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1 t-SVD

Theorem: For any A € R™**" there exists a full tensor-SVD such that

A=UxS+VT,

with U being an m x m x n orthogonal tensor, V being an [ x [ x n orthogonal tensor, and & an
m x I x n f-diagonal tensor ordered such that the singular tubes s; = S; ;. have ||s1|% > [[sa]|% > - -
The t-rank is the number of non-zero tube-fibers in S.

Figure 1: Tensor SVD formulation.

1.1 t-SVD computation
The t-SVD can be computed efficiently (in parallel) by moving to the Fourier domain.

« Compute A using FFT;

A

e Fori=1,... n, find the matrix SVD of each frontal slice: LA{,SJA)Hl =A. .

2y

e To get U, S and V, just apply the inverse FFT along tube fibers of U, S and V.

1.2 t-SVD and optimality in truncation

Optimality. Let A € R™*P*" be a tensor. For k < min(m,p), we can define

k
.Ak = ZZ/{;7;7Z' * (Siﬂ": * VTﬂ) = U}, * (Sk * Vg)’
=1



then )
Ay = argmin || A — A
AeQ

where Q = {X % Y|X € R™*F>Xn y ¢ RF>*PXn} . This states the optimality of t-SVD.

1.3 Generalization to higher dimensions

The t-product, and the t-SVD, can generalize to higher dimensions through recursion.
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Figure 2: Generalization to higher dimensions through recursion.

Treatment of change of pose or lighting information (as motion) — 4D.

2 %3y Product

Is the DFT the only possibility for defining this matrix-mimetic type of framework, or are there
other possibilities?

2.1 Recall Mode-3 Multiplication

Let M be a r x n matrix. To find Ax3M, we can do the following:

 Compute the matrix-matrix product M.As),

e Reshape the result to an m x p X r tensor.

The above pipeline is equivalent to applying M along tube fibers.



2.2 Definition of x;; Product

Let M be any invertible, n X n matrix. Then we can define

A:=Ax3Mso that A=A x3 M.

Definition: Given any invertible, M € R™*" A € C™*P*" and B € CP*!X" C = Ax)B is defined
via, C:,:,i = -A:,:,iB:,:,i-
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Figure 3: Pipeline of x; product.

2.3 Special Case

If M is the (unnormalized) DFT matrix, then we recover the t-product framework!

2.4 Other Properties

Definition (Conjugate Transpose): Given A € C"™*P*" its m X p X n conjugate transpose
under s A is defined such that (AH)®) = (A G =1 ... n.

Definition (Unitary/Orthogonal Tensors): Q € C™*™*"(or Q € R™*™*™) ig called *ps-unitary
(or xpr-orthogonal) if
Q" Q=T = QxyQ",

where H is replaced by transpose for real tensors. Note that Z also defined under x;.

2.5 Entry-wise M-product
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Figure 4: Entry-wise M-product



Tube fiber interpretation:

¢ = fold((M~'diag(a)M)vec(b)) = fold((M ™ diag(b)M)vec(a))

Commutativity, and characterization using set of diagonal matrices diagonalized by M and its
inverse.

Special Case: If M is DFT = convolution, circulant matrices
2.6 Matrix-mimeticity

Observation: Overloading scalar products with x»; in matrix-matrix algorithms gives product for
larger dimensional tensors. If Aism x kxnand Bisk xpxn ,then Cism X p xn , and
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Figure 5: Product operation on C.

2.7 Unitary Invariance

Theorem: If M a non-zero multiple of a unitary/orthogonal matrix, then

1QxmAll = [ AllF

2.8 Tensor-tensor SVDs

Theorem (Kilmer, Horesh, Avron, Newman): Let A be a m X p X n tensor and M a non-zero
multiple of a unitary/orthogonal matrix. The (full) xps tensor SVD (t-SVDM) is

min(m,p)
A= U*MS*MVH = Z U:7i7;*MSi7Z‘7:*MV£;I-’:
i=1

with U, V being x;; — unitary, & HSLL:”% > ||52,27:||% >

.. =

‘W//TTTT//

Figure 6: Tensor-Tensor SVD

Practical algorithm:
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. usv} = SVD(A..;), fori=1,...,n
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Eckart-Young Theorem. Given A4 € R™*P*" for k < min(m,p) and M as previously, we define

k
Ak = Zz/{:,i,: *M (S’i,i,: *M V%;)
=1

Then, )
A = argmin || A — A,
AeQ

where Q = {X %y T | X € R™*kxn T ¢ RFXPXnY The error is calculated as:

1A= Akllr = ISl = > D6,

>k i=1j>k

where ¢ depends on M.

2.9 Theoretical Result

Theorem (Kilmer, Horesh, Avron, Newman (2021)) Suppose Ay is optimal k-term t-SVDM
approximation to A, and let A;, is optimal k-term matrix SVD approximation to A. Then

|A—Aillr < ||A—Ag|lr

where strict inequality is achievable. This result works for any M that is multiple of unitary
(orthogonal) matrix.

2.10 t-SVDMII

A

Truncated t-SVDM ignores relative importance of faces. Global approach: order 6;1) = Siijs
truncate on energy level.

Given A,, with p; = rank(A®)
2.11 Comparison

Implicit rank = total number of non-zero 6;0).

Theorem (Kilmer, Horesh, Avron, Newman (2021))



Figure 7: Demonstration of t-SVDMII.

Let A be the t-SVDM t-rank k approximation to A, and suppose its implicit rank is r. Define
1= || Agll% / | A||%. There exists v < u such that the t-SVDMII approximation, A, obtained for
this v, has implicit rank less than or equal to the implicit rank of A; and

A= Allr < A= Arllr < |A = Agllp.
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