
CSE 392: Matrix and Tensor Algorithms for Data Spring 2024

Lecture 23 — 2024.04.11
Instructor: Shashanka Ubaru Scribe: Xuxi Chen

1 Revisiting Randomized t-SVD

1.1 t-SVD

Theorem: For any A ∈ Rm×l×n, there exists a full tensor-SVD such that

A = U ∗ S ∗ VT ,

with an m×m×n orthogonal tensor U , an l× l×n orthogonal tensor V , and an m× l×n f-diagonal
tensor S ordered such that the singular tubes si = Si,i,: having ∥s1∥2F ≥ ∥s2∥2F ≥ · · · . The t-rank
is the number of non-zero tube-fibers in S.

Figure 1: Demonstration of tensor-SVD.

1.2 t-SVD computation

The t-SVD can be computed efficiently in parallel by moving to the Fourier domain in the following
steps:

• Compute Â using FFT;

• For i = 1, . . . , n, find the matrix SVD of each frontal slice: Û:,:,iŜ:,:,iV̂H
:,:,i = Â:,:,i;

• To get U , S and V, just apply the inverse FFT along tube fibers of Û , Ŝ and V̂.

1.3 Tensor-tensor SVDs

Theorem (Kilmer, Horesh, Avron, Newman): Let A be an m×p×n tensor andM a non-zero
multiple of a unitary/orthogonal matrix. The (full) ⋆M tensor SVD (t-SVDM) is

1

A = U⋆MS⋆MVH =
min(m,p)∑

i=1
U:,i,:⋆MSi,i,:⋆MVH

:,i,:

with U , V being ⋆M − unitary, &∥S1,1,:∥2F ≥ ∥S2,2,:∥2F ≥ . . .

Figure 2: Demonstration of tensor-tensor SVDs

1.4 Practical Algorithm for t-SVDM

• Â ← A×M M

•
[
Û:,:,i,Ŝ:,:,i,V̂:,:,i,

]
= SVD(Â:,:,i,), for i = 1, . . . , n

• U = Û ×3 M−1,S = Ŝ ×3 M−1,V = V̂ ×3 M−1

1.5 Randomized Variants

Randomized t-SVD with Subspace-type Iteration The randomized t-SVD algorithm is
described as follows:

Input: A ∈ Rm×l×n , target truncation term k, oversampling parameter p, the number of iterations
q.

Output: Uk ∈ Rm×k×n, Sk ∈ Rk×k×n and Vk ∈ Rl×k×n.

Steps:

• Generate a Gaussian random tensor W ∈ Rl×(k+p)×n;

• Form Y = (A ∗ AT)q ∗ A ∗W;

• Form a tensor QR factorization Y = Q ∗R;

• Form a tensor B = QT ∗ A, the size of B is (k + p)× l × n;

• Compute t-SVD of B, truncate it, and obtain Bk = Uk ∗ Sk ∗ VT
k ;

• Form the rt-SVD of A, A ≈ (Q ∗ Bk) = (Q ∗ Vk) ∗ Sk ∗ VT
k .

In practice, this algorithm can be implemented in the transformed domain with parallel matrix
computations.

2

1.6 Analysis: Expectation of Error

Theorem. The output satisfies

E∥A −Q ∗ QT ∗ A∥ ≤ E∥A −Q ∗ Bk∥2 ≤
1
n

(
n∑

i=1
(1 + k(τ (i)

k)4qi

p− 1)(
∑
j>k

(σ̂(i)
j)2)),

where k is a target truncation term, p ≥ 2 is the oversampling parameter, q is the iterations count
vector, and the singular value gap τ

(i)
k = σ̂

(i)
k+1

σ̂
(i)
k

≪ 1.

1.7 Impact on Recognition Rate: Cropped Yale B, k = 25

Figure 3: Recognition Rate

2 t-product applications

2.1 Application: Facial Recognition

A typical application is to conduct facial recognition. The algorithm is listed below:

• X⃗j , j = 1, 2, . . . , m are the training images;

• Y⃗ is the mean image;

• A⃗j = X⃗j − Y⃗ are the mean-subtracted images;

• K = A ∗ A⊤ = U ∗ S ∗ S⊤ ∗ U⊤ is the covariance tensor;

• Left orthogonal matrix U contains the principal components, so

A⃗j ≈ U:,1:k,: ∗ (U⊤
:,1:k,: ∗ A⃗j)︸ ︷︷ ︸

tensor coefs

3

• Note that U:,1:k,: ∗ UT
:,1:k,: is an orthogonal projection tensor.

Matching Coefficients. We keep the basis U:,1:k,: and the tensor coefficients U⊤
:,1:k,: ∗ A⃗j . When

a new mean subtracted image, oriented as a tensor B comes in, we compute its tensor coefficients
UT

:,1:k,: ∗ B⃗. Then we look for the image with the smallest Frobenius norm difference with the tensor
coefficients in the database. This is fundamentally different treatment than “eigenfaces”.

Figure 4

Facial Recognition Task Take 256 image subset (4 people, 64 different lighting conditions) and
randomly removed 1 image per person. The Extended Yale Face Database B can be access at http:
//vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html. The image A is 192× 252× 128.
We truncate the images in eigenspaces to k = 15. The error is A−Â

A = .115.

This means that
A ≈ U:,1:k,: ∗ (S1:k,1:k,: ∗ VT

:,1:k,:) = U:,1:k,: ∗ (UT
:,1:k,: ∗ A)︸ ︷︷ ︸

C

so the j-th lateral slice, i.e. a mean-subtracted image, is A:,j,: = ∑k
i=1U:,i,: ∗ ci,j .

Facial Recognition Task (when M is a DFT matrix)

• Experiment 1: randomly select 15 images of each person as training, test all remaining images

• Experiment 2: randomly selected 5 images of each person as training, test all remaining images

• 20 trials for each experiment

Figure 5: Examples of Facial Recognition Datasets

4

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

t-SVDII versus PCA Figure 6 demonstrates the performance comparison between t-SVDII and
PCA.

Figure 6: Performance comparison between t-SVDII versus PCA.

Performance on the Yale Faces Dataset Figure 7 demonstrates the results on the Yale Faces
Dataset.

Figure 7: Performance on the Yale Faces Dataset

Hyperspectral Results Best performance are points lying closest to the upper left, i.e., the
most compression for the smallest relative error (shown in Figure 8).

Numerical Results Figure 9 demonstrates the performance of hyperspectral compression.

5

Figure 8: Hyperspectral compression ratio versus relative error.

Figure 9: Approximation of hyperspectral wavelength 10 corresponding to upper right of graph.

2.2 Neural Networks, Hypothetically

Let a0 be a feature vector with an associated target vector c. Let f be a function which propagates
a0 though connected layers:

aj+1 = σ(Wj · aj + bj) for j = 0, . . . , N − 1,

where σ is a nonlinear, monotonic activation function.

Goal: Learn the function f which optimizes:

6

min
f∈H

E(f) = 1
m

m∑
i=1

V (c(i), f(a‘(i)0))︸ ︷︷ ︸
loss function

+ R(f)︸ ︷︷ ︸
regularizer

,

where H is a hypothesis space of functions.

Less is More: Reduced Parameterization In Figure 10, we can see why tensors can help
reduce parameterization.

Figure 10: The mechanism of using tensors in neural networks.

Tensor Neural Networks (tNNs) To update parameters, we can use gradient descent methods,
as demonstrated in Figure 11

Figure 11: Gradient descent methods for tensor neural networks.

7

Mimetic Structure The update relations are analogous to their matrix counterparts by no
coincidence. In the M-product framework, tensors are M-linear operators just as matrices are linear
operators.

A Dynamic Perspective on Neural Networks Consider a residual network matrix forward
propagation scheme:

aj+1 = aj + hσ(Wj · aj + bj) for j = 0, . . . , N − 1.

This is a forward Euler discretization of the continuous system:

ȧ(t) = σ(W (t) · a(t) + b(t)) for t ∈ [0, T].

Trainable Networks - Tensor Formulation In the continuous case (ȧ(t) = σ(W (t)·a(t)+b(t))),
the stability depends on the eigenvalues of the Jacobian:

J(t) = W (t)T · diag(σ′(W (t) · a(t) + b(t)))

This is a well-posed learning problem:

• maxi Re(λi(W (t))) ≤ 0 =⇒ Stable forward propagation

• maxi Re(λi(W (t))) ≈ 0 =⇒ Distinctions remain distinct

In the continuous case (˙⃗A(t) = σ(W(t) · A⃗(t) + B(t))), the stability depends on the eigenvalues of
the Jacobian:

J(t) = bcirc(W(t))T · diag(σ′(unfold(W(t) · A⃗(t) + B⃗(t))))

This is again a well-posed learning problem:

• maxi Re(λi(bcirc(W(t)))) ≤ 0 =⇒ Stable forward propagation

• maxi Re(λi(bcirc(W(t)))) ≈ 0 =⇒ Distinctions remain distinct

Implement stable forward propagation scheme which ensures well-posedness!

A Hamiltonian-Inspired Framework Definition of Hamiltonian: A system H(a(t), z(t))
which satisfies ȧ(t) = ∇zH and ż(t) = −∇zH.

Physical Intuition: a = position, z = velocity/momentum

H(a(t), z(t)) = 1
2z(t)T · z(t)︸ ︷︷ ︸

kinetic

+ U(a(t))︸ ︷︷ ︸
potential

8

Properties:

• Time reversibility → Backward propagation

• Energy conservation → Stable forward propagation

• Volume preservation → Distinctions remain distinct

Seamless Matrix to Tensor Reformulation of Complex Architectures Consider the
symmetrized, Hamiltonian-inspired system:

d
dt

[
a(t)
z(t)

]
= σ

([
0 W (t)

−W (t)T 0

]
·
[
a(t)
z(t)

]
+
[
−b(t)
b(t)

])
.

The system is antisymmetric and hence inherently stable. We discretize with leapfrog integration
which is stable for purely imaginary eigenvalues:

zj+ 1
2

= zj− 1
2
− hσ(W T

j · aj + bj),

aj+1 = aj + hσ(W T
j · zj+ 1

2
+ bj).

Consider the symmetrized, Hamiltonian-inspired system:

d
dt

[
A⃗(t)
Z⃗(t)

]
= σ

([
0 W(t)

−W(t)T 0

]
·
[
A⃗(t)
Z⃗(t)

]
+
[
−B⃗(t)
B⃗(t)

])
.

The system is antisymmetric and hence inherently stable. We discretize with leapfrog integration
which is stable for purely imaginary eigenvalues:

Z⃗j+ 1
2

= Z⃗j− 1
2
− hσ(WT

j · A⃗j + B⃗j),

A⃗j+1 = A⃗j + hσ(W T
j · Z⃗j+ 1

2
+ B⃗j).

Tensor versus Matrix Learning: MNIST Database Results. Details:

Data: 28× 28 grayscale images of handwritten digits having 60000 train images and 10000 test
images.

Fixed parameters: h = 0.1, α= 0.1, σ = tanh, batch size = 20, training for 100 epochs.

Learnable parameters: matrix - 284N + 282N , tensor - 283N + 282N

Tensor vs. Matrix Learning: CIFAR-10 Database Results Details:

Data: 32× 32× 3 RGB images from 10 classes, 50000 training images, 10000 test images.

Fixed parameters: h = 0.1, α = 0.01, σ = tanh, batch size = 100, 300 epochs, M = DCT matrix.

Learnable parameters: matrix - (32 · 324)N + 3 · 322N , tensor - (32 · 324)N + 3 · 322N

9

Figure 12: MNIST results.

Figure 13: CIFAR-10 results.

2.3 Dynamic Graphs

The character of dynamic graphs:

• Graphs are ubiquitous data structures - represent interactions and structural relationships

• In many real-world applications, underlying graph changes over time

• Learning representations of dynamic graphs is essential

Figure 14 demonstrates some examples of dynamic graphs.

Figure 14: Dynamic graph examples.

10

Dynamic Graphs - Applications Figure 15 shows some examples of the applications of dynamic
graphs.

Figure 15: Corporate/financial networks, Natural Language Understanding (NLU), Social networks,
Neural activity networks, and Traffic predictions.

Graph Convolutional Networks

• Graph Neural Networks (GNN) popular tools to explore graph structured data

• Graph Convolutional Networks (GCN) - based on graph convolution filters - extend convolu-
tional neural networks (CNNs) to irregular graph domains

• These GNN models operate on a given, static graph

Figure 16: Image by (Kipf & Welling, 2016).

Motivation:

• Convolution of two signals x and y:

x⊗ y = F −1(Fx⊗ Fy),

11

where F is a Fourier transform (DFT matrix)

• Convolution of two node signals x and y on a graph with Laplacian L = UΛUT :

x⊗ y = U(UT x⊙ UT y).

• Filtered convolution:
x⊗filt y = h(L)x⊙ h(L)y

with a matrix filter function h(L) = Uh(Λ)UT .

• Layer of initial convolution based GNNs (Bruna et. al, 2016): Given a graph Laplacian
L ∈ RN×N and node features X ∈ RN×F :

Hi+1 = σ(hθ(L)HiW
(i),

where hθ is a filter function parametrized by θ and σ, a nonlinear function (e.g., ReLU), and
W(i) a weight matrix with H0 = X.

• Defferrard et al. (2016) used Chebyshev approximation Tm+1(L) = 2LTm(L)− Tm−1(L):

hθ(L) =
K∑

k=0
θkTk(L)

• GCN (Kipf & Welling, 2016): Each layer takes form:

σ(LXW).

A two-layer example:
Z = softmax(Lσ(LXW (0)W (1)).

• We use the ⋆M -Product to extend the standard GCN to dynamic graphs, and can propose a
tensor GCN model

σ(A ⋆M X ⋆M W)

• A two-layer example:

Z = softmax(A ⋆M σ(A ⋆M X ⋆M W(0) ⋆M W(1))

• We choose M to be lower triangular and banded (causal):

Mtk =
{ 1

min(b,t) or 1
k if max(1, t− b + 1) ≤ k ≤ t,

0 otherwise .

• Can be shown to be consistent with a spatio-temporal message passing model.

12

2.4 Theoretical Motivation

• The tensor A has an eigen-decomposition A = Q ⋆D ⋆QT .

• Filtering: Given a signal X ∈ RN×1×T and a function g : RN×1×T → RN×1×T , we define the
tensor spectral graph filtering of X with respect to g as

Xfilt = Q ⋆ g(D) ⋆QT ⋆ X ,

where
g(D)mn: =

{
g(Dmn:) if m = n,

0 if m ̸= n.

• Suppose g satisfies the above definition. For any ϵ > 0, there exists an integer K and a set
{θ(k)}Kk=1 ⊂ R1×1×T such that

∥g(D)−
K∑

k=0
D⋆k ⋆ θ(k)∥ ≤ ϵ

where ∥ · ∥ is the tensor Frobenius norm, and where D⋆k = D ⋆ · · · ⋆D is the M -product of
kinstances of D, with the convention that D⋆0 = J .

13

	Revisiting Randomized t-SVD
	t-SVD
	t-SVD computation
	Tensor-tensor SVDs
	Practical Algorithm for t-SVDM
	Randomized Variants
	Analysis: Expectation of Error
	Impact on Recognition Rate: Cropped Yale B, k = 25

	t-product applications
	Application: Facial Recognition
	Neural Networks, Hypothetically
	Dynamic Graphs
	Theoretical Motivation

