CSE 392: Matrix and Tensor Algorithms for Data
--

Lecture 4 - 01/29/2024

Instructor: Shashanka Ubaru

Spring 2024

Scribe: Sung Jung

1 Orthogonality and Projections

1.1 Orthogonality

The key concept in this lecture is **orthogonality**. Two vectors **u** and **v** are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$. For a set of vectors $\{\mathbf{u}_1, ..., \mathbf{u}_d\}$, we say that it is orthogonal of $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$ for $i \neq j$. If the set also has the property that $\langle \mathbf{u}_i, \mathbf{u}_i \rangle = 1$, then we say that it is **orthonormal**.

If these orthonormal vectors were to be made columns of a matrix $\mathbf{U} \in \mathbb{R}^{n \times d}$, then you can see that $\mathbf{U}^T \mathbf{U} = \mathbf{I}$; we call such a matrix as an *orthonormal matrix*. If d = n (square matrix), then $\mathbf{U}^T = \mathbf{U}^{-1}$ (since multiplying it by \mathbf{U} results in identity), so $\mathbf{U}\mathbf{U}^T = \mathbf{I}$ as well.

The key property of an orthonormal matrix is that it preserves norms of vectors:

$$||\mathbf{U}\mathbf{y}||_2^2 = \mathbf{y}^T \mathbf{U}^T \mathbf{U}\mathbf{y} = \mathbf{y}^T \mathbf{y} = ||\mathbf{y}||_2^2$$
(1)

1.2 Subspaces of a Matrix

Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ and consider its column space, $\mathcal{C}(\mathbf{A})$. The null space of \mathbf{A}^T is the orthogonal complement of $\mathcal{C}(\mathbf{A})$ in \mathbb{R}^n :

$$\mathcal{C}(\mathbf{A})^{\perp} = Null(\mathbf{A}^T) \tag{2}$$

This is because any $\mathbf{x} \in \mathcal{C}(\mathbf{A})^{\perp}$ if and only if $\langle \mathbf{A}\mathbf{y}, \mathbf{x} \rangle = 0$ for all \mathbf{y} . This is the same as saying $\langle \mathbf{y}, \mathbf{A}^T \mathbf{x} \rangle = 0$ for all \mathbf{y} , in which case it must be true that $\mathbf{A}^T \mathbf{x} = 0$.

Similarly, we also have:

$$\mathcal{C}(\mathbf{A}^T) = Null(\mathbf{A})^{\perp} \tag{3}$$

Thus:

$$\mathbb{R}^{n} = \mathcal{C}(\mathbf{A}) \bigoplus Null(\mathbf{A}^{T})$$
(4)

$$\mathbb{R}^{d} = \mathcal{C}(\mathbf{A}^{T}) \bigoplus Null(\mathbf{A})$$
(5)

1.3 Projection

An important operator that makes use of orthogonality is the projector. The definition of the **projection matrix** of some matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ is a matrix \mathbf{P} that keeps any vector in the column space of \mathbf{X} unchanged and eliminates any vector that is orthogonal to the column space. In other words:

Definition. P is a projection matrix of **X** if:

- $\mathbf{v} \in \mathcal{C}(\mathbf{X}) \Rightarrow \mathbf{P}\mathbf{v} = \mathbf{v}$
- $\mathbf{w} \in \mathcal{C}(\mathbf{X})^{\perp} \Rightarrow \mathbf{P}\mathbf{w} = 0$

For the matrix multiplication to work out, we see that $\mathbf{P} \in \mathbb{R}^{n \times n}$.

With the definition above, we can prove that the column spaces of \mathbf{X} and \mathbf{P} are equivalent.

Theorem 1. $C(\mathbf{P}) = C(\mathbf{X})$

Proof. \Rightarrow Take a vector $\mathbf{v}_1 \in \mathcal{C}(\mathbf{X}) \subseteq \mathbb{R}^n$. Then, by definition, $\mathbf{Pv}_1 = \mathbf{v}_1 \in \mathcal{C}(\mathbf{P})$. Therefore, $\mathcal{C}(\mathbf{X}) \subseteq \mathcal{C}(\mathbf{P})$.

 \leftarrow Take a vector $\mathbf{v}_2 \in \mathcal{C}(\mathbf{P}) \subseteq \mathbb{R}^n$. This means that $\mathbf{v}_2 = \mathbf{P}\mathbf{y}$ for some $\mathbf{y} \in \mathbb{R}^n$. Since $\mathcal{C}(\mathbf{X}) \subseteq \mathbb{R}^n$, we can write $\mathbf{y} = \alpha \mathbf{v} + \beta \mathbf{w}$, where $\mathbf{v} \in \mathcal{C}(\mathbf{X})$, $\mathbf{w} \in \mathcal{C}(\mathbf{X})^{\perp}$, and $\alpha, \beta \in \mathbb{R}$.

Then, $\mathbf{v}_2 = \mathbf{P}\mathbf{y} = \mathbf{P}(\alpha\mathbf{v} + \beta\mathbf{w}) = \alpha\mathbf{P}\mathbf{v} + \beta\mathbf{P}\mathbf{w} = \alpha\mathbf{P}\mathbf{v} = \alpha\mathbf{v} \in \mathcal{C}(\mathbf{X}).$ So, $\mathcal{C}(\mathbf{P}) \subseteq \mathcal{C}(\mathbf{X}).$

Since $\mathcal{C}(\mathbf{X}) \subseteq \mathcal{C}(\mathbf{P})$ and $\mathcal{C}(\mathbf{P}) \subseteq \mathcal{C}(\mathbf{X}), \, \mathcal{C}(\mathbf{P}) = \mathcal{C}(\mathbf{X})$

From the definition of a projection matrix above, notice that $(\mathbf{I} - \mathbf{P})\mathbf{w} = \mathbf{w}$ and $(\mathbf{I} - \mathbf{P})\mathbf{v} = \mathbf{0}$. Therefore, the matrix $(\mathbf{I} - \mathbf{P})$ is a projection matrix onto $\mathcal{C}(\mathbf{X})^{\perp}$, and we can show that $\mathcal{C}(\mathbf{X})^{\perp} = \mathcal{C}(\mathbf{I} - \mathbf{P})$ following the proof above with $(\mathbf{I} - \mathbf{P})$.

1.3.1 Projection Matrices are Symmetric and Idempotent

Some key properties of a projection matrix are given by the following theorem:

Theorem 2. P is a projection matrix onto $\mathcal{C}(\mathbf{P})$ if and only if $\mathbf{P} = \mathbf{P}^2 = \mathbf{P}^T$

Proof. \Rightarrow Suppose **P** is a projection matrix. For any **v** and **w**, we can write it as $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ and $\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_2$, where $\mathbf{v}_1, \mathbf{w}_1 \in \mathcal{C}(\mathbf{P})$ and $\mathbf{v}_2, \mathbf{w}_2 \in \mathcal{C}(\mathbf{P})^{\perp}$.

Note that
$$(\mathbf{I} - \mathbf{P})\mathbf{v} = (\mathbf{I} - \mathbf{P})(\mathbf{v}_1 + \mathbf{v}_2) = (\mathbf{I} - \mathbf{P})\mathbf{v}_1 + (\mathbf{I} - \mathbf{P})\mathbf{v}_2 = \mathbf{v}_2$$
. Similarly, $\mathbf{P}\mathbf{w} = \mathbf{P}\mathbf{w}_1 = \mathbf{w}_1$.
So,

$$(\mathbf{P}\mathbf{w})^T(\mathbf{I}-\mathbf{P})\mathbf{v} = \mathbf{w}_1^T\mathbf{v}_2 = 0$$
 for any \mathbf{v} and \mathbf{w}

$$\mathbf{P}^T(\mathbf{I} - \mathbf{P}) = 0$$

$$\mathbf{P}^T = \mathbf{P}^T \mathbf{P}$$

Since $\mathbf{P}^T \mathbf{P}$ is symmetric, \mathbf{P}^T must also be symmetric. So, $\mathbf{P} = \mathbf{P}^T = \mathbf{P}^T \mathbf{P} = \mathbf{P}^2$. \Leftarrow If $\mathbf{P} = \mathbf{P}^T = \mathbf{P}^2$, we show that the definitions of a projection matrix hold.

- For $\mathbf{v} \in \mathcal{C}(\mathbf{P})$, $\mathbf{v} = \mathbf{Pb}$ for some **b**. So, $\mathbf{Pv} = \mathbf{P}(\mathbf{Pb}) = (\mathbf{PP})\mathbf{b} = \mathbf{Pb} = \mathbf{v}$.
- For $\mathbf{w} \in \mathcal{C}(\mathbf{P})^{\perp}$, it is orthogonal to all the columns of \mathbf{P} . Therefore, $\mathbf{P}^T \mathbf{w} = \mathbf{P} \mathbf{w} = 0$.

Note that $C(\mathbf{P})^{\perp} = C(\mathbf{P}^T)^{\perp} = Null(\mathbf{P})$ by Equation 3. So, $\bar{\mathbf{P}} \equiv (\mathbf{I} - \mathbf{P})$ is a projection matrix onto the null space of \mathbf{P} .

1.3.2 The Projection Matrix onto a Column Space is Unique

Suppose we have two matrices \mathbf{P}_1 and \mathbf{P}_2 that are both projection matrices onto $\mathcal{C}(\mathbf{X})$. Take an arbitrary vector $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$, where $\mathbf{v}_1 \in \mathcal{C}(\mathbf{X})$ and $\mathbf{v}_2 \in \mathcal{C}(\mathbf{X})^{\perp}$. Then, $\mathbf{P}_1 \mathbf{v} = \mathbf{v}_1 = \mathbf{P}_2 \mathbf{v}$. Rearranging, $(\mathbf{P}_1 - \mathbf{P}_2)\mathbf{v} = 0$.

Since **v** is arbitrary, it must be that $\mathbf{P}_1 - \mathbf{P}_2 = 0$. Therefore, $\mathbf{P}_1 = \mathbf{P}_2$.

1.3.3 Construction of a Projection Matrix with an Orthonormal Matrix

Suppose we want to construct a projection matrix \mathbf{P} onto $\mathcal{C}(\mathbf{X})$, and we have a matrix $\mathbf{U} \in \mathbb{R}^{n \times d}$ with orthonormal columns that span $\mathcal{C}(\mathbf{X})$. Then, the (unique) projection matrix onto $\mathcal{C}(\mathbf{X})$ is $\mathbf{P} = \mathbf{U}\mathbf{U}^T$.

To prove this, we just need to show that Theorem 2 holds:

• $\mathbf{P}^T = (\mathbf{U}\mathbf{U}^T)^T = (\mathbf{U}^T)^T\mathbf{U}^T = \mathbf{U}\mathbf{U}^T = \mathbf{P}$ • $\mathbf{P}^2 = (\mathbf{U}\mathbf{U}^T)(\mathbf{U}\mathbf{U}^T) = \mathbf{U}(\mathbf{U}^T\mathbf{U})\mathbf{U}^T = \mathbf{U}\mathbf{I}\mathbf{U}^T = \mathbf{U}\mathbf{U}^T = \mathbf{P}$

Since we showed in the previous section that the projection matrix onto a given column space is unique, $\mathbf{U}\mathbf{U}^T$ is the one and only projection matrix onto $\mathcal{C}(\mathbf{X})$.

With \mathbf{u}_i as the *i*-th column of **U** and a vector $v \in \mathbb{R}^n$, notice that

$$\mathbf{P}\mathbf{v} = \mathbf{U}\mathbf{U}^T\mathbf{v} = (\sum_{i=1}^d \mathbf{u}_i \mathbf{u}_i^T)\mathbf{v} = \sum_{i=1}^d (\mathbf{u}_i \mathbf{u}_i^T \mathbf{v})$$
(6)

With a set of orthonormal vectors $\{\mathbf{u}_1, ..., \mathbf{u}_d\}$, projecting a vector **v** onto their span is equivalent to projecting **v** onto each individual \mathbf{u}_i and summing all the projections.

2 Gram-Schmidt and the QR Decomposition

2.1 Gram-Schmidt Process

One such process to find an orthonormal basis of a subspace is the **Gram-Schmidt process**. Given a matrix $\mathbf{A} = [\mathbf{a}_1, ..., \mathbf{a}_d]$ (assume full rank for illustration), we would like to compute $\mathbf{Q} = [\mathbf{q}_1, ..., \mathbf{q}_d]$ which has orthonormal columns and such that $\mathcal{C}(\mathbf{A}) = \mathcal{C}(\mathbf{Q})$.

In the Gram-Schmidt process, we compute \mathbf{Q} such that \mathbf{a}_j (the *j*-th column of \mathbf{A}) is a linear combination of the first *j* columns of \mathbf{Q} . The key idea is that for \mathbf{a}_i , we subtract from it the projection of it to the span of the already-calculated $\{\mathbf{q}_1, ..., \mathbf{q}_{i-1}\}$; since $\{\mathbf{q}_1, ..., \mathbf{q}_{i-1}\}$ is a set of orthonormal vectors, we can subtract the projections one by one $(\mathbf{q}_k \mathbf{q}_k^T \mathbf{a}_i)$, as seen in Equation 6. It goes as follows:

$\tilde{\mathbf{q}}_1 = \mathbf{a}_1$	$ \mathbf{q}_1 = ilde{\mathbf{q}}_1/ ilde{\mathbf{q}}_1 _2$
$ ilde{\mathbf{q}}_2 = \mathbf{a}_2 - \mathbf{q}_1 \mathbf{q}_1^T \mathbf{a}_2$	$ \mathbf{q}_2 = ilde{\mathbf{q}}_2/ ilde{\mathbf{q}}_2 _2$
$ ilde{\mathbf{q}}_3 = \mathbf{a}_3 - \mathbf{q}_1 \mathbf{q}_1^T \mathbf{a}_3 - \mathbf{q}_2 \mathbf{q}_2^T \mathbf{a}_3$	$ \mathbf{q}_3= ilde{\mathbf{q}}_3/ ilde{\mathbf{q}}_3 _2$
$\tilde{\mathbf{q}}_4 = \mathbf{a}_4 - \mathbf{q}_1 \mathbf{q}_1^T \mathbf{a}_4 - \mathbf{q}_2 \mathbf{q}_2^T \mathbf{a}_4 - \mathbf{q}_2 \mathbf{q}_2^T \mathbf{a}_4$	$ \mathbf{q}_3= ilde{\mathbf{q}}_3/ ilde{\mathbf{q}}_3 _2$
$ ilde{\mathbf{q}}_d = \mathbf{a}_d - \sum_{i=1}^d \mathbf{q}_i \mathbf{q}_i^T \mathbf{a}_d$	$ \mathbf{q}_d = ilde{\mathbf{q}}_d/ ilde{\mathbf{q}}_d _2$

The computation of $\alpha_k = \mathbf{q}_k^T \mathbf{a}_i$ costs about 2n operations, and the multiplication $\alpha_k \mathbf{q}_k$ costs n operations. In each step, we sum $\alpha_k \mathbf{q}_k$ roughly d times, and there are d steps. So, the left column of the table above has a total cost of $O(nd^2)$ operations. In the right column, the cost of calculating the norm takes O(n) operations, and the division takes O(1) operations. With d steps, the total cost of the right column is O(nd), which is negligible compared to the cost of the left column. Therefore, the total cost of the Gram-Schmidt process is $O(nd^2)$.

2.2 QR Decomposition

The Gram-Schmidt process is one method to calculate the **QR** decomposition. It states that given a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with $n \ge d$ and $\operatorname{rank}(\mathbf{A}) = d$ (these conditions are just for the purposes of this class; QR can still be done without them), there is a $\mathbf{Q} \in \mathbb{R}^{n \times d}$ and $\mathbf{R} \in \mathbb{R}^{d \times d}$ such that

• $\mathbf{A} = \mathbf{Q}\mathbf{R}$

- $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$ (orthonormal columns)
- $R_{ij} = 0$ for i > j (upper triangular)

In this setup, the columns of \mathbf{Q} are an orthonormal basis of $\mathcal{C}(\mathbf{A})$.

Using the $\{\mathbf{q}_1, ..., \mathbf{q}_d\}$ from Gram-Schmidt, we can rearrange the Table above to find that we can recover **A** if **R** collects the inner products between \mathbf{q}_i and \mathbf{a}_j :

- $R_{ij} = \mathbf{q}_i^T \mathbf{a}_j$ for i < j
- $R_{ii} = ||\tilde{\mathbf{q}}_i||_2 = \mathbf{q}_i^T \mathbf{a}_i$

More numerically accurate methods exist for computing the QR decomposition, including the Givens and Householder's methods.

2.2.1 Least Squares using QR

Recall from lecture 3 that in the least-squares regression problem, we solve

$$\mathbf{x}^* = \underset{x \in \mathbb{R}^d}{\arg\min} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2$$
(7)

for $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^n$.

The solution satisfied the normal equation:

$$\mathbf{A}^T \mathbf{A} \mathbf{x}^* = \mathbf{A}^T \mathbf{b} \tag{8}$$

However, we saw that working with $\mathbf{A}^T \mathbf{A}$ is not ideal because we need to compute its inverse, and it may be highly ill-conditioned.

Instead, if we write the normal equation with the QR decomposition of A,

$$\mathbf{R}^T \mathbf{Q}^T \mathbf{Q} \mathbf{R} \mathbf{x}^* = \mathbf{R}^T \mathbf{Q}^T \mathbf{b}$$
(9)

$$\mathbf{R}^T \mathbf{R} \mathbf{x}^* = \mathbf{R}^T \mathbf{Q}^T \mathbf{b} \tag{10}$$

$$\mathbf{R}\mathbf{x}^* = \mathbf{Q}^T \mathbf{b} \tag{11}$$

Alternatively, using the column picture of least squares from lecture 3, we know that least squares seeks to minimize the length (ℓ_2 norm) of the error vector $\mathbf{e} = \mathbf{b} - \mathbf{A}\mathbf{x}$. This happens when it is orthogonal to the column space of \mathbf{A} , which is equivalent to that of \mathbf{Q} . Thus,

$$\mathbf{Q}^T \mathbf{e}^* = 0 \tag{12}$$

$$\mathbf{Q}^T(\mathbf{b} - \mathbf{A}\mathbf{x}^*) = 0 \tag{13}$$

$$\mathbf{Q}^T \mathbf{A} \mathbf{x}^* = \mathbf{Q}^T \mathbf{b} \tag{14}$$

$$\mathbf{Q}^T \mathbf{Q} \mathbf{R} \mathbf{x}^* = \mathbf{Q}^T \mathbf{b} \tag{15}$$

$$\mathbf{R}\mathbf{x}^* = \mathbf{Q}^T \mathbf{b} \tag{16}$$

Since \mathbf{R} is upper triangular, this system of equations can be solved using back substitution.

3 Singular Value Decomposition

Another important matrix decomposition involving orthonormal matrices is the **singular value** decomposition (SVD). It states that for any matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, there exist orthonormal matrices $\mathbf{U} \in \mathbb{R}^{n \times n}$ and $\mathbf{V} \in \mathbb{R}^{d \times d}$ such that

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \tag{17}$$

where $\Sigma \in \mathbb{R}^{n \times d}$ is a matrix whose top left $(p \times p)$ principal submatrix is diagonal with entries $\sigma_i \geq 0$, with $p = \min(n, d)$.

The columns of **U** are called the *left singular vectors* of **A**, and they are the same as the eigenvectors of $\mathbf{A}\mathbf{A}^{T}$, which span \mathbb{R}^{n} :

$$\mathbf{A}\mathbf{A}^{T} = (\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T})(\mathbf{V}\mathbf{\Sigma}^{T}\mathbf{U}^{T}) = \mathbf{U}\mathbf{\Sigma}\mathbf{\Sigma}^{T}\mathbf{U}^{T} = \mathbf{U}\mathbf{\Sigma}_{n}^{2}\mathbf{U}^{T}$$
(18)

Since $\mathbf{A}\mathbf{A}^T$ is positive semidefinite, **U** is orthonormal; it can also be made square by including the bases of the null space of $\mathbf{A}\mathbf{A}^T$ as eigenvectors with their corresponding eigenvalues equal to 0. Because the eigenvalues in Σ_n^2 and the corresponding eigenvectors in the columns of **U** can be ordered in any way to give the product $\mathbf{A}\mathbf{A}^T$, assume that the eigenvalues are ordered in a descending manner:

$$\sigma_1^2 \ge \sigma_2^2 \ge \dots \ge \sigma_p^2 \ge 0 \tag{19}$$

The columns of **V** are called the *right singular vectors* of **A**, and they are the same as the eigenvectors of $\mathbf{A}^T \mathbf{A}$, which span \mathbb{R}^d :

$$\mathbf{A}^{T}\mathbf{A} = (\mathbf{V}\mathbf{\Sigma}^{T}\mathbf{U}^{T})(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T}) = \mathbf{V}\mathbf{\Sigma}^{T}\mathbf{\Sigma}\mathbf{V}^{T} = \mathbf{V}\mathbf{\Sigma}_{d}^{2}\mathbf{V}^{T}$$
(20)

Again, **V** can be made square and orthonormal because $\mathbf{A}^T \mathbf{A}$ is positive semidefinite, and we can order the columns of **V** such that their corresponding σ_i^2 are in descending order.

 σ_i is called the *i*-th singular value of **A**, and σ_i^2 is equal to the *i*-th eigenvalue of **A**^T**A** and **AA**^T. It can be proven that **A**^T**A** and **AA**^T have the same nonzero eigenvalues.

Proof. Let $\mathbf{A}^T \mathbf{A} \mathbf{x} = \lambda \mathbf{x}$ with $\lambda \neq 0$ and $||\mathbf{x}||_2 \neq 0$; λ is a nonzero eigenvalue of $\mathbf{A}^T \mathbf{A}$ with its corresponding eigenvector being \mathbf{x} .

Then, multiplying it by **A** gives $\mathbf{A}\mathbf{A}^T(\mathbf{A}\mathbf{x}) = \lambda(\mathbf{A}\mathbf{x})$; λ is also a (nonzero) eigenvalue of $\mathbf{A}\mathbf{A}^T$ with its corresponding eigenvector being $\mathbf{A}\mathbf{x}$.

Note that $\mathbf{A}\mathbf{x} \neq \mathbf{0}$ without violating our conditions of λ and \mathbf{x} being nonzero. If it were zero, then it would imply that $\mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{0} = \mathbf{0}$, but since $\mathbf{A}^T \mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, it would mean that either $\lambda = 0$ or $\mathbf{x} = \mathbf{0}$, both of which cannot happen given our starting conditions.

Conversely, if $\mathbf{A}\mathbf{A}^T\mathbf{x} = \lambda\mathbf{x}$ with $\lambda \neq 0$, then multiplying by \mathbf{A}^T gives $\mathbf{A}^T\mathbf{A}(\mathbf{A}^T\mathbf{x}) = \lambda(\mathbf{A}^T\mathbf{x})$.

3.1 SVD Properties

Let $rank(\mathbf{A}) = r \leq p$. Then:

1. r = number of nonzero singular values

Proof. The rank of a matrix does not change when multiplied by non-singular matrices. Since \mathbf{U} and \mathbf{V} are square and orthonormal, they are invertible. Therefore,

$$\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T) = \operatorname{rank}(\mathbf{\Sigma})$$

which is equal to the number of nonzero singular values of A.

- 2. $\mathcal{C}(\mathbf{A}^T) = span\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$
- 3. $Null(\mathbf{A}) = span\{\mathbf{v}_{r+1}, \mathbf{v}_{r+2}, ..., \mathbf{v}_d\}$

Proof. We can rewrite Equation 17 as $\mathbf{AV} = \mathbf{U\Sigma}$, or equivalently:

$$\mathbf{A}\mathbf{v}_1=\sigma_1\mathbf{u}_1\ ,\ \mathbf{A}\mathbf{v}_2=\sigma_2\mathbf{u}_2,\ ,\ \dots\ ,\ \mathbf{A}\mathbf{v}_r=\sigma_r\mathbf{u}_r\ ,\ \dots\ ,\ \mathbf{A}\mathbf{v}_p=\sigma_p\mathbf{u}_p$$

where \mathbf{v}_i and \mathbf{u}_i are the *i*-th columns of \mathbf{V} and \mathbf{U} , respectively.

If d > n, then the rewrite can continue outside the principal submatrix of Σ as $\mathbf{Av}_k = \mathbf{0}$ for $p < k \le d$.

Since, σ_{r+1} through σ_p are 0, it means that

$$Av_k = 0$$

for $(r+1) \leq k \leq d$. Thus, the set $\{\mathbf{v}_{r+1}, \mathbf{v}_{r+2}, ..., \mathbf{v}_d\}$ is an orthonormal set for at least some subspace of $Null(\mathbf{A})$.

Any vector $\mathbf{x} \in \mathbb{R}^d$ not in this subspace must be in the orthogonal complement of this subspace in \mathbb{R}^d . Since $\mathbf{V} \in \mathbb{R}^{d \times d}$ is square and orthonormal, its columns create a orthonormal spanning set of \mathbb{R}^d . Therefore, the orthonormal complement of $span\{\mathbf{v}_{r+1}, \mathbf{v}_{r+2}, ..., \mathbf{v}_d\}$ is $span\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$. We can represent \mathbf{x} in terms of these vectors:

$$\mathbf{x} = \sum_{k=1}^{r} \alpha_k \mathbf{v}_k$$

for $\alpha_1, ..., \alpha_r \in \mathbb{R}$.

The product with **A** gives

$$\mathbf{A}\mathbf{x} = \mathbf{A}\sum_{k=1}^{r} \alpha_k \mathbf{v}_k = \sum_{k=1}^{r} \alpha_k \mathbf{A}\mathbf{v}_k = \sum_{k=1}^{r} \alpha_k \sigma_k \mathbf{u}_k$$

Since the columns of **U** are linearly independent (moreover, orthogonal) and σ_1 through σ_r are nonzero, there are no $\{\alpha_1, ..., \alpha_r\}$ that gives the zero vector other than $\alpha_k = 0 \forall 1 \le k \le r$ (this is by the definition of linear independence). Therefore, there are no other nonzero vectors in $span\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$ that is part of the null space of **A**. Therefore, the null space of **A** must be $span\{\mathbf{v}_{r+1}, \mathbf{v}_{r+2}, ..., \mathbf{v}_d\}$, and the row space must be its orthogonal complement in \mathbb{R}^d , which is $span\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$.

4.
$$C(\mathbf{A}) = span\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_r\}$$

5. $Null(\mathbf{A}^T) = span\{\mathbf{u}_{r+1}, \mathbf{u}_{r+2}, ..., \mathbf{v}_n\}$

The proof follows the same steps with \mathbf{A}^T .

3.2 Thin SVD

If **A** is not square or is less than full rank, Σ contains rows or columns of zeros that don't contribute anything to **A**. For instance, consider a tall and skinny **A**; in other words, n > d. Then, we can write Equation 17 as

$$\mathbf{A} = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \mathbf{0} \end{bmatrix} \mathbf{V}^T = \mathbf{U}_1 \Sigma_1 \mathbf{V}^T$$
(21)

where $\mathbf{U}_1 \in \mathbb{R}^{n \times d}$, $\mathbf{U}_2 \in \mathbb{R}^{n \times n - d}$, and $\Sigma_1, \mathbf{V} \in \mathbb{R}^{d \times d}$.

If n < d, then

$$\mathbf{A} = \mathbf{U} \begin{bmatrix} \Sigma_1 & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix} = \mathbf{U} \Sigma_1 \mathbf{V}_1^T$$
(22)

where $\mathbf{V}_1 \in \mathbb{R}^{d \times n}$, $\mathbf{V}_2 \in \mathbb{R}^{d \times d - n}$, and $\Sigma_1, \mathbf{U} \in \mathbb{R}^{n \times n}$. More generally, with rank $(\mathbf{A}) = r \leq p$:

$$\mathbf{A} = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix} = \mathbf{U}_1 \Sigma_1 \mathbf{V}_1^T$$
(23)

where $\mathbf{U}_1 \in \mathbb{R}^{n \times r}$, $\mathbf{U}_2 \in \mathbb{R}^{n \times n-r}$, $\mathbf{V}_1 \in \mathbb{R}^{d \times r}$, $\mathbf{V}_2 \in \mathbb{R}^{d \times d-r}$, and $\Sigma_1 \in \mathbb{R}^{r \times r}$.

When the full square **U** and **V** are both not used, we refer to the resulting SVD as a *thin SVD* or an *economical SVD*. In a thin SVD, we only include the left and right singular vectors that span the column and row spaces of **A**.

We can also write the thin SVD (Equation 23) as a sum of rank-1 matrices that are scaled outer products between the left and right singular vectors:

$$\mathbf{A} = \mathbf{U}_1 \Sigma_1 \mathbf{V}_1^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$$
(24)

3.3 Matrix Norms in terms of Singular Values

Certain matrix norms can be written in terms of the singular values.

In particular, the matrix 2-norm is equal to the largest singular value:

$$||\mathbf{A}||_2 = \sigma_1 \tag{25}$$

Proof. The definition of a matrix 2-norm is

$$||\mathbf{A}||_2 = \max_{\mathbf{x} \in \mathbb{R}^d, \mathbf{x} \neq \mathbf{0}} \frac{||\mathbf{A}\mathbf{x}||_2}{||\mathbf{x}||_2}$$

for $\mathbf{A} \in \mathbb{R}^{n \times d}$.

Writing **A** as its full SVD and expressing **x** in terms of the full right singular vectors of **A** (which span \mathbb{R}^d):

$$||\mathbf{A}||_{2}^{2} = \max_{\mathbf{x} \in \mathbb{R}^{d}, \mathbf{x} \neq \mathbf{0}} \frac{||\mathbf{A}\mathbf{x}||_{2}^{2}}{||\mathbf{x}||_{2}^{2}}$$
(26)

$$= \max_{\mathbf{x}\in\mathbb{R}^{d},\mathbf{x}\neq\mathbf{0}} \frac{||\mathbf{\nabla}\Sigma\mathbf{\nabla}^{\mathsf{T}}\mathbf{x}||_{2}^{2}}{||\mathbf{x}||_{2}^{2}}$$
(27)

$$= \max_{\mathbf{x}\in\mathbb{R}^{d},\mathbf{x}\neq\mathbf{0}} \frac{\mathbf{x}^{T}\mathbf{V}\mathbf{\Sigma}^{T}\mathbf{U}^{T}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T}\mathbf{x}}{\mathbf{x}^{T}\mathbf{x}}$$
(28)

$$= \max_{\mathbf{x} \in \mathbb{R}^d, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^T \mathbf{V} \mathbf{\Sigma}_d^2 \mathbf{V} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \qquad \qquad \mathbf{U}^T \mathbf{U} = \mathbf{I}$$
(29)

$$= \max_{\alpha_1,\dots,\alpha_d \in \mathbb{R}, \sum \alpha_i \neq 0} \frac{\left(\sum_{i=1}^d \alpha_i \mathbf{v}_i^T \mathbf{V}\right) \mathbf{\Sigma}_d^2 \left(\sum_{j=1}^d \alpha_j \mathbf{V}^T \mathbf{v}_j\right)}{\sum_{k=1}^d \alpha_k \mathbf{v}_k^T \sum_{l=1}^d \alpha_l \mathbf{v}_l} \qquad \qquad \mathbf{x} = \sum_{i=1}^d \alpha_i \mathbf{v}_i \qquad (30)$$

$$= \max_{\alpha_1,\dots,\alpha_d \in \mathbb{R}, \sum \alpha_i \neq 0} \frac{(\sum_{i=1}^d \alpha_i \mathbf{v}_i^T \mathbf{V}) \mathbf{\Sigma}_d^2 (\sum_{j=1}^d \alpha_j \mathbf{V}^T \mathbf{v}_j)}{\sum_{k=1}^d \alpha_k^2} \qquad \mathbf{v}_i^T \mathbf{v}_j = \delta_{ij} \qquad (31)$$

$$= \max_{\alpha_1,\dots,\alpha_d \in \mathbb{R}, \sum \alpha_i \neq 0} \frac{\begin{bmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_d \end{bmatrix} \mathbf{\Sigma}_d^2 \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_d \end{bmatrix}}{\sum_{k=1}^d \alpha_k^2}$$
(32)

$$= \max_{\alpha_1,\dots,\alpha_d \in \mathbb{R}, \sum \alpha_i \neq 0} \frac{\sum_{i=1}^r \sigma_i^2 \alpha_i^2}{\sum_{k=1}^d \alpha_k^2}$$
(34)
$$= \sigma_1^2$$
(35)

The maximum is obtained when $\alpha_i = 0$ for $i \neq 1$.

=

Also, the Frobenius norm is related to the sum of the square of the singular values:

$$||\mathbf{A}||_F = \sqrt{\sum_{i=1}^r \sigma_i^2} \tag{36}$$

Proof. The definition of the Frobenius norm is

$$||\mathbf{A}||_F^2 = \sum_{i=1}^n \sum_{j=1}^d A_{ij}^2 = \operatorname{Tr}(\mathbf{A}^T \mathbf{A})$$

But the trace of a matrix is equal to the sum of its eigenvalues, and we saw in Equation 20 that the eigenvalues of $\mathbf{A}^T \mathbf{A}$ are the square of the singular values of \mathbf{A} .

3.4 Eckart-Young-Mirsky Theorem

A key theorem that involves SVD is the **Eckart-Young-Mirsky theorem**, which states that the best rank k approximation of a matrix is the one where its rank-1 expansion (Equation 24) is truncated at i = k:

Theorem 3. For any matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with rank r, let $k \leq r$ and $\mathbf{A}_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i$. Then,

$$\min_{\mathbf{B}:\operatorname{rank}(\mathbf{B})=k} ||\mathbf{A} - \mathbf{B}||_2 = ||\mathbf{A} - \mathbf{A}_k||_2 = \sigma_{k+1}$$
(37)

and

$$\min_{\mathbf{B}:\operatorname{rank}(\mathbf{B})=k} ||\mathbf{A} - \mathbf{B}||_F = ||\mathbf{A} - \mathbf{A}_k||_F = \sqrt{\sum_{i=k+1}^r \sigma_i}$$
(38)

Proof. The proof for the 2-norm is assigned as a homework problem. Here, we will only prove the Frobenius norm version.

First, note that for a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ and a subspace $V \subseteq \mathbb{R}^d$ of dimension (n-k) that is orthogonal to the first k singular vectors,

$$\max_{\mathbf{v}\in V, ||\mathbf{v}||_2=1} ||\mathbf{A}\mathbf{v}||_2 = \sigma_{k+1}$$

The proof is similar to the proof of the matrix 2-norm (Equation 25) but with a subspace of \mathbb{R}^d .

Now, we must prove the Weyl inequality. Let $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n \times d}$ and denote their singular values as $\sigma_i(\mathbf{X})$ and $\sigma_i(\mathbf{Y})$. Let $V_X \subseteq \mathbb{R}^d$ and $V_Y \subseteq \mathbb{R}^d$ have dimensions (d-k) and (d-l) and be orthogonal to the first k and l right singular vectors of \mathbf{X} and \mathbf{Y} , respectively, and let $W = V_X \cap V_Y$. Then,

$$\begin{aligned} \max_{\mathbf{v}\in W, ||\mathbf{v}||_{2}=1} ||\mathbf{X}\mathbf{v} + \mathbf{Y}\mathbf{v}||_{2} &\leq \max_{\mathbf{v}\in W, ||\mathbf{v}||_{2}=1} ||\mathbf{X}\mathbf{v}||_{2} + ||\mathbf{Y}\mathbf{v}||_{2} & \text{triangle inequality} \\ &\leq \max_{\mathbf{v}\in V_{X}, ||\mathbf{v}||_{2}=1} ||\mathbf{X}\mathbf{v}||_{2} + \max_{\mathbf{v}\in V_{Y}, ||\mathbf{v}||_{2}=1} ||\mathbf{Y}\mathbf{v}||_{2} \\ &\leq \sigma_{k+1}(\mathbf{X}) + \sigma_{l+1}(\mathbf{Y}) \end{aligned}$$

And note that $\dim(W) \leq (d-k) + (d-l) - d = d - k - l$. So, by the Courant-Fischer's Min-Max theorem (proved in the next lecture):

$$\sigma_{k+l+1}(\mathbf{X}+\mathbf{Y}) = \min_{V \subseteq \mathbb{R}^d, \dim(V) = d-k-l} \max_{\mathbf{v} \in V, ||\mathbf{v}||_2 = 1} ||\mathbf{X}\mathbf{v} + \mathbf{Y}\mathbf{v}||_2$$
(39)

$$\leq \max_{\mathbf{v}\in W, ||\mathbf{v}||_2=1} ||\mathbf{X}\mathbf{v} + \mathbf{Y}\mathbf{v}||_2 \tag{40}$$

$$\leq \sigma_{k+1}(\mathbf{X}) + \sigma_{l+1}(\mathbf{Y}) \tag{41}$$

Now, to prove the Eckart-Young-Mirsky theorem for the Frobenius norm, take $\mathbf{X} = \mathbf{B}$ and $\mathbf{Y} = \mathbf{A} - \mathbf{B}$. Applying Weyl's inequality (Equation 41):

$$\sigma_{i+k}(\mathbf{A}) \le \sigma_{k+1}(\mathbf{B}) + \sigma_i(\mathbf{A} - \mathbf{B}) = \sigma_i(\mathbf{A} - \mathbf{B})$$

The last equality used the fact that $\operatorname{rank}(\mathbf{B}) = k$. Then,

$$||\mathbf{A} - \mathbf{B}||_F^2 = \sum_{i=1}^p \sigma_i(\mathbf{A} - \mathbf{B}) \ge \sum_{i=1}^{r-k} \sigma_{i+k}(\mathbf{A})$$

where $p = \min(n, d)$.

After showing that the lower bound is met when $\mathbf{B} = \mathbf{A}_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i$, our proof is complete:

$$||\mathbf{A} - \mathbf{A}_k||_F^2 = ||\sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i - \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i||_F^2$$
(42)

$$= ||\sum_{i=k+1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i||_F^2 \tag{43}$$

$$=\sum_{i=k+1}^{r}\sigma_{i}^{2}\tag{44}$$

$$=\sum_{i=1}^{r-k}\sigma_{i+k}^2\tag{45}$$

3.5 Pseudoinverse

Recall the thin SVD for $\mathbf{A} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{A}) = r$. (Equation 23):

$$\mathbf{A} = \begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix} = \mathbf{U}_1 \Sigma_1 \mathbf{V}_1^T$$

The pseudoinverse is defined as:

$$\mathbf{A}^{\dagger} = \mathbf{V}_1 \boldsymbol{\Sigma}_1^{-1} \mathbf{U}_1^T = \sum_{i=1}^r \frac{1}{\sigma_i} \mathbf{v}_i \mathbf{u}_i^T$$
(46)

The matrices \mathbf{A} and \mathbf{A}^{\dagger} provide a bijective mapping between the row and column spaces of \mathbf{A} while "zero-ing out" vectors in its null and left-null spaces. Recall that the *r* columns of \mathbf{U}_1 span $\mathcal{C}(\mathbf{A})$ and the *r* columns of \mathbf{V}_1 span $\mathcal{C}(\mathbf{A}^T)$.

To illustrate, take a vector $\mathbf{x} \in \mathcal{C}(\mathbf{A})$; it can be written as $\mathbf{x} = \sum_{i=1}^{r} \alpha_i \mathbf{u}_i$. Applying the pseudoinverse:

$$\mathbf{A}^{\dagger}\mathbf{x} = \sum_{i=1}^{r} \left(\frac{1}{\sigma_{i}} \mathbf{v}_{i} \mathbf{u}_{i}^{T} \sum_{j=1}^{r} \alpha_{j} \mathbf{u}_{j}\right) = \sum_{i=1}^{r} \sum_{j=1}^{r} \frac{\alpha_{j}}{\sigma_{i}} \mathbf{v}_{i} (\mathbf{u}_{i}^{T} \mathbf{u}_{j}) = \sum_{i=1}^{r} \frac{\alpha_{i}}{\sigma_{i}} \mathbf{v}_{i} \in \mathcal{C}(\mathbf{A}^{T})$$
(47)

Applying \mathbf{A} to this result, we recover the original vector \mathbf{x} :

$$\mathbf{A}\sum_{i=1}^{r}\frac{\alpha_{i}}{\sigma_{i}}\mathbf{v}_{i} = \sum_{j=1}^{r}\sigma_{j}\mathbf{u}_{j}\mathbf{v}_{j}^{T}\sum_{i=1}^{r}\frac{\alpha_{i}}{\sigma_{i}}\mathbf{v}_{i} = \sum_{i=1}^{r}\sum_{j=1}^{r}\frac{\alpha_{i}\sigma_{j}}{\sigma_{i}}\mathbf{u}_{j}(\mathbf{v}_{j}^{T}\mathbf{v}_{i}) = \sum_{i=1}^{r}\alpha_{i}\mathbf{u}_{i} = \mathbf{x}$$
(48)

In other words, since $\mathbf{x} \in \mathcal{C}(\mathbf{A})$ can be expressed as $\mathbf{x} = \mathbf{A}\mathbf{b}$ for some \mathbf{b} , we have

$$\mathbf{A}\mathbf{A}^{\dagger}\mathbf{x} = \mathbf{A}\mathbf{A}^{\dagger}\mathbf{A}\mathbf{b} = \mathbf{x} = \mathbf{A}\mathbf{b}$$
(49)

Since b is arbitrary,

$$\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{A} \tag{50}$$

And for a vector $\mathbf{y} = \sum_{i=r+1}^{n} \beta_i \mathbf{u}_i \in Null(\mathbf{A}^T)$:

$$\mathbf{A}^{\dagger}\mathbf{y} = \sum_{i=1}^{r} \left(\frac{1}{\sigma_{i}} \mathbf{v}_{i} \mathbf{u}_{i}^{T} \sum_{j=r+1}^{n} \beta_{j} \mathbf{u}_{j}\right) = \sum_{i=1}^{r} \sum_{j=r+1}^{n} \frac{\beta_{j}}{\sigma_{i}} \mathbf{v}_{i}(\mathbf{u}_{i}^{T} \mathbf{u}_{j}) = \mathbf{0}$$
(51)

Thus, for any vector $\mathbf{z} = \mathbf{x} + \mathbf{y} \in \mathbb{R}^n$, we have

$$\mathbf{A}\mathbf{A}^{\dagger}\mathbf{z} = \mathbf{A}\mathbf{A}^{\dagger}(\mathbf{x} + \mathbf{y}) \tag{52}$$

$$= \mathbf{A}\mathbf{A}^{\dagger}\mathbf{x} + \mathbf{A}\mathbf{A}^{\dagger}\mathbf{y}$$
(53)

$$= \mathbf{A}\mathbf{A}^{\dagger}\mathbf{x} \tag{54}$$

$$=\mathbf{x}$$
 (55)

The vector \mathbf{z} was projected to only the component in the column space of \mathbf{A} . Similarly, with $\mathbf{x} \in \mathcal{C}(\mathbf{A}^{\dagger}) = \mathcal{C}(\mathbf{A}^{T})$ and $\mathbf{y} \in Null(\mathbf{A})$, we can show that

$$\mathbf{A}^{\dagger}\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{A}^{\dagger} \tag{56}$$

and that $\mathbf{A}^{\dagger}\mathbf{A}$ is a projection matrix onto the row space of \mathbf{A} .

3.5.1 Properties of the Pseudoinverse

These properties were shown above:

- 1. $\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{A}$
- 2. $\mathbf{A}^{\dagger}\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{A}^{\dagger}$
- 3. $\mathbf{A}\mathbf{A}^{\dagger}$ is a projector onto $\mathcal{C}(\mathbf{A})$
- 4. $\mathbf{A}^{\dagger}\mathbf{A}$ is a projector onto $\mathcal{C}(\mathbf{A}^{T})$

Some additional properties are:

5. $(\mathbf{A}^{\dagger}\mathbf{A})^{T} = \mathbf{A}^{\dagger}\mathbf{A}$ 6. $(\mathbf{A}\mathbf{A}^{\dagger})^{T} = \mathbf{A}\mathbf{A}^{\dagger}$

Proof. We proved in Theorem 2 that projection matrices are symmetric. Since $\mathbf{A}^{\dagger}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\dagger}$ are projection matrices, they are symmetric.

And some special cases when **A** is full rank:

7. When $n \ge d$ and \mathbf{A} is full rank: $\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$

- Also called the **left inverse** because when applied to the left of \mathbf{A} : $\mathbf{A}^{\dagger}\mathbf{A} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{A} = \mathbf{I}$
- 8. When $d \ge n$ and **A** is full rank: $\mathbf{A}^{\dagger} = \mathbf{A}^T (\mathbf{A}\mathbf{A}^T)^{-1}$
 - Also called the **right inverse** because when applied to the right of $A: AA^{\dagger} = AA^{T}(AA^{T})^{-1} = I$
- 9. When **A** is square and full rank: $\mathbf{A}^{\dagger} = \mathbf{A}^{-1}$

Proof. Only proving the right inverse. Others can be shown in a similar manner.

=

For $\mathbf{A} \in \mathbb{R}^{n \times d}$ with $d \ge n$ and $\operatorname{rank}(A) = n$, its full SVD is:

$$\mathbf{A} = \mathbf{U} \begin{bmatrix} \Sigma_1 & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix} = \mathbf{U}_1 \Sigma_1 \mathbf{V}_1^T$$

with $\mathbf{U} \in \mathbb{R}^{n \times n}$, $\Sigma_1 \in \mathbb{R}^{n \times n}$, and $\mathbf{V}_1 \in \mathbb{R}^{d \times n}$. Furthermore, Σ_1 is fully diagonal (and invertible), and $\mathbf{U}^T = \mathbf{U}^{-1}$ as usual.

From the definition of the pseudoinverse (Equation 46):

$$\mathbf{A}^{\dagger} = \mathbf{V}_1 \Sigma_1^{-1} \mathbf{U}^T$$

And

$$\mathbf{A}^{T}(\mathbf{A}\mathbf{A}^{T})^{-1} = \mathbf{V}_{1}\boldsymbol{\Sigma}_{1}^{T}\mathbf{U}^{T}(\mathbf{U}\boldsymbol{\Sigma}_{1}\mathbf{V}_{1}^{T}\mathbf{V}_{1}\boldsymbol{\Sigma}_{1}^{T}\mathbf{U}^{T})^{-1}$$
(57)

$$= \mathbf{V}_1 \Sigma_1 \mathbf{U}^T (\mathbf{U} \Sigma_1^2 \mathbf{U}^T)^{-1}$$
(58)

$$= \mathbf{V}_1 \Sigma_1 \mathbf{U}^T \mathbf{U} \Sigma_1^{-2} \mathbf{U}^T \tag{59}$$

$$=\mathbf{V}_{1}\boldsymbol{\Sigma}_{1}^{-1}\mathbf{U}^{T}$$
(60)

$$=\mathbf{A}^{\dagger}$$
 (61)

3.5.2 Least Squares with the Pseudoinverse

Recall the least-squares regression problem from lecture 3:

$$\mathbf{x}^* = \underset{\mathbf{x} \in \mathbb{R}^d}{\arg\min} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2$$
(62)

given a data matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with *n* samples $\{\mathbf{a}_i\}_{i=1}^n \in \mathbb{R}$ of *d*-dimensional features and a column vector $\mathbf{b} \in \mathbb{R}^n$ of targets.

We showed that the solution satisfied the normal equation:

$$\mathbf{A}^T \mathbf{A} \mathbf{x}^* = \mathbf{A}^T \mathbf{b} \tag{63}$$

For a full-rank **A** with $n \ge d$, $(\mathbf{A}^T \mathbf{A})^{-1}$ exists, and the unique solution was

$$\mathbf{x}^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$
(64)

However, if **A** is not full rank and/or d > n, then there can be more than one solution to the normal equation. But, out of these solutions, $\mathbf{x}^* = \mathbf{A}^{\dagger} b$ gives the **minimum norm solution**. The proof is shown below.

Consider the SVD of **A** from Equation 23:

$$\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} = \begin{bmatrix} \mathbf{U}_{1} & \mathbf{U}_{2} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1}^{T} \\ \mathbf{V}_{2}^{T} \end{bmatrix} = \mathbf{U}_{1} \boldsymbol{\Sigma}_{1} \mathbf{V}_{1}^{T}$$
(65)

We express any $\mathbf{x} \in \mathbb{R}^d$ in terms of the full right singular vectors of \mathbf{A} , which span \mathbb{R}^d :

$$\mathbf{x} = \mathbf{V}\mathbf{y} = [\mathbf{V}_1, \mathbf{V}_2] \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}$$
(66)

Using these, we evaluate the loss function

$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_{2}^{2} = ||\mathbf{U}\Sigma\mathbf{V}^{T}[\mathbf{V}_{1}, \mathbf{V}_{2}]\begin{bmatrix}\mathbf{y}_{1}\\\mathbf{y}_{2}\end{bmatrix} - \mathbf{b}||_{2}^{2}$$
(67)

$$= ||\mathbf{U}\Sigma\begin{bmatrix}\mathbf{y}_1\\\mathbf{y}_2\end{bmatrix} - \mathbf{b}||_2^2 \tag{68}$$

Since multiplying by an orthonormal matrix does not change the norm, we left multiply by \mathbf{U}^T :

$$||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = ||\mathbf{U}^T(\mathbf{A}\mathbf{x} - \mathbf{b})||_2^2$$
(69)

$$= ||\Sigma \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} - \mathbf{U}^T \mathbf{b}||_2^2$$
(70)

$$= || \begin{bmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} - \begin{bmatrix} \mathbf{U}_1^T \\ \mathbf{U}_2^T \end{bmatrix} \mathbf{b} ||_2^2$$
(71)

$$= ||\boldsymbol{\Sigma}_1 \mathbf{y}_1 - \mathbf{U}_1^T \mathbf{b}||_2^2 + ||\mathbf{0} \cdot \mathbf{y}_2 - \mathbf{U}_2^T \mathbf{b}||_2^2$$
(72)

To find the minimum of this loss function, we consider the terms one by one. The first term is 0 when

$$\mathbf{y}_1 = \boldsymbol{\Sigma}_1^{-1} \mathbf{U}_1^T \mathbf{b} \tag{73}$$

However, the second term is always $||\mathbf{U}_2^T \mathbf{b}||_2^2$ regardless of \mathbf{y}_2 .

Therefore, the least-squares solutions are:

$$\mathbf{x} = \mathbf{V}\mathbf{y} = \begin{bmatrix} \mathbf{V}_1, \mathbf{V}_2 \end{bmatrix} \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix}$$
(74)

$$=\mathbf{V}_1\mathbf{y}_1 + \mathbf{V}_2\mathbf{y}_2 \tag{75}$$

$$= \mathbf{V}_1 \mathbf{\Sigma}_1^{-1} \mathbf{U}_1^T \mathbf{b} + \mathbf{V}_2 \mathbf{y}_2$$
(76)

$$= \mathbf{A}^{\dagger} \mathbf{b} + \mathbf{V}_2 \mathbf{y}_2 \tag{77}$$

We know that $\mathbf{A}^{\dagger}\mathbf{b} \in \mathcal{C}(\mathbf{A}^T)$ and $\mathbf{V}_2\mathbf{y}_2 \in Null(\mathbf{A})$. Therefore, the least squares solutions are of the form:

$$\mathbf{A}^{\dagger}\mathbf{b} + \mathbf{w} \text{ where } \mathbf{w} \in Null(\mathbf{A})$$
(78)

The solution with the smallest norm is obtained when $\mathbf{w} = \mathbf{0}$, and the minimum norm solution to the least-squares regression problem is

$$\mathbf{x}_{LS} = \mathbf{V}_1 \mathbf{\Sigma}_1^{-1} \mathbf{U}_1^T \mathbf{b} = \mathbf{A}^{\dagger} \mathbf{b}$$
(79)