CSE 392: Matrix and Tensor Algorithms for Data

Lecture 22 - 2024.04.08

Spring 2024

Instructor: Shashanka Ubaru

Scribe: Tong Wang

1 t-SVD

Theorem: For any $\mathcal{A} \in \mathbb{R}^{m \times l \times n}$, there exists a full tensor-SVD such that

$$\mathcal{A} = \mathcal{U} * \mathcal{S} * \mathcal{V}^T$$

with \mathcal{U} being an $m \times m \times n$ orthogonal tensor, \mathcal{V} being an $l \times l \times n$ orthogonal tensor, and \mathcal{S} an $m \times l \times n$ f-diagonal tensor ordered such that the singular tubes $s_i = S_{i,i,:}$ have $||s_1||_F^2 \ge ||s_2||_F^2 \ge \cdots$. The **t-rank** is the number of non-zero tube-fibers in \mathcal{S} .

Figure 1: Tensor SVD formulation.

1.1 t-SVD computation

The t-SVD can be computed efficiently (in parallel) by moving to the Fourier domain.

- Compute $\hat{\mathcal{A}}$ using FFT;
- For i = 1, ..., n, find the matrix SVD of each frontal slice: $\hat{\mathcal{U}}_{:,:,i}\hat{\mathcal{S}}_{:,:,i}\hat{\mathcal{V}}^H_{:,:,i} = \hat{\mathcal{A}}_{:,:,i};$
- To get \mathcal{U}, \mathcal{S} and \mathcal{V} , just apply the inverse FFT along tube fibers of $\hat{\mathcal{U}}, \hat{\mathcal{S}}$ and $\hat{\mathcal{V}}$.

1.2 t-SVD and optimality in truncation

Optimality. Let $\mathcal{A} \in \mathbb{R}^{m \times p \times n}$ be a tensor. For $k < \min(m, p)$, we can define

$$\mathcal{A}_k = \sum_{i=1}^k \mathcal{U}_{:,:,i} * (\mathcal{S}_{i,i,:} * \mathcal{V}_{:,:,i}^T) = \mathcal{U}_k * (\mathcal{S}_k * \mathcal{V}_k^T),$$

then

$$\mathcal{A}_k = \arg\min_{\tilde{\mathcal{A}}\in\Omega} \left\| \mathcal{A} - \tilde{\mathcal{A}} \right\|$$

where $\Omega = \{\mathcal{X} * \mathcal{Y} | \mathcal{X} \in \mathbb{R}^{m \times k \times n}, \mathcal{Y} \in \mathbb{R}^{k \times p \times n}\}$. This states the optimality of t-SVD.

1.3 Generalization to higher dimensions

The t-product, and the t-SVD, can generalize to higher dimensions through recursion.

Figure 2: Generalization to higher dimensions through recursion.

Treatment of change of pose or lighting information (as motion) \rightarrow 4D.

2 \star_M Product

Is the DFT the only possibility for defining this matrix-mimetic type of framework, or are there other possibilities?

2.1 Recall Mode-3 Multiplication

Let **M** be a $r \times n$ matrix. To find $\mathcal{A}_{\times 3}$ **M**, we can do the following:

- Compute the matrix-matrix product $\mathbf{M}\mathcal{A}_{(3)}$,
- Reshape the result to an $m \times p \times r$ tensor.

The above pipeline is equivalent to applying **M** along tube fibers.

2.2 Definition of \star_M Product

Let **M** be any invertible, $n \times n$ matrix. Then we can define

$$\hat{\mathcal{A}} := \mathcal{A} \times_3 \mathbf{M}$$
 so that $\mathcal{A} = \hat{\mathcal{A}} \times_3 \mathbf{M}^{-1}$.

Definition: Given any invertible, $\mathbf{M} \in \mathcal{R}^{n \times n}$, $\mathcal{A} \in \mathbb{C}^{m \times p \times n}$ and $\mathcal{B} \in \mathbb{C}^{p \times l \times n}$, $\mathcal{C} = \mathcal{A} \star_M \mathcal{B}$ is defined via $\hat{\mathcal{C}}_{:,:,i} = \hat{\mathcal{A}}_{::,i} \hat{\mathcal{B}}_{::,i}$.

Figure 3: Pipeline of \star_M product.

2.3 Special Case

If M is the (unnormalized) DFT matrix, then we recover the t-product framework!

2.4 Other Properties

Definition (Conjugate Transpose): Given $\mathcal{A} \in \mathbb{C}^{m \times p \times n}$, its $m \times p \times n$ conjugate transpose under $\star_M \mathcal{A}^H$ is defined such that $(\hat{\mathcal{A}}^H)^{(i)} = (\hat{\mathcal{A}}^{(i)})^H$, $i = 1, \ldots, n$.

Definition (Unitary/Orthogonal Tensors): $Q \in \mathbb{C}^{m \times m \times n}$ (or $Q \in \mathbb{R}^{m \times m \times n}$) is called \star_M -unitary (or \star_M -orthogonal) if

$$\mathcal{Q}^H \star_M \mathcal{Q} = \mathcal{I} = \mathcal{Q} \star_M \mathcal{Q}^H,$$

where H is replaced by transpose for real tensors. Note that \mathcal{I} also defined under \star_M .

2.5 Entry-wise M-product

Figure 4: Entry-wise M-product

Tube fiber interpretation:

$$c = \texttt{fold}((\mathbf{M}^{-1} \operatorname{diag}(\hat{a})\mathbf{M})vec(b)) = \texttt{fold}((\mathbf{M}^{-1} \operatorname{diag}(\hat{b})\mathbf{M})vec(a))$$

Commutativity, and characterization using set of diagonal matrices diagonalized by \mathbf{M} and its inverse.

Special Case: If **M** is DFT \Rightarrow convolution, circulant matrices

2.6 Matrix-mimeticity

Observation: Overloading scalar products with \star_M in matrix-matrix algorithms gives product for larger dimensional tensors. If \mathcal{A} is $m \times k \times n$ and \mathcal{B} is $k \times p \times n$, then \mathcal{C} is $m \times p \times n$, and

Figure 5: Product operation on C.

2.7 Unitary Invariance

Theorem: If M a non-zero multiple of a unitary/orthogonal matrix, then

$$\|\mathcal{Q}\star_M\mathcal{A}\| = \|\mathcal{A}\|_F$$

2.8 Tensor-tensor SVDs

Theorem (Kilmer, Horesh, Avron, Newman): Let \mathcal{A} be a $m \times p \times n$ tensor and \mathcal{M} a non-zero multiple of a unitary/orthogonal matrix. The (full) \star_M tensor SVD (t-SVDM) is

$$\mathcal{A} = \mathcal{U} \star_M \mathcal{S} \star_M \mathcal{V}^H = \sum_{i=1}^{\min(m,p)} \mathcal{U}_{:,i,:} \star_M \mathcal{S}_{i,i,:} \star_M \mathcal{V}_{:,i,:}^H$$

with \mathcal{U}, \mathcal{V} being \star_M – unitary, $\mathscr{E} \|\mathcal{S}_{1,1,:}\|_F^2 \ge \|\mathcal{S}_{2,2,:}\|_F^2 \ge \ldots$

Figure 6: Tensor-Tensor SVD

Practical algorithm:

- $\hat{\mathcal{A}} \leftarrow \mathcal{A} \times_M \mathbf{M}$
- $\left[\hat{\mathcal{U}}_{:,:,i},\hat{\mathcal{S}}_{:,:,i},\hat{\mathcal{V}}_{:,:,i}\right] = \text{SVD}(\hat{\mathcal{A}}_{:,:,i}), \text{ for } i = 1, \dots, n$
- $\mathcal{U} = \hat{\mathcal{U}} \times_3 \mathbf{M}^{-1}, \mathcal{S} = \hat{\mathcal{S}} \times_3 \mathbf{M}^{-1}, \mathcal{V} = \hat{\mathcal{V}} \times_3 \mathbf{M}^{-1}$

Eckart-Young Theorem. Given $\mathcal{A} \in \mathbb{R}^{m \times p \times n}$, for k < min(m, p) and **M** as previously, we define

$$\mathcal{A}_k = \sum_{i=1}^k \mathcal{U}_{:,i,:} \star_M (\mathcal{S}_{i,i,:} \star_M \mathcal{V}_{:,i,:}^T).$$

Then,

$$\mathcal{A}_k = \arg\min_{\tilde{\mathcal{A}}\in\Omega} \|\mathcal{A} - \tilde{\mathcal{A}}\|_F,$$

where $\Omega = \{ \mathcal{X} \star_M \mathcal{T} \mid \mathcal{X} \in \mathbb{R}^{m \times k \times n}, \mathcal{T} \in \mathbb{R}^{k \times p \times n} \}$. The error is calculated as:

$$\|\mathcal{A} - \mathcal{A}_k\|_F = \sum_{j>k} \|\mathcal{S}_{j,j}\|_F^2 = c \sum_{i=1}^n \sum_{j>k} \hat{\sigma}_i^{(j)},$$

where c depends on **M**.

2.9 Theoretical Result

Theorem (Kilmer, Horesh, Avron, Newman (2021)) Suppose \mathcal{A}_k is optimal k-term t-SVDM approximation to \mathcal{A} , and let \mathcal{A}_k is optimal k-term matrix SVD approximation to \mathbf{A} . Then

$$\|\mathcal{A} - \mathcal{A}_k\|_F \le \|\mathbf{A} - \mathbf{A}_k\|_F$$

where **strict inequality is achievable**. This result works for any **M** that is multiple of unitary (orthogonal) matrix.

2.10 t-SVDMII

Truncated t-SVDM ignores relative importance of faces. Global approach: order $\hat{\sigma}_i^{(j)} := \hat{\mathcal{S}}_{i,i,j}$, truncate on energy level.

Given \mathcal{A}_{ρ} , with $\rho_i = rank(\hat{\mathcal{A}}^{(i)})$

2.11 Comparison

Implicit rank = total number of non-zero $\hat{\sigma}_i^{(j)}$.

Theorem (Kilmer, Horesh, Avron, Newman (2021))

Figure 7: Demonstration of t-SVDMII.

Let \mathcal{A}_k be the t-SVDM t-rank k approximation to \mathcal{A} , and suppose its implicit rank is r. Define $\mu = \|\mathcal{A}_k\|_F^2 / \|\mathcal{A}\|_F^2$. There exists $\gamma \leq \mu$ such that the t-SVDMII approximation, \mathcal{A}_{ρ} , obtained for this γ , has implicit rank less than or equal to the implicit rank of \mathcal{A}_k and

$$\|\mathcal{A} - \mathcal{A}_{\rho}\|_{F} \le \|\mathcal{A} - \mathcal{A}_{k}\|_{F} \le \|\mathbf{A} - \mathbf{A}_{k}\|_{F}.$$