like to compute $\mathbf{Q}=\left[\mathbf{q}_{1}, \ldots, \mathbf{q}_{d}\right]$ which has orthonormal columns and such that $\mathcal{C}(\mathbf{A})=\mathcal{C}(\mathbf{Q})$.
In the Gram-Schmidt process, we compute \mathbf{Q} such that \mathbf{a}_{j} (the j-th column of \mathbf{A}) is a linear combination of the first j columns of \mathbf{Q}. The key idea is that for \mathbf{a}_{i}, we subtract from it the projection of it to the span of the already-calculated $\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{i-1}\right\}$; since $\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{i-1}\right\}$ is a set of orthonormal vectors, we can subtract the projections one by one $\left(\mathbf{q}_{k} \mathbf{q}_{k}^{T} \mathbf{a}_{i}\right)$, as seen in Equation 6 . It goes as follows:

$\tilde{\mathbf{q}}_{1}=\mathbf{a}_{1}$	$\mathbf{q}_{1}=\tilde{\mathbf{q}}_{1} / /\left\\|\tilde{\mathbf{q}}_{1}\right\\|_{2}$
$\tilde{\mathbf{q}}_{2}=\mathbf{a}_{2}-\mathbf{q}_{1} \mathbf{q}_{1}^{T} \mathbf{a}_{2}$	$\mathbf{q}_{2}=\tilde{\mathbf{q}}_{2} /\left\\|\tilde{\mathbf{q}}_{2}\right\\|_{2}$
$\tilde{\mathbf{q}}_{3}=\mathbf{a}_{3}-\mathbf{q}_{1} \mathbf{q}_{1}^{T} \mathbf{a}_{3}-\mathbf{q}_{2} \mathbf{q}_{2}^{T} \mathbf{a}_{3}$	$\mathbf{q}_{3}=\tilde{\mathbf{q}}_{3} /\left\\|\mid / \tilde{\mathbf{q}}_{3}\right\\|_{2}$
$\tilde{\mathbf{q}}_{4}=\mathbf{a}_{4}-\mathbf{q}_{1} \mathbf{q}_{1}^{T} \mathbf{a}_{4}-\mathbf{q}_{2} \mathbf{q}_{2}^{T} \mathbf{a}_{4}-\mathbf{q}_{2} \mathbf{q}_{2}^{T} \mathbf{a}_{4}$	$\mathbf{q}_{3}=\tilde{\mathbf{q}}_{3} /\left\\|\tilde{\mathbf{q}}_{3}\right\\|_{2}$
\ldots	\ldots
$\tilde{\mathbf{q}}_{d}=\mathbf{a}_{d}-\sum_{i=1}^{d} \mathbf{q}_{i} \mathbf{q}_{i}^{T} \mathbf{a}_{d}$	$\mathbf{q}_{d}=\tilde{\mathbf{q}}_{d} /\left\\|\tilde{\mathbf{q}}_{d}\right\\|_{2}$

The computation of $\alpha_{k}=\mathbf{q}_{k}^{T} \mathbf{a}_{i}$ costs about $2 n$ operations, and the multiplication $\alpha_{k} \mathbf{q}_{k}$ costs n operations. In each step, we sum $\alpha_{k} \mathbf{q}_{k}$ roughly d times, and there are d steps. So, the left column of the table above has a total cost of $O\left(n d^{2}\right)$ operations. In the right column, the cost of calculating the norm takes $O(n)$ operations, and the division takes $O(1)$ operations. With d steps, the total cost of the right column is $O(n d)$, which is negligible compared to the cost of the left column. Therefore, the total cost of the Gram-Schmidt process is $O\left(n d^{2}\right)$.

2.2 QR Decomposition

The Gram-Schmidt process is one method to calculate the $\mathbf{Q R}$ decomposition. It states that given a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with $n \geq d$ and $\operatorname{rank}(\mathbf{A})=d$ (these conditions are just for the purposes of this class; QR can still be done without them), there is a $\mathbf{Q} \in \mathbb{R}^{n \times d}$ and $\mathbf{R} \in \mathbb{R}^{d \times d}$ such that

- $\mathbf{A}=\mathbf{Q R}$
- $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}$ (orthonormal columns)
- $R_{i j}=0$ for $i>j$ (upper triangular)

In this setup, the columns of \mathbf{Q} are an orthonormal basis of $\mathcal{C}(\mathbf{A})$.
Using the $\left\{\mathbf{q}_{1}, \ldots, \mathbf{q}_{d}\right\}$ from Gram-Schmidt, we can rearrange the Table above to find that we can recover \mathbf{A} if \mathbf{R} collects the inner products between \mathbf{q}_{i} and \mathbf{a}_{j} :

- $R_{i j}=\mathbf{q}_{i}^{T} \mathbf{a}_{j}$ for $i<j$
- $R_{i i}=\left\|\tilde{\mathbf{q}}_{i}\right\|_{2}=\mathbf{q}_{i}^{T} \mathbf{a}_{i}$

More numerically accurate methods exist for computing the QR decomposition, including the Givens and Householder's methods.

2.2.1 Least Squares using QR

Recall from lecture 3 that in the least-squares regression problem, we solve

$$
\begin{equation*}
\mathbf{x}^{*}=\underset{x \in \mathbb{R}^{d}}{\arg \min }\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2} \tag{7}
\end{equation*}
$$

for $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^{n}$.
The solution satisfied the normal equation:

$$
\begin{equation*}
\mathbf{A}^{T} \mathbf{A} \mathbf{x}^{*}=\mathbf{A}^{T} \mathbf{b} \tag{8}
\end{equation*}
$$

However, we saw that working with $\mathbf{A}^{T} \mathbf{A}$ is not ideal because we need to compute its inverse, and it may be highly ill-conditioned.

Instead, if we write the normal equation with the QR decomposition of \mathbf{A},

$$
\begin{align*}
\mathbf{R}^{T} \mathbf{Q}^{T} \mathbf{Q R x} & =\mathbf{R}^{T} \mathbf{Q}^{T} \mathbf{b} \tag{9}\\
\mathbf{R}^{T} \mathbf{R} \mathbf{x}^{*} & =\mathbf{R}^{T} \mathbf{Q}^{T} \mathbf{b} \tag{10}\\
\mathbf{R} \mathbf{x}^{*} & =\mathbf{Q}^{T} \mathbf{b} \tag{11}
\end{align*}
$$

Alternatively, using the column picture of least squares from lecture 3, we know that least squares seeks to minimize the length (ℓ_{2} norm) of the error vector $\mathbf{e}=\mathbf{b}-\mathbf{A x}$. This happens when it is orthogonal to the column space of \mathbf{A}, which is equivalent to that of \mathbf{Q}. Thus,

$$
\begin{align*}
\mathbf{Q}^{T} \mathbf{e}^{*} & =0 \tag{12}\\
\mathbf{Q}^{T}\left(\mathbf{b}-\mathbf{A} \mathbf{x}^{*}\right) & =0 \tag{13}\\
\mathbf{Q}^{T} \mathbf{A} \mathbf{x}^{*} & =\mathbf{Q}^{T} \mathbf{b} \tag{14}\\
\mathbf{Q}^{T} \mathbf{Q} \mathbf{R x}^{*} & =\mathbf{Q}^{T} \mathbf{b} \tag{15}\\
\mathbf{R x}^{*} & =\mathbf{Q}^{T} \mathbf{b} \tag{16}
\end{align*}
$$

Since \mathbf{R} is upper triangular, this system of equations can be solved using back substitution.

3 Singular Value Decomposition

Another important matrix decomposition involving orthonormal matrices is the singular value decomposition (SVD). It states that for any matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, there exist orthonormal matrices $\mathbf{U} \in \mathbb{R}^{n \times n}$ and $\mathbf{V} \in \mathbb{R}^{d \times d}$ such that

$$
\begin{equation*}
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \tag{17}
\end{equation*}
$$

where $\boldsymbol{\Sigma} \in \mathbb{R}^{n \times d}$ is a matrix whose top left $(p \times p)$ principal submatrix is diagonal with entries $\sigma_{i} \geq 0$, with $p=\min (n, d)$.

The columns of \mathbf{U} are called the left singular vectors of \mathbf{A}, and they are the same as the eigenvectors of $\mathbf{A} \mathbf{A}^{T}$, which span \mathbb{R}^{n} :

$$
\begin{equation*}
\mathbf{A} \mathbf{A}^{T}=\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)\left(\mathbf{V} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T}\right)=\mathbf{U} \Sigma \Sigma^{T} \mathbf{U}^{T}=\mathbf{U} \Sigma_{n}^{2} \mathbf{U}^{T} \tag{18}
\end{equation*}
$$

Since $\mathbf{A A}^{T}$ is positive semidefinite, \mathbf{U} is orthonormal; it can also be made square by including the bases of the null space of $\mathbf{A} \mathbf{A}^{T}$ as eigenvectors with their corresponding eigenvalues equal to 0 . Because the eigenvalues in Σ_{n}^{2} and the corresponding eigenvectors in the columns of \mathbf{U} can be ordered in any way to give the product $\mathbf{A} \mathbf{A}^{T}$, assume that the eigenvalues are ordered in a descending manner:

$$
\begin{equation*}
\sigma_{1}^{2} \geq \sigma_{2}^{2} \geq \ldots \geq \sigma_{p}^{2} \geq 0 \tag{19}
\end{equation*}
$$

The columns of \mathbf{V} are called the right singular vectors of \mathbf{A}, and they are the same as the eigenvectors of $\mathbf{A}^{T} \mathbf{A}$, which span \mathbb{R}^{d} :

$$
\begin{equation*}
\mathbf{A}^{T} \mathbf{A}=\left(\mathbf{V} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T}\right)\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)=\mathbf{V} \Sigma^{T} \Sigma \mathbf{V}^{T}=\mathbf{V} \Sigma_{d}^{2} \mathbf{V}^{T} \tag{20}
\end{equation*}
$$

Again, \mathbf{V} can be made square and orthonormal because $\mathbf{A}^{T} \mathbf{A}$ is positive semidefinite, and we can order the columns of \mathbf{V} such that their corresponding σ_{i}^{2} are in descending order.
σ_{i} is called the i-th singular value of \mathbf{A}, and σ_{i}^{2} is equal to the i-th eigenvalue of $\mathbf{A}^{T} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{T}$. It can be proven that $\mathbf{A}^{T} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{T}$ have the same nonzero eigenvalues.

Proof. Let $\mathbf{A}^{T} \mathbf{A x}=\lambda \mathbf{x}$ with $\lambda \neq 0$ and $\|\mathbf{x}\|_{2} \neq 0 ; \lambda$ is a nonzero eigenvalue of $\mathbf{A}^{T} \mathbf{A}$ with its corresponding eigenvector being \mathbf{x}.

Then, multiplying it by \mathbf{A} gives $\mathbf{A} \mathbf{A}^{T}(\mathbf{A x})=\lambda(\mathbf{A x}) ; \lambda$ is also a (nonzero) eigenvalue of $\mathbf{A} \mathbf{A}^{T}$ with its corresponding eigenvector being $\mathbf{A x}$.

Note that $\mathbf{A x} \neq \mathbf{0}$ without violating our conditions of λ and \mathbf{x} being nonzero. If it were zero, then it would imply that $\mathbf{A}^{T} \mathbf{A x}=\mathbf{A}^{T} \mathbf{0}=\mathbf{0}$, but since $\mathbf{A}^{T} \mathbf{A x}=\lambda \mathbf{x}$, it would mean that either $\lambda=0$ or $\mathbf{x}=\mathbf{0}$, both of which cannot happen given our starting conditions.
Conversely, if $\mathbf{A} \mathbf{A}^{T} \mathbf{x}=\lambda \mathbf{x}$ with $\lambda \neq 0$, then multiplying by \mathbf{A}^{T} gives $\mathbf{A}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{x}\right)=\lambda\left(\mathbf{A}^{T} \mathbf{x}\right)$.

3.1 SVD Properties

Let $\operatorname{rank}(\mathbf{A})=r \leq p$. Then:

1. $r=$ number of nonzero singular values

Proof. The rank of a matrix does not change when multiplied by non-singular matrices. Since \mathbf{U} and \mathbf{V} are square and orthonormal, they are invertible. Therefore,

$$
\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)=\operatorname{rank}(\boldsymbol{\Sigma})
$$

which is equal to the number of nonzero singular values of \mathbf{A}.
2. $\mathcal{C}\left(\mathbf{A}^{T}\right)=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$
3. $\operatorname{Null}(\mathbf{A})=\operatorname{span}\left\{\mathbf{v}_{r+1}, \mathbf{v}_{r+2}, \ldots, \mathbf{v}_{d}\right\}$

Proof. We can rewrite Equation 17 as $\mathbf{A V}=\mathbf{U} \boldsymbol{\Sigma}$, or equivalently:

$$
\mathbf{A} \mathbf{v}_{1}=\sigma_{1} \mathbf{u}_{1}, \mathbf{A} \mathbf{v}_{2}=\sigma_{2} \mathbf{u}_{2},, \ldots, \mathbf{A} \mathbf{v}_{r}=\sigma_{r} \mathbf{u}_{r}, \ldots, \mathbf{A} \mathbf{v}_{p}=\sigma_{p} \mathbf{u}_{p}
$$

where \mathbf{v}_{i} and \mathbf{u}_{i} are the i-th columns of \mathbf{V} and \mathbf{U}, respectively.
If $d>n$, then the rewrite can continue outside the principal submatrix of Σ as $\mathbf{A v}_{k}=\mathbf{0}$ for $p<k \leq d$.

Since, σ_{r+1} through σ_{p} are 0 , it means that

$$
\mathbf{A} \mathbf{v}_{k}=\mathbf{0}
$$

for $(r+1) \leq k \leq d$. Thus, the set $\left\{\mathbf{v}_{r+1}, \mathbf{v}_{r+2}, \ldots, \mathbf{v}_{d}\right\}$ is an orthonormal set for at least some subspace of $\operatorname{Null}(\mathbf{A})$.

Any vector $\mathbf{x} \in \mathbb{R}^{d}$ not in this subspace must be in the orthogonal complement of this subspace in \mathbb{R}^{d}. Since $\mathbf{V} \in \mathbb{R}^{d \times d}$ is square and orthonormal, its columns create a orthonormal spanning set of \mathbb{R}^{d}. Therefore, the orthonormal complement of $\operatorname{span}\left\{\mathbf{v}_{r+1}, \mathbf{v}_{r+2}, \ldots, \mathbf{v}_{d}\right\}$ is $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$. We can represent \mathbf{x} in terms of these vectors:

$$
\mathbf{x}=\sum_{k=1}^{r} \alpha_{k} \mathbf{v}_{k}
$$

for $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}$.
The product with \mathbf{A} gives

$$
\mathbf{A x}=\mathbf{A} \sum_{k=1}^{r} \alpha_{k} \mathbf{v}_{k}=\sum_{k=1}^{r} \alpha_{k} \mathbf{A} \mathbf{v}_{k}=\sum_{k=1}^{r} \alpha_{k} \sigma_{k} \mathbf{u}_{k}
$$

Since the columns of \mathbf{U} are linearly independent (moreover, orthogonal) and σ_{1} through σ_{r} are nonzero, there are no $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ that gives the zero vector other than $\alpha_{k}=0 \forall 1 \leq k \leq r$ (this is by the definition of linear independence). Therefore, there are no other nonzero vectors in $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ that is part of the null space of \mathbf{A}. Therefore, the null space of \mathbf{A} must be $\operatorname{span}\left\{\mathbf{v}_{r+1}, \mathbf{v}_{r+2}, \ldots, \mathbf{v}_{d}\right\}$, and the row space must be its orthogonal complement in \mathbb{R}^{d}, which is $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$.
4. $\mathcal{C}(\mathbf{A})=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right\}$
5. $\operatorname{Null}\left(\mathbf{A}^{T}\right)=\operatorname{span}\left\{\mathbf{u}_{r+1}, \mathbf{u}_{r+2}, \ldots, \mathbf{v}_{n}\right\}$

The proof follows the same steps with \mathbf{A}^{T}.

3.2 Thin SVD

If \mathbf{A} is not square or is less than full rank, Σ contains rows or columns of zeros that don't contribute anything to \mathbf{A}. For instance, consider a tall and skinny \mathbf{A}; in other words, $n>d$. Then, we can write Equation 17 as

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{U}_{1} & \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{c}
\Sigma_{1} \tag{21}\\
\mathbf{0}
\end{array}\right] \mathbf{V}^{T}=\mathbf{U}_{1} \Sigma_{1} \mathbf{V}^{T}
$$

where $\mathbf{U}_{1} \in \mathbb{R}^{n \times d}, \mathbf{U}_{2} \in \mathbb{R}^{n \times n-d}$, and $\Sigma_{1}, \mathbf{V} \in \mathbb{R}^{d \times d}$.

If $n<d$, then

$$
\mathbf{A}=\mathbf{U}\left[\begin{array}{ll}
\Sigma_{1} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{1}^{T} \tag{22}\\
\mathbf{V}_{2}^{T}
\end{array}\right]=\mathbf{U} \Sigma_{1} \mathbf{V}_{1}^{T}
$$

where $\mathbf{V}_{1} \in \mathbb{R}^{d \times n}, \mathbf{V}_{2} \in \mathbb{R}^{d \times d-n}$, and $\Sigma_{1}, \mathbf{U} \in \mathbb{R}^{n \times n}$.
More generally, with $\operatorname{rank}(\mathbf{A})=r \leq p$:

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{U}_{1} & \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{1} & \mathbf{0} \tag{23}\\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{1}^{T} \\
\mathbf{V}_{2}^{T}
\end{array}\right]=\mathbf{U}_{1} \Sigma_{1} \mathbf{V}_{1}^{T}
$$

where $\mathbf{U}_{1} \in \mathbb{R}^{n \times r}, \mathbf{U}_{2} \in \mathbb{R}^{n \times n-r}, \mathbf{V}_{1} \in \mathbb{R}^{d \times r}, \mathbf{V}_{2} \in \mathbb{R}^{d \times d-r}$, and $\Sigma_{1} \in \mathbb{R}^{r \times r}$.
When the full square \mathbf{U} and \mathbf{V} are both not used, we refer to the resulting SVD as a thin SVD or an economical SVD. In a thin SVD, we only include the left and right singular vectors that span the column and row spaces of \mathbf{A}.
We can also write the thin SVD (Equation 23) as a sum of rank-1 matrices that are scaled outer products between the left and right singular vectors:

$$
\begin{equation*}
\mathbf{A}=\mathbf{U}_{1} \Sigma_{1} \mathbf{V}_{1}^{T}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \tag{24}
\end{equation*}
$$

3.3 Matrix Norms in terms of Singular Values

Certain matrix norms can be written in terms of the singular values.
In particular, the matrix 2-norm is equal to the largest singular value:

$$
\begin{equation*}
\|\mathbf{A}\|_{2}=\sigma_{1} \tag{25}
\end{equation*}
$$

Proof. The definition of a matrix 2-norm is

$$
\|\mathbf{A}\|_{2}=\max _{\mathbf{x} \in \mathbb{R}^{d}, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A} \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}
$$

for $\mathbf{A} \in \mathbb{R}^{n \times d}$.
Writing A as its full SVD and expressing \mathbf{x} in terms of the full right singular vectors of \mathbf{A} (which $\operatorname{span} \mathbb{R}^{d}$):

$$
\begin{align*}
& \|\mathbf{A}\|_{2}^{2}=\max _{\mathbf{x} \in \mathbb{R}^{d}, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A x}\|_{2}^{2}}{\|\mathbf{x}\|_{2}^{2}} \tag{26}\\
& =\max _{\mathbf{x} \in \mathbb{R}^{d}, \mathbf{x} \neq \mathbf{0}} \frac{\left\|\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \mathbf{x}\right\|_{2}^{2}}{\|\mathbf{x}\|_{2}^{2}} \tag{27}\\
& =\max _{\mathbf{x} \in \mathbb{R}^{d}, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{T} \mathbf{V} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \tag{28}\\
& =\max _{\mathbf{x} \in \mathbb{R}^{d}, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{T} \mathbf{V} \boldsymbol{\Sigma}_{d}^{2} \mathbf{V} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \tag{29}\\
& \mathbf{U}^{T} \mathbf{U}=\mathbf{I} \\
& =\max _{\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}, \sum \alpha_{i} \neq 0} \frac{\left(\sum_{i=1}^{d} \alpha_{i} \mathbf{v}_{i}^{T} \mathbf{V}\right) \boldsymbol{\Sigma}_{d}^{2}\left(\sum_{j=1}^{d} \alpha_{j} \mathbf{V}^{T} \mathbf{v}_{j}\right)}{\sum_{k=1}^{d} \alpha_{k} \mathbf{v}_{k}^{T} \sum_{l=1}^{d} \alpha_{l} \mathbf{v}_{l}} \quad \mathbf{x}=\sum_{i=1}^{d} \alpha_{i} \mathbf{v}_{i} \tag{30}\\
& =\max _{\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}, \sum \alpha_{i} \neq 0} \frac{\left(\sum_{i=1}^{d} \alpha_{i} \mathbf{v}_{i}^{T} \mathbf{V}\right) \boldsymbol{\Sigma}_{d}^{2}\left(\sum_{j=1}^{d} \alpha_{j} \mathbf{V}^{T} \mathbf{v}_{j}\right)}{\sum_{k=1}^{d} \alpha_{k}^{2}} \tag{31}\\
& =\max _{\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}, \sum \alpha_{i} \neq 0} \frac{\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{d}
\end{array}\right] \boldsymbol{\Sigma}_{d}^{2}\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{d}
\end{array}\right]}{\sum_{k=1}^{d} \alpha_{k}^{2}} \tag{32}\\
& \mathbf{v}_{i}^{T} \mathbf{v}_{j}=\delta_{i j}
\end{align*}
$$

The maximum is obtained when $\alpha_{i}=0$ for $i \neq 1$.

Also, the Frobenius norm is related to the sum of the square of the singular values:

$$
\begin{equation*}
\|\mathbf{A}\|_{F}=\sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}} \tag{36}
\end{equation*}
$$

Proof. The definition of the Frobenius norm is

$$
\|\mathbf{A}\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{d} A_{i j}^{2}=\operatorname{Tr}\left(\mathbf{A}^{T} \mathbf{A}\right)
$$

But the trace of a matrix is equal to the sum of its eigenvalues, and we saw in Equation 20 that the eigenvalues of $\mathbf{A}^{T} \mathbf{A}$ are the square of the singular values of \mathbf{A}.

3.4 Eckart-Young-Mirsky Theorem

A key theorem that involves SVD is the Eckart-Young-Mirsky theorem, which states that the best rank k approximation of a matrix is the one where its rank-1 expansion (Equation 24) is truncated at $i=k$:

Theorem 3. For any matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with rank r, let $k \leq r$ and $\mathbf{A}_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}$. Then,

$$
\begin{equation*}
\min _{\mathbf{B}: \operatorname{rank}(\mathbf{B})=k}\|\mathbf{A}-\mathbf{B}\|_{2}=\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2}=\sigma_{k+1} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\min _{\mathbf{B}: \operatorname{rank}(\mathbf{B})=k}\|\mathbf{A}-\mathbf{B}\|_{F}=\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}=\sqrt{\sum_{i=k+1}^{r} \sigma_{i}} \tag{38}
\end{equation*}
$$

Proof. The proof for the 2-norm is assigned as a homework problem. Here, we will only prove the Frobenius norm version.

First, note that for a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ and a subspace $V \subseteq \mathbb{R}^{d}$ of dimension $(n-k)$ that is orthogonal to the first k singular vectors,

$$
\max _{\mathbf{v} \in V,\|\mathbf{v}\|_{2}=1}\|\mathbf{A v}\|_{2}=\sigma_{k+1}
$$

The proof is similar to the proof of the matrix 2-norm (Equation 25) but with a subspace of \mathbb{R}^{d}.
Now, we must prove the Weyl inequality. Let $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n \times d}$ and denote their singular values as $\sigma_{i}(\mathbf{X})$ and $\sigma_{i}(\mathbf{Y})$. Let $V_{X} \subseteq \mathbb{R}^{d}$ and $V_{Y} \subseteq \mathbb{R}^{d}$ have dimensions $(d-k)$ and $(d-l)$ and be orthogonal to the first k and l right singular vectors of \mathbf{X} and \mathbf{Y}, respectively, and let $W=V_{X} \cap V_{Y}$. Then,

$$
\begin{aligned}
\max _{\mathbf{v} \in W,\|\mathbf{v}\|_{2}=1}\|\mathbf{X v}+\mathbf{Y v}\|_{2} & \leq \max _{\mathbf{v} \in W,\|\mathbf{v}\|_{2}=1}\|\mathbf{X v}\|_{2}+\|\mathbf{Y v}\|_{2} \\
& \text { triangle inequality } \\
& \max _{\mathbf{v} \in V_{X},\|\mathbf{v}\|_{2}=1}\|\mathbf{X v}\|_{2}+\max _{\mathbf{v} \in V_{Y},\|\mathbf{v}\|_{2}=1}\|\mathbf{Y v}\|_{2} \\
& \leq \sigma_{k+1}(\mathbf{X})+\sigma_{l+1}(\mathbf{Y})
\end{aligned}
$$

And note that $\operatorname{dim}(W) \leq(d-k)+(d-l)-d)=d-k-l$. So, by the Courant-Fischer's Min-Max theorem (proved in the next lecture):

$$
\begin{align*}
\sigma_{k+l+1}(\mathbf{X}+\mathbf{Y}) & =\min _{V \subseteq \mathbb{R}^{d}, \operatorname{dim}(V)=d-k-l \mathbf{v} \in V,\|\mathbf{v}\|_{2}=1}\|\mathbf{X v}+\mathbf{Y v}\|_{2} \tag{39}\\
& \leq \max _{\mathbf{v} \in W,\|\mathbf{v}\|_{2}=1}\|\mathbf{X v}+\mathbf{Y v}\|_{2} \tag{40}\\
& \leq \sigma_{k+1}(\mathbf{X})+\sigma_{l+1}(\mathbf{Y}) \tag{41}
\end{align*}
$$

Now, to prove the Eckart-Young-Mirsky theorem for the Frobenius norm, take $\mathbf{X}=\mathbf{B}$ and $\mathbf{Y}=\mathbf{A}-\mathbf{B}$. Applying Weyl's inequality (Equation 41):

$$
\sigma_{i+k}(\mathbf{A}) \leq \sigma_{k+1}(\mathbf{B})+\sigma_{i}(\mathbf{A}-\mathbf{B})=\sigma_{i}(\mathbf{A}-\mathbf{B})
$$

The last equality used the fact that $\operatorname{rank}(\mathbf{B})=k$.
Then,

$$
\|\mathbf{A}-\mathbf{B}\|_{F}^{2}=\sum_{i=1}^{p} \sigma_{i}(\mathbf{A}-\mathbf{B}) \geq \sum_{i=1}^{r-k} \sigma_{i+k}(\mathbf{A})
$$

where $p=\min (n, d)$.
After showing that the lower bound is met when $\mathbf{B}=\mathbf{A}_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}$, our proof is complete:

$$
\begin{align*}
\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2} & =\left\|\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}-\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}\right\|_{F}^{2} \tag{42}\\
& =\left\|\sum_{i=k+1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}\right\|_{F}^{2} \tag{43}\\
& =\sum_{i=k+1}^{r} \sigma_{i}^{2} \tag{44}\\
& =\sum_{i=1}^{r-k} \sigma_{i+k}^{2} \tag{45}
\end{align*}
$$

3.5 Pseudoinverse

Recall the thin SVD for $\mathbf{A} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathbf{A})=r$. (Equation 23):

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{U}_{1} & \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{1}^{T} \\
\mathbf{V}_{2}^{T}
\end{array}\right]=\mathbf{U}_{1} \Sigma_{1} \mathbf{V}_{1}^{T}
$$

The pseudoinverse is defined as:

$$
\begin{equation*}
\mathbf{A}^{\dagger}=\mathbf{V}_{1} \Sigma_{1}^{-1} \mathbf{U}_{1}^{T}=\sum_{i=1}^{r} \frac{1}{\sigma_{i}} \mathbf{v}_{i} \mathbf{u}_{i}^{T} \tag{46}
\end{equation*}
$$

The matrices \mathbf{A} and \mathbf{A}^{\dagger} provide a bijective mapping between the row and column spaces of \mathbf{A} while "zero-ing out" vectors in its null and left-null spaces. Recall that the r columns of \mathbf{U}_{1} span $\mathcal{C}(\mathbf{A})$ and the r columns of \mathbf{V}_{1} span $\mathcal{C}\left(\mathbf{A}^{T}\right)$.
To illustrate, take a vector $\mathbf{x} \in \mathcal{C}(\mathbf{A})$; it can be written as $\mathbf{x}=\sum_{i=1}^{r} \alpha_{i} \mathbf{u}_{i}$. Applying the pseudoinverse:

$$
\begin{equation*}
\mathbf{A}^{\dagger} \mathbf{x}=\sum_{i=1}^{r}\left(\frac{1}{\sigma_{i}} \mathbf{v}_{i} \mathbf{u}_{i}^{T} \sum_{j=1}^{r} \alpha_{j} \mathbf{u}_{j}\right)=\sum_{i=1}^{r} \sum_{j=1}^{r} \frac{\alpha_{j}}{\sigma_{i}} \mathbf{v}_{i}\left(\mathbf{u}_{i}^{T} \mathbf{u}_{j}\right)=\sum_{i=1}^{r} \frac{\alpha_{i}}{\sigma_{i}} \mathbf{v}_{i} \in \mathcal{C}\left(\mathbf{A}^{T}\right) \tag{47}
\end{equation*}
$$

Applying A to this result, we recover the original vector \mathbf{x} :

$$
\begin{equation*}
\mathbf{A} \sum_{i=1}^{r} \frac{\alpha_{i}}{\sigma_{i}} \mathbf{v}_{i}=\sum_{j=1}^{r} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T} \sum_{i=1}^{r} \frac{\alpha_{i}}{\sigma_{i}} \mathbf{v}_{i}=\sum_{i=1}^{r} \sum_{j=1}^{r} \frac{\alpha_{i} \sigma_{j}}{\sigma_{i}} \mathbf{u}_{j}\left(\mathbf{v}_{j}^{T} \mathbf{v}_{i}\right)=\sum_{i=1}^{r} \alpha_{i} \mathbf{u}_{i}=\mathbf{x} \tag{48}
\end{equation*}
$$

In other words, since $\mathbf{x} \in \mathcal{C}(\mathbf{A})$ can be expressed as $\mathbf{x}=\mathbf{A b}$ for some \mathbf{b}, we have

$$
\begin{equation*}
\mathbf{A A}^{\dagger} \mathbf{x}=\mathbf{A} \mathbf{A}^{\dagger} \mathbf{A} \mathbf{b}=\mathbf{x}=\mathbf{A} \mathbf{b} \tag{49}
\end{equation*}
$$

Since b is arbitrary,

$$
\begin{equation*}
\mathbf{A A}^{\dagger} \mathbf{A}=\mathbf{A} \tag{50}
\end{equation*}
$$

And for a vector $\mathbf{y}=\sum_{i=r+1}^{n} \beta_{i} \mathbf{u}_{i} \in \operatorname{Null}\left(\mathbf{A}^{T}\right)$:

$$
\begin{equation*}
\mathbf{A}^{\dagger} \mathbf{y}=\sum_{i=1}^{r}\left(\frac{1}{\sigma_{i}} \mathbf{v}_{i} \mathbf{u}_{i}^{T} \sum_{j=r+1}^{n} \beta_{j} \mathbf{u}_{j}\right)=\sum_{i=1}^{r} \sum_{j=r+1}^{n} \frac{\beta_{j}}{\sigma_{i}} \mathbf{v}_{i}\left(\mathbf{u}_{i}^{T} \mathbf{u}_{j}\right)=\mathbf{0} \tag{51}
\end{equation*}
$$

Thus, for any vector $\mathbf{z}=\mathbf{x}+\mathbf{y} \in \mathbb{R}^{n}$, we have

$$
\begin{align*}
\mathbf{A A}^{\dagger} \mathbf{z} & =\mathbf{A A}^{\dagger}(\mathbf{x}+\mathbf{y}) \tag{52}\\
& =\mathbf{A A}^{\dagger} \mathbf{x}+\mathbf{A A}^{\dagger} \mathbf{y} \tag{53}\\
& =\mathbf{A A}^{\dagger} \mathbf{x} \tag{54}\\
& =\mathbf{x} \tag{55}
\end{align*}
$$

The vector \mathbf{z} was projected to only the component in the column space of \mathbf{A}.
Similiarly, with $\mathbf{x} \in \mathcal{C}\left(\mathbf{A}^{\dagger}\right)=\mathcal{C}\left(\mathbf{A}^{T}\right)$ and $\mathbf{y} \in \operatorname{Null}(\mathbf{A})$, we can show that

$$
\begin{equation*}
\mathbf{A}^{\dagger} \mathbf{A} \mathbf{A}^{\dagger}=\mathbf{A}^{\dagger} \tag{56}
\end{equation*}
$$

and that $\mathbf{A}^{\dagger} \mathbf{A}$ is a projection matrix onto the row space of \mathbf{A}.

3.5.1 Properties of the Pseudoinverse

These properties were shown above:

1. $\mathbf{A A}^{\dagger} \mathbf{A}=\mathbf{A}$
2. $\mathbf{A}^{\dagger} \mathbf{A} \mathbf{A}^{\dagger}=\mathbf{A}^{\dagger}$
3. $\mathbf{A} \mathbf{A}^{\dagger}$ is a projector onto $\mathcal{C}(\mathbf{A})$
4. $\mathbf{A}^{\dagger} \mathbf{A}$ is a projector onto $\mathcal{C}\left(\mathbf{A}^{T}\right)$

Some additional properties are:
5. $\left(\mathbf{A}^{\dagger} \mathbf{A}\right)^{T}=\mathbf{A}^{\dagger} \mathbf{A}$
6. $\left(\mathbf{A A}^{\dagger}\right)^{T}=\mathbf{A} \mathbf{A}^{\dagger}$

Proof. We proved in Theorem 2 that projection matrices are symmetric. Since $\mathbf{A}^{\dagger} \mathbf{A}$ and $\mathbf{A A}^{\dagger}$ are projection matrices, they are symmetric.

And some special cases when \mathbf{A} is full rank:
7. When $n \geq d$ and \mathbf{A} is full rank: $\mathbf{A}^{\dagger}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}$

- Also called the left inverse because when applied to the left of $\mathbf{A}: \mathbf{A}^{\dagger} \mathbf{A}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{A}=$ I

8. When $d \geq n$ and \mathbf{A} is full rank: $\mathbf{A}^{\dagger}=\mathbf{A}^{T}\left(\mathbf{A A}^{T}\right)^{-1}$

- Also called the right inverse because when applied to the right of $\mathbf{A}: \mathbf{A A}^{\dagger}=$ $\mathbf{A} \mathbf{A}^{T}\left(\mathbf{A A}^{T}\right)^{-1}=\mathbf{I}$

9. When \mathbf{A} is square and full rank: $\mathbf{A}^{\dagger}=\mathbf{A}^{-1}$

Proof. Only proving the right inverse. Others can be shown in a similar manner.
For $\mathbf{A} \in \mathbb{R}^{n \times d}$ with $d \geq n$ and $\operatorname{rank}(A)=n$, its full SVD is:

$$
\mathbf{A}=\mathbf{U}\left[\begin{array}{ll}
\Sigma_{1} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{1}^{T} \\
\mathbf{V}_{2}^{T}
\end{array}\right]=\mathbf{U}_{1} \Sigma_{1} \mathbf{V}_{1}^{T}
$$

with $\mathbf{U} \in \mathbb{R}^{n \times n}, \Sigma_{1} \in \mathbb{R}^{n \times n}$, and $\mathbf{V}_{1} \in \mathbb{R}^{d \times n}$. Furthermore, Σ_{1} is fully diagonal (and invertible), and $\mathbf{U}^{T}=\mathbf{U}^{-1}$ as usual.

From the definition of the pseudoinverse (Equation 46):

$$
\mathbf{A}^{\dagger}=\mathbf{V}_{1} \Sigma_{1}^{-1} \mathbf{U}^{T}
$$

And

$$
\begin{align*}
\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1} & =\mathbf{V}_{1} \Sigma_{1}^{T} \mathbf{U}^{T}\left(\mathbf{U} \Sigma_{1} \mathbf{V}_{1}^{T} \mathbf{V}_{1} \Sigma_{1}^{T} \mathbf{U}^{T}\right)^{-1} \tag{57}\\
& =\mathbf{V}_{1} \Sigma_{1} \mathbf{U}^{T}\left(\mathbf{U} \Sigma_{1}^{2} \mathbf{U}^{T}\right)^{-1} \tag{58}\\
& =\mathbf{V}_{1} \Sigma_{1} \mathbf{U}^{T} \mathbf{U} \Sigma_{1}^{-2} \mathbf{U}^{T} \tag{59}\\
& =\mathbf{V}_{1} \Sigma_{1}^{-1} \mathbf{U}^{T} \tag{60}\\
& =\mathbf{A}^{\dagger} \tag{61}
\end{align*}
$$

3.5.2 Least Squares with the Pseudoinverse

Recall the least-squares regression problem from lecture 3:

$$
\begin{equation*}
\mathbf{x}^{*}=\underset{\mathbf{x} \in \mathbb{R}^{d}}{\arg \min }\|\mathbf{A x}-\mathbf{b}\|_{2}^{2} \tag{62}
\end{equation*}
$$

given a data matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with n samples $\left\{\mathbf{a}_{i}\right\}_{i=1}^{n} \in \mathbb{R}$ of d-dimensional features and a column vector $\mathbf{b} \in \mathbb{R}^{n}$ of targets.

We showed that the solution satisfied the normal equation:

$$
\begin{equation*}
\mathbf{A}^{T} \mathbf{A x}^{*}=\mathbf{A}^{T} \mathbf{b} \tag{63}
\end{equation*}
$$

For a full-rank \mathbf{A} with $n \geq d,\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1}$ exists, and the unique solution was

$$
\begin{equation*}
\mathbf{x}^{*}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b} \tag{64}
\end{equation*}
$$

However, if \mathbf{A} is not full rank and/or $d>n$, then there can be more than one solution to the normal equation. But, out of these solutions, $\mathbf{x}^{*}=\mathbf{A}^{\dagger} b$ gives the minimum norm solution. The proof is shown below.
Consider the SVD of A from Equation 23:

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\left[\begin{array}{ll}
\mathbf{U}_{1} & \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{1} & \mathbf{0} \tag{65}\\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{1}^{T} \\
\mathbf{V}_{2}^{T}
\end{array}\right]=\mathbf{U}_{1} \Sigma_{1} \mathbf{V}_{1}^{T}
$$

We express any $\mathbf{x} \in \mathbb{R}^{d}$ in terms of the full right singular vectors of \mathbf{A}, which span \mathbb{R}^{d} :

$$
\mathbf{x}=\mathbf{V} \mathbf{y}=\left[\mathbf{V}_{1}, \mathbf{V}_{2}\right]\left[\begin{array}{l}
\mathbf{y}_{1} \tag{66}\\
\mathbf{y}_{2}
\end{array}\right]
$$

Using these, we evaluate the loss function

$$
\begin{align*}
\|\mathbf{A x}-\mathbf{b}\|_{2}^{2} & =\left\|\mathbf{U} \Sigma \mathbf{V}^{T}\left[\mathbf{V}_{1}, \mathbf{V}_{2}\right]\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right]-\mathbf{b}\right\|_{2}^{2} \tag{67}\\
& =\left\|\mathbf{U} \Sigma\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right]-\mathbf{b}\right\|_{2}^{2} \tag{68}
\end{align*}
$$

Since multiplying by an orthonormal matrix does not change the norm, we left multiply by \mathbf{U}^{T} :

$$
\begin{align*}
\|\mathbf{A x}-\mathbf{b}\|_{2}^{2} & =\left\|\mathbf{U}^{T}(\mathbf{A x}-\mathbf{b})\right\|_{2}^{2} \tag{69}\\
& =\left\|\Sigma\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right]-\mathbf{U}^{T} \mathbf{b}\right\|_{2}^{2} \tag{70}\\
& =\left\|\left[\begin{array}{cc}
\Sigma_{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right]-\left[\begin{array}{c}
\mathbf{U}_{1}^{T} \\
\mathbf{U}_{2}^{T}
\end{array}\right] \mathbf{b}\right\|_{2}^{2} \tag{71}\\
& =\left\|\boldsymbol{\Sigma}_{1} \mathbf{y}_{1}-\mathbf{U}_{1}^{T} \mathbf{b}\right\|_{2}^{2}+\left\|\mathbf{0} \cdot \mathbf{y}_{2}-\mathbf{U}_{2}^{T} \mathbf{b}\right\|_{2}^{2} \tag{72}
\end{align*}
$$

To find the minimum of this loss function, we consider the terms one by one. The first term is 0 when

$$
\begin{equation*}
\mathbf{y}_{1}=\boldsymbol{\Sigma}_{1}^{-1} \mathbf{U}_{1}^{T} \mathbf{b} \tag{73}
\end{equation*}
$$

However, the second term is always $\left\|\mathbf{U}_{2}^{T} \mathbf{b}\right\|_{2}^{2}$ regardless of \mathbf{y}_{2}.
Therefore, the least-squares solutions are:

$$
\begin{align*}
\mathbf{x} & =\mathbf{V} \mathbf{y}=\left[\mathbf{V}_{1}, \mathbf{V}_{2}\right]\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right] \tag{74}\\
& =\mathbf{V}_{1} \mathbf{y}_{1}+\mathbf{V}_{2} \mathbf{y}_{2} \tag{75}\\
& =\mathbf{V}_{1} \boldsymbol{\Sigma}_{1}^{-1} \mathbf{U}_{1}^{T} \mathbf{b}+\mathbf{V}_{2} \mathbf{y}_{2} \tag{76}\\
& =\mathbf{A}^{\dagger} \mathbf{b}+\mathbf{V}_{2} \mathbf{y}_{2} \tag{77}
\end{align*}
$$

We know that $\mathbf{A}^{\dagger} \mathbf{b} \in \mathcal{C}\left(\mathbf{A}^{T}\right)$ and $\mathbf{V}_{2} \mathbf{y}_{2} \in \operatorname{Null}(\mathbf{A})$. Therefore, the least squares solutions are of the form:

$$
\begin{equation*}
\mathbf{A}^{\dagger} \mathbf{b}+\mathbf{w} \text { where } \mathbf{w} \in \operatorname{Null}(\mathbf{A}) \tag{78}
\end{equation*}
$$

The solution with the smallest norm is obtained when $\mathbf{w}=\mathbf{0}$, and the minimum norm solution to the least-squares regression problem is

$$
\begin{equation*}
\mathbf{x}_{L S}=\mathbf{V}_{1} \boldsymbol{\Sigma}_{1}^{-1} \mathbf{U}_{1}^{T} \mathbf{b}=\mathbf{A}^{\dagger} \mathbf{b} \tag{79}
\end{equation*}
$$

