
CSE 392: Matrix and Tensor Algorithms for Data Spring 2024

Lecture 4 — 01/29/2024
Instructor: Shashanka Ubaru Scribe: Sung Jung

1 Orthogonality and Projections

1.1 Orthogonality

The key concept in this lecture is orthogonality. Two vectors u and v are orthogonal if ⟨u, v⟩ = 0.
For a set of vectors {u1, ..., ud}, we say that it is orthogonal of ⟨ui, uj⟩ = 0 for i ̸= j. If the set also
has the property that ⟨ui, ui⟩ = 1, then we say that it is orthonormal.

If these orthonormal vectors were to be made columns of a matrix U ∈ Rn×d, then you can see
that UT U = I; we call such a matrix as an orthonormal matrix. If d = n (square matrix), then
UT = U−1 (since multiplying it by U results in identity), so UUT = I as well.

The key property of an orthonormal matrix is that it preserves norms of vectors:

||Uy||22 = yT UT Uy = yT y = ||y||22 (1)

1.2 Subspaces of a Matrix

Let A ∈ Rn×d and consider its column space, C(A). The null space of AT is the orthogonal
complement of C(A) in Rn:

C(A)⊥ = Null(AT ) (2)

This is because any x ∈ C(A)⊥ if and only if ⟨Ay, x⟩ = 0 for all y. This is the same as saying
⟨y, AT x⟩ = 0 for all y, in which case it must be true that AT x = 0.

Similarly, we also have:

C(AT ) = Null(A)⊥ (3)

Thus:

Rn = C(A)
⊕

Null(AT ) (4)

Rd = C(AT )
⊕

Null(A) (5)

1



1.3 Projection

An important operator that makes use of orthogonality is the projector. The definition of the
projection matrix of some matrix X ∈ Rn×m is a matrix P that keeps any vector in the column
space of X unchanged and eliminates any vector that is orthogonal to the column space. In other
words:

Definition. P is a projection matrix of X if:

• v ∈ C(X) ⇒ Pv = v

• w ∈ C(X)⊥ ⇒ Pw = 0

For the matrix multiplication to work out, we see that P ∈ Rn×n.

With the definition above, we can prove that the column spaces of X and P are equivalent.

Theorem 1. C(P) = C(X)

Proof. ⇒ Take a vector v1 ∈ C(X) ⊆ Rn. Then, by definition, Pv1 = v1 ∈ C(P). Therefore,
C(X) ⊆ C(P).

⇐ Take a vector v2 ∈ C(P) ⊆ Rn. This means that v2 = Py for some y ∈ Rn. Since C(X) ⊆ Rn,
we can write y = αv + βw, where v ∈ C(X), w ∈ C(X)⊥, and α, β ∈ R.

Then, v2 = Py = P(αv + βw) = αPv + βPw = αPv = αv ∈ C(X). So, C(P) ⊆ C(X).

Since C(X) ⊆ C(P) and C(P) ⊆ C(X), C(P) = C(X) ■

From the definition of a projection matrix above, notice that (I − P)w = w and (I − P)v = 0.
Therefore, the matrix (I − P) is a projection matrix onto C(X)⊥, and we can show that C(X)⊥ =
C(I − P) following the proof above with (I − P).

1.3.1 Projection Matrices are Symmetric and Idempotent

Some key properties of a projection matrix are given by the following theorem:

Theorem 2. P is a projection matrix onto C(P) if and only if P = P2 = PT

Proof. ⇒ Suppose P is a projection matrix. For any v and w, we can write it as v = v1 + v2 and
w = w1 + w2, where v1, w1 ∈ C(P) and v2, w2 ∈ C(P)⊥.

Note that (I − P)v = (I − P)(v1 + v2) = (I − P)v1 + (I − P)v2 = v2. Similarly, Pw = Pw1 = w1.

So,
(Pw)T (I − P)v = wT

1 v2 = 0 for any v and w

PT (I − P) = 0
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PT = PT P

Since PT P is symmetric, PT must also be symmetric. So, P = PT = PT P = P2.

⇐ If P = PT = P2, we show that the definitions of a projection matrix hold.

• For v ∈ C(P), v = Pb for some b. So, Pv = P(Pb) = (PP)b = Pb = v.

• For w ∈ C(P)⊥, it is orthogonal to all the columns of P. Therefore, PT w = Pw = 0.

■

Note that C(P)⊥ = C(PT )⊥ = Null(P) by Equation 3. So, P̄ ≡ (I − P) is a projection matrix onto
the null space of P.

1.3.2 The Projection Matrix onto a Column Space is Unique

Suppose we have two matrices P1 and P2 that are both projection matrices onto C(X). Take
an arbitrary vector v = v1 + v2, where v1 ∈ C(X) and v2 ∈ C(X)⊥. Then, P1v = v1 = P2v.
Rearranging, (P1 − P2)v = 0.

Since v is arbitrary, it must be that P1 − P2 = 0. Therefore, P1 = P2.

1.3.3 Construction of a Projection Matrix with an Orthonormal Matrix

Suppose we want to construct a projection matrix P onto C(X), and we have a matrix U ∈ Rn×d

with orthonormal columns that span C(X). Then, the (unique) projection matrix onto C(X) is
P = UUT .

To prove this, we just need to show that Theorem 2 holds:

• PT = (UUT )T = (UT )T UT = UUT = P

• P2 = (UUT )(UUT ) = U(UT U)UT = UIUT = UUT = P

Since we showed in the previous section that the projection matrix onto a given column space is
unique, UUT is the one and only projection matrix onto C(X).

With ui as the i-th column of U and a vector v ∈ Rn, notice that

Pv = UUT v = (
d∑

i=1
uiuT

i )v =
d∑

i=1
(uiuT

i v) (6)

With a set of orthonormal vectors {u1, ..., ud}, projecting a vector v onto their span is equivalent to
projecting v onto each individual ui and summing all the projections.
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2 Gram-Schmidt and the QR Decomposition

2.1 Gram-Schmidt Process

One such process to find an orthonormal basis of a subspace is the Gram-Schmidt process. Given
a matrix A = [a1, ..., ad] (assume full rank for illustration), we would like to compute Q = [q1, ..., qd]
which has orthonormal columns and such that C(A) = C(Q).

In the Gram-Schmidt process, we compute Q such that aj (the j-th column of A) is a linear
combination of the first j columns of Q. The key idea is that for ai, we subtract from it the
projection of it to the span of the already-calculated {q1, ..., qi−1}; since {q1, ..., qi−1} is a set of
orthonormal vectors, we can subtract the projections one by one (qkqT

k ai), as seen in Equation 6.
It goes as follows:

q̃1 = a1 q1 = q̃1/||q̃1||2
q̃2 = a2 − q1qT

1 a2 q2 = q̃2/||q̃2||2
q̃3 = a3 − q1qT

1 a3 − q2qT
2 a3 q3 = q̃3/||q̃3||2

q̃4 = a4 −q1qT
1 a4 −q2qT

2 a4 −q2qT
2 a4 q3 = q̃3/||q̃3||2

... ...
q̃d = ad −

∑d
i=1 qiqT

i ad qd = q̃d/||q̃d||2

The computation of αk = qT
k ai costs about 2n operations, and the multiplication αkqk costs n

operations. In each step, we sum αkqk roughly d times, and there are d steps. So, the left column
of the table above has a total cost of O(nd2) operations. In the right column, the cost of calculating
the norm takes O(n) operations, and the division takes O(1) operations. With d steps, the total cost
of the right column is O(nd), which is negligible compared to the cost of the left column. Therefore,
the total cost of the Gram-Schmidt process is O(nd2).

2.2 QR Decomposition

The Gram-Schmidt process is one method to calculate the QR decomposition. It states that
given a matrix A ∈ Rn×d with n ≥ d and rank(A) = d (these conditions are just for the purposes
of this class; QR can still be done without them), there is a Q ∈ Rn×d and R ∈ Rd×d such that

• A = QR

• QT Q = I (orthonormal columns)

• Rij = 0 for i > j (upper triangular)

In this setup, the columns of Q are an orthonormal basis of C(A).

Using the {q1, ..., qd} from Gram-Schmidt, we can rearrange the Table above to find that we can
recover A if R collects the inner products between qi and aj :

• Rij = qT
i aj for i < j

• Rii = ||q̃i||2 = qT
i ai
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More numerically accurate methods exist for computing the QR decomposition, including the Givens
and Householder’s methods.

2.2.1 Least Squares using QR

Recall from lecture 3 that in the least-squares regression problem, we solve

x∗ = arg min
x∈Rd

||Ax − b||22 (7)

for A ∈ Rn×d and b ∈ Rn.

The solution satisfied the normal equation:

AT Ax∗ = AT b (8)

However, we saw that working with AT A is not ideal because we need to compute its inverse, and
it may be highly ill-conditioned.

Instead, if we write the normal equation with the QR decomposition of A,

RT QT QRx∗ = RT QT b (9)
RT Rx∗ = RT QT b (10)

Rx∗ = QT b (11)

Alternatively, using the column picture of least squares from lecture 3, we know that least squares
seeks to minimize the length (ℓ2 norm) of the error vector e = b − Ax. This happens when it is
orthogonal to the column space of A, which is equivalent to that of Q. Thus,
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QT e∗ = 0 (12)
QT (b − Ax∗) = 0 (13)

QT Ax∗ = QT b (14)
QT QRx∗ = QT b (15)

Rx∗ = QT b (16)

Since R is upper triangular, this system of equations can be solved using back substitution.

3 Singular Value Decomposition

Another important matrix decomposition involving orthonormal matrices is the singular value
decomposition (SVD). It states that for any matrix A ∈ Rn×d, there exist orthonormal matrices
U ∈ Rn×n and V ∈ Rd×d such that

A = UΣVT (17)

where Σ ∈ Rn×d is a matrix whose top left (p × p) principal submatrix is diagonal with entries
σi ≥ 0, with p = min(n, d).

The columns of U are called the left singular vectors of A, and they are the same as the eigenvectors
of AAT , which span Rn:

AAT = (UΣVT )(VΣT UT ) = UΣΣT UT = UΣ2
nUT (18)

Since AAT is positive semidefinite, U is orthonormal; it can also be made square by including
the bases of the null space of AAT as eigenvectors with their corresponding eigenvalues equal to
0. Because the eigenvalues in Σ2

n and the corresponding eigenvectors in the columns of U can
be ordered in any way to give the product AAT , assume that the eigenvalues are ordered in a
descending manner:

σ2
1 ≥ σ2

2 ≥ ... ≥ σ2
p ≥ 0 (19)

The columns of V are called the right singular vectors of A, and they are the same as the eigenvectors
of AT A, which span Rd:

AT A = (VΣT UT )(UΣVT ) = VΣT ΣVT = VΣ2
dVT (20)

Again, V can be made square and orthonormal because AT A is positive semidefinite, and we can
order the columns of V such that their corresponding σ2

i are in descending order.

σi is called the i-th singular value of A, and σ2
i is equal to the i-th eigenvalue of AT A and AAT .

It can be proven that AT A and AAT have the same nonzero eigenvalues.
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Proof. Let AT Ax = λx with λ ̸= 0 and ||x||2 ≠ 0; λ is a nonzero eigenvalue of AT A with its
corresponding eigenvector being x.

Then, multiplying it by A gives AAT (Ax) = λ(Ax); λ is also a (nonzero) eigenvalue of AAT with
its corresponding eigenvector being Ax.

Note that Ax ̸= 0 without violating our conditions of λ and x being nonzero. If it were zero, then
it would imply that AT Ax = AT 0 = 0, but since AT Ax = λx, it would mean that either λ = 0 or
x = 0, both of which cannot happen given our starting conditions.

Conversely, if AAT x = λx with λ ̸= 0, then multiplying by AT gives AT A(AT x) = λ(AT x). ■

3.1 SVD Properties

Let rank(A) = r ≤ p. Then:

1. r = number of nonzero singular values

Proof. The rank of a matrix does not change when multiplied by non-singular matrices. Since U
and V are square and orthonormal, they are invertible. Therefore,

rank(A) = rank(UΣVT ) = rank(Σ)

which is equal to the number of nonzero singular values of A. ■

2. C(AT ) = span{v1, v2, ..., vr}

3. Null(A) = span{vr+1, vr+2, ..., vd}

Proof. We can rewrite Equation 17 as AV = UΣ, or equivalently:

Av1 = σ1u1 , Av2 = σ2u2, , ... , Avr = σrur , ... , Avp = σpup

where vi and ui are the i-th columns of V and U, respectively.

If d > n, then the rewrite can continue outside the principal submatrix of Σ as Avk = 0 for
p < k ≤ d.
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Since, σr+1 through σp are 0, it means that

Avk = 0

for (r + 1) ≤ k ≤ d. Thus, the set {vr+1, vr+2, ..., vd} is an orthonormal set for at least some
subspace of Null(A).

Any vector x ∈ Rd not in this subspace must be in the orthogonal complement of this subspace in
Rd. Since V ∈ Rd×d is square and orthonormal, its columns create a orthonormal spanning set of
Rd. Therefore, the orthonormal complement of span{vr+1, vr+2, ..., vd} is span{v1, v2, ..., vr}. We
can represent x in terms of these vectors:

x =
r∑

k=1
αkvk

for α1, ..., αr ∈ R.

The product with A gives

Ax = A
r∑

k=1
αkvk =

r∑
k=1

αkAvk =
r∑

k=1
αkσkuk

Since the columns of U are linearly independent (moreover, orthogonal) and σ1 through σr are
nonzero, there are no {α1, ..., αr} that gives the zero vector other than αk = 0 ∀ 1 ≤ k ≤ r (this
is by the definition of linear independence). Therefore, there are no other nonzero vectors in
span{v1, v2, ..., vr} that is part of the null space of A. Therefore, the null space of A must be
span{vr+1, vr+2, ..., vd}, and the row space must be its orthogonal complement in Rd, which is
span{v1, v2, ..., vr}. ■

4. C(A) = span{u1, u2, ..., ur}

5. Null(AT ) = span{ur+1, ur+2, ..., vn}

The proof follows the same steps with AT .

3.2 Thin SVD

If A is not square or is less than full rank, Σ contains rows or columns of zeros that don’t contribute
anything to A. For instance, consider a tall and skinny A; in other words, n > d. Then, we can
write Equation 17 as

A =
[
U1 U2

] [
Σ1
0

]
VT = U1Σ1VT (21)

where U1 ∈ Rn×d, U2 ∈ Rn×n−d, and Σ1, V ∈ Rd×d.
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If n < d, then

A = U
[
Σ1 0

] [
VT

1
VT

2

]
= UΣ1VT

1 (22)

where V1 ∈ Rd×n, V2 ∈ Rd×d−n, and Σ1, U ∈ Rn×n.

More generally, with rank(A) = r ≤ p:

A =
[
U1 U2

] [
Σ1 0
0 0

] [
VT

1
VT

2

]
= U1Σ1VT

1 (23)

where U1 ∈ Rn×r, U2 ∈ Rn×n−r, V1 ∈ Rd×r, V2 ∈ Rd×d−r, and Σ1 ∈ Rr×r.

When the full square U and V are both not used, we refer to the resulting SVD as a thin SVD or
an economical SVD. In a thin SVD, we only include the left and right singular vectors that span
the column and row spaces of A.

We can also write the thin SVD (Equation 23) as a sum of rank-1 matrices that are scaled outer
products between the left and right singular vectors:

A = U1Σ1VT
1 =

r∑
i=1

σiuivT
i (24)

3.3 Matrix Norms in terms of Singular Values

Certain matrix norms can be written in terms of the singular values.

In particular, the matrix 2-norm is equal to the largest singular value:

||A||2 = σ1 (25)

Proof. The definition of a matrix 2-norm is

||A||2 = max
x∈Rd,x ̸=0

||Ax||2
||x||2

for A ∈ Rn×d.

Writing A as its full SVD and expressing x in terms of the full right singular vectors of A (which
span Rd):
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||A||22 = max
x∈Rd,x ̸=0

||Ax||22
||x||22

(26)

= max
x∈Rd,x ̸=0

||UΣVT x||22
||x||22

(27)

= max
x∈Rd,x ̸=0

xT VΣT UT UΣVT x
xT x (28)

= max
x∈Rd,x ̸=0

xT VΣ2
dVx

xT x UT U = I (29)

= max
α1,...,αd∈R,

∑
αi ̸=0

(∑d
i=1 αivT

i V)Σ2
d(∑d

j=1 αjVT vj)∑d
k=1 αkvT

k

∑d
l=1 αlvl

x =
d∑

i=1
αivi (30)

= max
α1,...,αd∈R,

∑
αi ̸=0

(∑d
i=1 αivT

i V)Σ2
d(∑d

j=1 αjVT vj)∑d
k=1 α2

k

vT
i vj = δij (31)

= max
α1,...,αd∈R,

∑
αi ̸=0

[
α1 α2 . . . αd

]
Σ2

d


α1
α2
...

αd


∑d

k=1 α2
k

(32)

= max
α1,...,αd∈R,

∑
αi ̸=0

[
(σ1α1) . . . (σrαr) 0 . . . 0

]


σ1α1
...

σrαr

0
...
0


∑d

k=1 α2
k

(33)

= max
α1,...,αd∈R,

∑
αi ̸=0

∑r
i=1 σ2

i α2
i∑d

k=1 α2
k

(34)

= σ2
1 (35)

The maximum is obtained when αi = 0 for i ̸= 1.

■

Also, the Frobenius norm is related to the sum of the square of the singular values:

||A||F =

√√√√ r∑
i=1

σ2
i (36)

Proof. The definition of the Frobenius norm is
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||A||2F =
n∑

i=1

d∑
j=1

A2
ij = Tr(AT A)

But the trace of a matrix is equal to the sum of its eigenvalues, and we saw in Equation 20 that the
eigenvalues of AT A are the square of the singular values of A.

■

3.4 Eckart-Young-Mirsky Theorem

A key theorem that involves SVD is the Eckart-Young-Mirsky theorem, which states that
the best rank k approximation of a matrix is the one where its rank-1 expansion (Equation 24) is
truncated at i = k:

Theorem 3. For any matrix A ∈ Rn×d with rank r, let k ≤ r and Ak = ∑k
i=1 σiuivi. Then,

min
B:rank(B)=k

||A − B||2 = ||A − Ak||2 = σk+1 (37)

and

min
B:rank(B)=k

||A − B||F = ||A − Ak||F =

√√√√ r∑
i=k+1

σi (38)

Proof. The proof for the 2-norm is assigned as a homework problem. Here, we will only prove the
Frobenius norm version.

First, note that for a matrix A ∈ Rn×d and a subspace V ⊆ Rd of dimension (n − k) that is
orthogonal to the first k singular vectors,

max
v∈V,||v||2=1

||Av||2 = σk+1

The proof is similar to the proof of the matrix 2-norm (Equation 25) but with a subspace of Rd.

Now, we must prove the Weyl inequality. Let X, Y ∈ Rn×d and denote their singular values as σi(X)
and σi(Y). Let VX ⊆ Rd and VY ⊆ Rd have dimensions (d − k) and (d − l) and be orthogonal to
the first k and l right singular vectors of X and Y, respectively, and let W = VX ∩ VY . Then,

max
v∈W,||v||2=1

||Xv + Yv||2 ≤ max
v∈W,||v||2=1

||Xv||2 + ||Yv||2 triangle inequality

≤ max
v∈VX ,||v||2=1

||Xv||2 + max
v∈VY ,||v||2=1

||Yv||2

≤ σk+1(X) + σl+1(Y)
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And note that dim(W ) ≤ (d − k) + (d − l) − d) = d − k − l. So, by the Courant-Fischer’s Min-Max
theorem (proved in the next lecture):

σk+l+1(X + Y) = min
V ⊆Rd,dim(V )=d−k−l

max
v∈V,||v||2=1

||Xv + Yv||2 (39)

≤ max
v∈W,||v||2=1

||Xv + Yv||2 (40)

≤ σk+1(X) + σl+1(Y) (41)

Now, to prove the Eckart-Young-Mirsky theorem for the Frobenius norm, take X = B and Y = A−B.
Applying Weyl’s inequality (Equation 41):

σi+k(A) ≤ σk+1(B) + σi(A − B) = σi(A − B)

The last equality used the fact that rank(B) = k.

Then,

||A − B||2F =
p∑

i=1
σi(A − B) ≥

r−k∑
i=1

σi+k(A)

where p = min(n, d).

After showing that the lower bound is met when B = Ak = ∑k
i=1 σiuivi, our proof is complete:

||A − Ak||2F = ||
r∑

i=1
σiuivi −

k∑
i=1

σiuivi||2F (42)

= ||
r∑

i=k+1
σiuivi||2F (43)

=
r∑

i=k+1
σ2

i (44)

=
r−k∑
i=1

σ2
i+k (45)

■

3.5 Pseudoinverse

Recall the thin SVD for A ∈ Rn×d with rank(A) = r. (Equation 23):

A =
[
U1 U2

] [
Σ1 0
0 0

] [
VT

1
VT

2

]
= U1Σ1VT

1
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The pseudoinverse is defined as:

A† = V1Σ−1
1 UT

1 =
r∑

i=1

1
σi

viuT
i (46)

The matrices A and A† provide a bijective mapping between the row and column spaces of A while
"zero-ing out" vectors in its null and left-null spaces. Recall that the r columns of U1 span C(A)
and the r columns of V1 span C(AT ).

To illustrate, take a vector x ∈ C(A); it can be written as x = ∑r
i=1 αiui. Applying the pseudoinverse:

A†x =
r∑

i=1
( 1
σi

viuT
i

r∑
j=1

αjuj) =
r∑

i=1

r∑
j=1

αj

σi
vi(uT

i uj) =
r∑

i=1

αi

σi
vi ∈ C(AT ) (47)

Applying A to this result, we recover the original vector x:

A
r∑

i=1

αi

σi
vi =

r∑
j=1

σjujvT
j

r∑
i=1

αi

σi
vi =

r∑
i=1

r∑
j=1

αiσj

σi
uj(vT

j vi) =
r∑

i=1
αiui = x (48)

In other words, since x ∈ C(A) can be expressed as x = Ab for some b, we have

AA†x = AA†Ab = x = Ab (49)

Since b is arbitrary,

AA†A = A (50)

And for a vector y = ∑n
i=r+1 βiui ∈ Null(AT ):

A†y =
r∑

i=1
( 1
σi

viuT
i

n∑
j=r+1

βjuj) =
r∑

i=1

n∑
j=r+1

βj

σi
vi(uT

i uj) = 0 (51)

Thus, for any vector z = x + y ∈ Rn, we have

AA†z = AA†(x + y) (52)
= AA†x + AA†y (53)
= AA†x (54)
= x (55)

The vector z was projected to only the component in the column space of A.

Similiarly, with x ∈ C(A†) = C(AT ) and y ∈ Null(A), we can show that
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A†AA† = A† (56)

and that A†A is a projection matrix onto the row space of A.

3.5.1 Properties of the Pseudoinverse

These properties were shown above:

1. AA†A = A

2. A†AA† = A†

3. AA† is a projector onto C(A)

4. A†A is a projector onto C(AT )

Some additional properties are:

5. (A†A)T = A†A

6. (AA†)T = AA†

Proof. We proved in Theorem 2 that projection matrices are symmetric. Since A†A and AA† are
projection matrices, they are symmetric. ■

And some special cases when A is full rank:

7. When n ≥ d and A is full rank: A† = (AT A)−1AT
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• Also called the left inverse because when applied to the left of A: A†A = (AT A)−1AT A =
I

8. When d ≥ n and A is full rank: A† = AT (AAT )−1

• Also called the right inverse because when applied to the right of A: AA† =
AAT (AAT )−1 = I

9. When A is square and full rank: A† = A−1

Proof. Only proving the right inverse. Others can be shown in a similar manner.

For A ∈ Rn×d with d ≥ n and rank(A) = n, its full SVD is:

A = U
[
Σ1 0

] [
VT

1
VT

2

]
= U1Σ1VT

1

with U ∈ Rn×n, Σ1 ∈ Rn×n, and V1 ∈ Rd×n. Furthermore, Σ1 is fully diagonal (and invertible),
and UT = U−1 as usual.

From the definition of the pseudoinverse (Equation 46):

A† = V1Σ−1
1 UT

And

AT (AAT )−1 = V1ΣT
1 UT (UΣ1VT

1 V1ΣT
1 UT )−1 (57)

= V1Σ1UT (UΣ2
1UT )−1 (58)

= V1Σ1UT UΣ−2
1 UT (59)

= V1Σ−1
1 UT (60)

= A† (61)

■

3.5.2 Least Squares with the Pseudoinverse

Recall the least-squares regression problem from lecture 3:

x∗ = arg min
x∈Rd

||Ax − b||22 (62)

given a data matrix A ∈ Rn×d with n samples {ai}n
i=1 ∈ R of d-dimensional features and a column

vector b ∈ Rn of targets.

We showed that the solution satisfied the normal equation:
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AT Ax∗ = AT b (63)

For a full-rank A with n ≥ d, (AT A)−1 exists, and the unique solution was

x∗ = (AT A)−1AT b (64)

However, if A is not full rank and/or d > n, then there can be more than one solution to the normal
equation. But, out of these solutions, x∗ = A†b gives the minimum norm solution. The proof is
shown below.

Consider the SVD of A from Equation 23:

A = UΣVT =
[
U1 U2

] [
Σ1 0
0 0

] [
VT

1
VT

2

]
= U1Σ1VT

1 (65)

We express any x ∈ Rd in terms of the full right singular vectors of A, which span Rd:

x = Vy = [V1, V2]
[
y1
y2

]
(66)

Using these, we evaluate the loss function

||Ax − b||22 = ||UΣVT [V1, V2]
[
y1
y2

]
− b||22 (67)

= ||UΣ
[
y1
y2

]
− b||22 (68)

Since multiplying by an orthonormal matrix does not change the norm, we left multiply by UT :

||Ax − b||22 = ||UT (Ax − b)||22 (69)

= ||Σ
[
y1
y2

]
− UT b||22 (70)

= ||
[
Σ1 0
0 0

] [
y1
y2

]
−

[
UT

1
UT

2

]
b||22 (71)

= ||Σ1y1 − UT
1 b||22 + ||0 · y2 − UT

2 b||22 (72)

To find the minimum of this loss function, we consider the terms one by one. The first term is 0
when

y1 = Σ−1
1 UT

1 b (73)
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However, the second term is always ||UT
2 b||22 regardless of y2.

Therefore, the least-squares solutions are:

x = Vy = [V1, V2]
[
y1
y2

]
(74)

= V1y1 + V2y2 (75)
= V1Σ−1

1 UT
1 b + V2y2 (76)

= A†b + V2y2 (77)

We know that A†b ∈ C(AT ) and V2y2 ∈ Null(A). Therefore, the least squares solutions are of the
form:

A†b + w where w ∈ Null(A) (78)

The solution with the smallest norm is obtained when w = 0, and the minimum norm solution to
the least-squares regression problem is

xLS = V1Σ−1
1 UT

1 b = A†b (79)
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