CSE 392: Matrix and Tensor Algorithms for Data	Spring 2024
Lecture $22-2024.04 .08$	
Instructor: Shashanka Ubaru	Scribe: Tong Wang

1 t-SVD

Theorem: For any $\mathcal{A} \in \mathbb{R}^{m \times l \times n}$, there exists a full tensor-SVD such that

$$
\mathcal{A}=\mathcal{U} * \mathcal{S} * \mathcal{V}^{T}
$$

with \mathcal{U} being an $m \times m \times n$ orthogonal tensor, \mathcal{V} being an $l \times l \times n$ orthogonal tensor, and \mathcal{S} an $m \times l \times n$ f-diagonal tensor ordered such that the singular tubes $s_{i}=S_{i, i,:}$ have $\left\|s_{1}\right\|_{F}^{2} \geq\left\|s_{2}\right\|_{F}^{2} \geq \cdots$. The \mathbf{t}-rank is the number of non-zero tube-fibers in \mathcal{S}.

Figure 1: Tensor SVD formulation.

1.1 t-SVD computation

The t-SVD can be computed efficiently (in parallel) by moving to the Fourier domain.

- Compute $\hat{\mathcal{A}}$ using FFT;
- For $i=1, \ldots, n$, find the matrix SVD of each frontal slice: $\hat{\mathcal{U}}_{\cdot,,, i} \hat{\mathcal{S}}_{:,, i, i} \hat{\mathcal{V}}_{:,,, i}^{H}=\hat{\mathcal{A}}_{:, \cdot, i}$;
- To get \mathcal{U}, \mathcal{S} and \mathcal{V}, just apply the inverse FFT along tube fibers of $\hat{\mathcal{U}}, \hat{\mathcal{S}}$ and $\hat{\mathcal{V}}$.

1.2 t-SVD and optimality in truncation

Optimality. Let $\mathcal{A} \in \mathbb{R}^{m \times p \times n}$ be a tensor. For $k<\min (m, p)$, we can define

$$
\mathcal{A}_{k}=\sum_{i=1}^{k} \mathcal{U}_{:,, i, i} *\left(\mathcal{S}_{i, i,::} * \mathcal{V}_{:,, i, i}^{T}\right)=\mathcal{U}_{k} *\left(\mathcal{S}_{k} * \mathcal{V}_{k}^{T}\right)
$$

then

$$
\mathcal{A}_{k}=\arg \min _{\tilde{\mathcal{A}} \in \Omega}\|\mathcal{A}-\tilde{\mathcal{A}}\|
$$

where $\Omega=\left\{\mathcal{X} * \mathcal{Y} \mid \mathcal{X} \in \mathbb{R}^{m \times k \times n}, \mathcal{Y} \in \mathbb{R}^{k \times p \times n}\right\}$. This states the optimality of t-SVD.

1.3 Generalization to higher dimensions

The t-product, and the t-SVD, can generalize to higher dimensions through recursion.

Figure 2: Generalization to higher dimensions through recursion.
Treatment of change of pose or lighting information (as motion) $\rightarrow 4 \mathrm{D}$.

$2 \star_{M}$ Product

Is the DFT the only possibility for defining this matrix-mimetic type of framework, or are there other possibilities?

2.1 Recall Mode-3 Multiplication

Let \mathbf{M} be a $r \times n$ matrix. To find $\mathcal{A}_{\times 3} \mathbf{M}$, we can do the following:

- Compute the matrix-matrix product $\mathbf{M} \mathcal{A}_{(3)}$,
- Reshape the result to an $m \times p \times r$ tensor.

The above pipeline is equivalent to applying \mathbf{M} along tube fibers.

2.2 Definition of \star_{M} Product

Let \mathbf{M} be any invertible, $n \times n$ matrix. Then we can define

$$
\hat{\mathcal{A}}:=\mathcal{A} \times{ }_{3} \mathbf{M} \text { so that } \mathcal{A}=\hat{\mathcal{A}} \times{ }_{3} \mathbf{M}^{-1} .
$$

Definition: Given any invertible, $\mathbf{M} \in \mathcal{R}^{n \times n}, \mathcal{A} \in \mathbb{C}^{m \times p \times n}$ and $\mathcal{B} \in \mathbb{C}^{p \times l \times n}, \mathcal{C}=\mathcal{A} \star_{M} \mathcal{B}$ is defined $\operatorname{via} \hat{\mathcal{C}}_{:,,, i}=\hat{\mathcal{A}}_{:,, i, i} \hat{\mathcal{B}}_{:,, i, i}$.

Figure 3: Pipeline of \star_{M} product.

2.3 Special Case

If \mathbf{M} is the (unnormalized) DFT matrix, then we recover the t -product framework!

2.4 Other Properties

Definition (Conjugate Transpose): Given $\mathcal{A} \in \mathbb{C}^{m \times p \times n}$, its $m \times p \times n$ conjugate transpose under $\star_{M} \mathcal{A}^{H}$ is defined such that $\left(\hat{\mathcal{A}^{H}}\right)^{(i)}=\left(\hat{\mathcal{A}^{(i)}}\right)^{H}, i=1, \ldots, n$.
Definition (Unitary/Orthogonal Tensors): $\mathcal{Q} \in \mathbb{C}^{m \times m \times n}$ (or $\mathcal{Q} \in \mathbb{R}^{m \times m \times n}$) is called $\star_{M_{M}}$-unitary (or $\star_{M^{\prime}}$-orthogonal) if

$$
\mathcal{Q}^{H} \star_{M} \mathcal{Q}=\mathcal{I}=\mathcal{Q} \star_{M} \mathcal{Q}^{H},
$$

where H is replaced by transpose for real tensors. Note that \mathcal{I} also defined under \star_{M}.

2.5 Entry-wise M-product

Figure 4: Entry-wise M-product

Tube fiber interpretation:

$$
c=\mathrm{fold}\left(\left(\mathbf{M}^{-1} \operatorname{diag}(\hat{\boldsymbol{a}}) \mathbf{M}\right) \operatorname{vec}(\boldsymbol{b})\right)=\mathrm{fold}\left(\left(\mathbf{M}^{-1} \operatorname{diag}(\hat{\boldsymbol{b}}) \mathbf{M}\right) \operatorname{vec}(\boldsymbol{a})\right)
$$

Commutativity, and characterization using set of diagonal matrices diagonalized by \mathbf{M} and its inverse.

Special Case: If M is $\mathrm{DFT} \Rightarrow$ convolution, circulant matrices

2.6 Matrix-mimeticity

Observation: Overloading scalar products with \star_{M} in matrix-matrix algorithms gives product for larger dimensional tensors. If \mathcal{A} is $m \times k \times n$ and \mathcal{B} is $k \times p \times n$, then \mathcal{C} is $m \times p \times n$, and

Figure 5: Product operation on \mathcal{C}.

2.7 Unitary Invariance

Theorem: If \mathbf{M} a non-zero multiple of a unitary/orthogonal matrix, then

$$
\left\|\mathcal{Q} \star_{M} \mathcal{A}\right\|=\|\mathcal{A}\|_{F}
$$

2.8 Tensor-tensor SVDs

Theorem (Kilmer, Horesh, Avron, Newman): Let \mathcal{A} be a $m \times p \times n$ tensor and \mathcal{M} a non-zero multiple of a unitary/orthogonal matrix. The (full) \star_{M} tensor SVD (t-SVDM) is

$$
\mathcal{A}=\mathcal{U} \star_{M} \mathcal{S} \star_{M} \mathcal{V}^{H}=\sum_{i=1}^{\min (m, p)} \mathcal{U}_{:, i,: \star} \star_{M} \mathcal{S}_{i, i,: \star} \star_{M} \mathcal{V}_{:, i, i}^{H}
$$

with \mathcal{U}, \mathcal{V} being \star_{M} - unitary, $\mathcal{E}\left\|\mathcal{S}_{1,1,:}\right\|_{F}^{2} \geq\left\|\mathcal{S}_{2,2,:}\right\|_{F}^{2} \geq \ldots$

Figure 6: Tensor-Tensor SVD

Practical algorithm:

- $\hat{\mathcal{A}} \leftarrow \mathcal{A} \times{ }_{M} \mathrm{M}$
- $\left[\hat{u}_{: ;, i, i}, \hat{\mathcal{S}}_{: ; i, i}, \hat{\mathcal{V}}_{: ; ;, i, i}\right]=\operatorname{SVD}\left(\hat{\mathcal{A}}_{: ; ;, i, i}\right)$, for $i=1, \ldots, n$
- $\mathcal{U}=\hat{\mathcal{U}} \times{ }_{3} \mathrm{M}^{-1}, \mathcal{S}=\hat{\mathcal{S}} \times{ }_{3} \mathrm{M}^{-1}, \mathcal{V}=\hat{\mathcal{V}} \times{ }_{3} \mathrm{M}^{-1}$

Eckart-Young Theorem. Given $\mathcal{A} \in \mathbb{R}^{m \times p \times n}$, for $k<\min (m, p)$ and \mathbf{M} as previously, we define

$$
\mathcal{A}_{k}=\sum_{i=1}^{k} \mathcal{U}_{i, i,:} \star_{M}\left(\mathcal{S}_{i, i,:} \star_{M} \mathcal{V}_{: ;, i,:}^{T}\right) .
$$

Then,

$$
\mathcal{A}_{k}=\arg \min _{\tilde{\mathcal{A}} \in \Omega}\|\mathcal{A}-\tilde{\mathcal{A}}\|_{F},
$$

where $\Omega=\left\{\mathcal{X} \star_{M} \mathcal{T} \mid \mathcal{X} \in \mathbb{R}^{m \times k \times n}, \mathcal{T} \in \mathbb{R}^{k \times p \times n}\right\}$. The error is calculated as:

$$
\left\|\mathcal{A}-\mathcal{A}_{k}\right\|_{F}=\sum_{j>k}\left\|\mathcal{S}_{j, j}\right\|_{F}^{2}=c \sum_{i=1}^{n} \sum_{j>k} \hat{\sigma}_{i}^{(j)},
$$

where c depends on \mathbf{M}.

2.9 Theoretical Result

Theorem (Kilmer, Horesh, Avron, Newman (2021)) Suppose \mathcal{A}_{k} is optimal k-term t-SVDM approximation to \mathcal{A}, and let \mathcal{A}_{k} is optimal k-term matrix SVD approximation to \mathbf{A}. Then

$$
\left\|\mathcal{A}-\mathcal{A}_{k}\right\|_{F} \leq\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}
$$

where strict inequality is achievable. This result works for any \mathbf{M} that is multiple of unitary (orthogonal) matrix.

2.10 t-SVDMII

Truncated t-SVDM ignores relative importance of faces. Global approach: order $\hat{\sigma}_{i}{ }^{(j)}:=\widehat{\mathcal{S}} \hat{i, i, j}$, truncate on energy level.
Given \mathcal{A}_{ρ}, with $\rho_{i}=\operatorname{rank}\left(\hat{\mathcal{A}}^{(i)}\right)$

2.11 Comparison

Implicit rank $=$ total number of non-zero $\hat{\sigma}_{i}{ }^{(j)}$.
Theorem (Kilmer, Horesh, Avron, Newman (2021))

Figure 7: Demonstration of t-SVDMII.

Let \mathcal{A}_{k} be the t-SVDM t-rank k approximation to \mathcal{A}, and suppose its implicit rank is r . Define $\mu=\left\|\mathcal{A}_{k}\right\|_{F}^{2} /\|\mathcal{A}\|_{F}^{2}$. There exists $\gamma \leq \mu$ such that the t-SVDMII approximation, \mathcal{A}_{ρ}, obtained for this γ, has implicit rank less than or equal to the implicit rank of \mathcal{A}_{k} and

$$
\left\|\mathcal{A}-\mathcal{A}_{\rho}\right\|_{F} \leq\left\|\mathcal{A}-\mathcal{A}_{k}\right\|_{F} \leq\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}
$$

