CSE 392: Matrix and Tensor Algorithms for Data	Spring 2024
Lecture $24-2024.04 .15$	
Instructor: Shashanka Ubaru	Scribe: Xuxi Chen

1 Introduction

1.1 What are Tensor Networks?

- A network that works on tensors
- Alternative formulation to the standard, cumbersome algebraic tensor representation
- Conceived by Roger Penrose in 1971 "It now ceases to be important to maintain a distinction between upper and lower indices"
- Instrumental in tensor computation and analysis
- Nodes (or vertices) represent individual tensors
- Edges are (typically) non-directed and represent tensor index
- Connected (standard) edges represent (Einstein) summation over an index
- Free (dangling) indices depicted as edges attached to a single vertex
- Self-connecting edge (from a tensor to itself) represents trace operation
- Number of edges on nodes indicate the order of the tensor

1.2 Tensor Networks Applications

The examples are shown in Figure 1 .

1.3 How Powerful are Tensor Networks?

- Tensor networks invariants / isomorphism offers means to analyze and identify (space and time complexity) structure in high dimensional computation
- Such embarrassment can happen to anyone, unless one appreciates the power of tensor networks...

Figure 1: Some examples of tensor networks

2 Tensor Network

2.1 Tensor Network - Tensor Product

- Multiple disconnected tensors in the same diagram \rightarrow multiplied by tensor product

Figure 2: Demonstration of Tensor Product

2.2 Tensor Networks Invariants - Planar Deformation

- What is the difference between the networks in Figure 3.
- These networks are isomorphic.
- Tensors can freely roam past each other (planar deformation)

$$
(\nVdash \otimes B)(A \otimes \nVdash)=A \otimes B=(A \otimes \nVdash)(\nVdash \otimes B)
$$

Figure 3: Isomorphic networks.

2.3 Tensor Networks Invariants - Planar Deformation

The networks are equivalent in Figure 4 .

Figure 4: Equivalent networks.

2.4 Tensor Networks Transposition

Edge swapping is akin to index swap (transposition in matrices) as demonstrated in Figure 5

Figure 5: Tensor Networks Transposition - Index Swap

Tensor networks are indifferent to edges "detours" as demonstrated in Figure 6.

Figure 6: Tensor Networks Transposition - Detours

2.5 Tensor Networks - Penrose Duality

- Penrose Duality - bijection induced by bending wires
- Specific tensors (wire, cup, cap) play the role of Kronecker's delta and enable:
- Tensor index contraction by diagrammatic connection
- Raising and lowering indices
- Represent duality between maps, states and linear transformations

Figure 7: Penrose Duality

2.6 Anti-Symmetry

- A tensor is fully anti-symmetric if swapping any pair of indices changes its sign.
- For example in 2D:

$$
A_{i j}=-A_{i j}
$$

- The $\epsilon_{i j}$ tensor is used to represent the fully anti-symmetric Levi-Civita symbol

$$
\epsilon=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

3 Tensor Networks Contractions

3.1 Tensor Networks Contractions - Vector-Vector

- How do tensors interact?
- Represents a dot-product between two vectors which entails a scalar.
- Edge contraction implies summation over the joint index.

$$
\sum_{i} x_{i} y^{i}=\alpha
$$

Figure 8: Tensor Networks Contractions - Vector-Vector

3.2 Tensor Networks Contractions - Matrix-Vector

- How does a matrix and a vector contract?
- Matrix-vector from a tensor network perspective is effectively a vector.

Figure 9: Tensor Networks Contractions - Matrix-Vector

3.3 Tensor Networks Contractions - Matrix-Matrix

- Similarly, matrix-matrix contraction over a single edge entails a matrix (matrix-matrix product).

Figure 10: Tensor Networks Contractions - Matrix-Matrix

3.4 Tensor Networks Contractions - Tensor-Tensor

- How do tensors interact with other tensors?
- Two $3^{r d}$ degree tensors contracted by 2 indices form a matrix

$$
\sum_{j k} \mathcal{S}_{j k}^{i} \mathcal{T}_{\ell}^{j k}=A_{\ell}^{i}
$$

Figure 11: Tensor Networks Contractions - Tensor-Tensor

- What would such contraction yield?
- Four $3^{\text {rd }}$ order tensors, where all edges contracted, entails a scalar.

Figure 12: Tensor Networks Contractions - Tensor-Tensor

3.5 Tensor Networks Contractions - Trace

- What contraction of a tensor to itself means?

$$
\sum_{i} A_{i}^{i}=\operatorname{tr}(A)
$$

Figure 13: Tensor Networks Contractions - Trace

- What contraction of a matrix product to itself means?

Figure 14: Tensor Networks Contractions - Trace

3.6 Tensor Networks Contractions - Partial Trace

- What partial contraction of a tensor product to itself means?

Figure 15: Tensor Networks Contractions - Partial Trace

Tensor Networks Contractions - Trace Cyclicity

- How can we prove trace cyclicity?
- Trivially proven with tensor networks due to rotational invariance of the network (graph isomorphism).

Figure 16: Tensor Networks Contractions - Trace Cyclicity

- How is it related to sketching and low rank approximations and tensor algebra?
- Split - inverse form of tensor contraction

3.7 Tensor Networks - Splits and Low-Rank Approximation

- Can we always split?
- Can always compute SVD on matrices.
- How do we extend this to tensors?
- Vectorize and then employ matrix SVD

Figure 17: Split

Figure 18: Vectorize and then employ matrix SVD

- And conduct native tensor decomposition ...

Figure 19: Tensor Decompositions

