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1 t-SVD

Theorem: For any A ∈ Rm×l×n, there exists a full tensor-SVD such that

A = U ∗ S ∗ VT ,

with U being an m×m× n orthogonal tensor, V being an l × l × n orthogonal tensor, and S an
m× l×n f-diagonal tensor ordered such that the singular tubes si = Si,i,: have ∥s1∥2F ≥ ∥s2∥2F ≥ · · · .
The t-rank is the number of non-zero tube-fibers in S.

Figure 1: Tensor SVD formulation.

1.1 t-SVD computation

The t-SVD can be computed efficiently (in parallel) by moving to the Fourier domain.

• Compute Â using FFT;

• For i = 1, . . . , n, find the matrix SVD of each frontal slice: Û:,:,iŜ:,:,iV̂H
:,:,i = Â:,:,i;

• To get U , S and V, just apply the inverse FFT along tube fibers of Û , Ŝ and V̂.

1.2 t-SVD and optimality in truncation

Optimality. Let A ∈ Rm×p×n be a tensor. For k < min(m, p), we can define

Ak =
k∑

i=1
U:,:,i ∗ (Si,i,: ∗ VT

:,:,i) = Uk ∗ (Sk ∗ VT
k ),
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then
Ak = arg min

Ã∈Ω
∥A − Ã∥

where Ω = {X ∗ Y|X ∈ Rm×k×n,Y ∈ Rk×p×n}. This states the optimality of t-SVD.

1.3 Generalization to higher dimensions

The t-product, and the t-SVD, can generalize to higher dimensions through recursion.

Figure 2: Generalization to higher dimensions through recursion.

Treatment of change of pose or lighting information (as motion) → 4D.

2 ⋆M Product

Is the DFT the only possibility for defining this matrix-mimetic type of framework, or are there
other possibilities?

2.1 Recall Mode-3 Multiplication

Let M be a r × n matrix. To find A×3M, we can do the following:

• Compute the matrix-matrix product MA(3),

• Reshape the result to an m× p× r tensor.

The above pipeline is equivalent to applying M along tube fibers.
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2.2 Definition of ⋆M Product

Let M be any invertible, n× n matrix. Then we can define

Â := A×3 M so that A = Â ×3 M−1.

Definition: Given any invertible, M ∈ Rn×n, A ∈ Cm×p×n and B ∈ Cp×l×n, C = A⋆MB is defined
via Ĉ:,:,i = Â:,:,iB̂:,:,i.

Figure 3: Pipeline of ⋆M product.

2.3 Special Case

If M is the (unnormalized) DFT matrix, then we recover the t-product framework!

2.4 Other Properties

Definition (Conjugate Transpose): Given A ∈ Cm×p×n, its m× p× n conjugate transpose
under ⋆M AH is defined such that (ÂH)(i) = (Â(i))H , i = 1, . . . , n.

Definition (Unitary/Orthogonal Tensors): Q ∈ Cm×m×n(orQ ∈ Rm×m×n) is called ⋆M -unitary
(or ⋆M -orthogonal) if

QH⋆MQ = I = Q⋆MQH ,

where H is replaced by transpose for real tensors. Note that I also defined under ⋆M .

2.5 Entry-wise M-product

Figure 4: Entry-wise M-product

3



Tube fiber interpretation:

c = fold((M−1diag(â)M)vec(b)) = fold((M−1diag(b̂)M)vec(a))

Commutativity, and characterization using set of diagonal matrices diagonalized by M and its
inverse.

Special Case: If M is DFT ⇒ convolution, circulant matrices

2.6 Matrix-mimeticity

Observation: Overloading scalar products with ⋆M in matrix-matrix algorithms gives product for
larger dimensional tensors. If A is m× k × n and B is k × p× n , then C is m× p× n , and

Figure 5: Product operation on C.

2.7 Unitary Invariance

Theorem: If M a non-zero multiple of a unitary/orthogonal matrix, then

∥Q⋆MA∥ = ∥A∥F

2.8 Tensor-tensor SVDs

Theorem (Kilmer, Horesh, Avron, Newman): Let A be a m× p×n tensor andM a non-zero
multiple of a unitary/orthogonal matrix. The (full) ⋆M tensor SVD (t-SVDM) is

A = U⋆MS⋆MVH =
min(m,p)∑

i=1
U:,i,:⋆MSi,i,:⋆MVH

:,i,:

with U , V being ⋆M − unitary, & ∥S1,1,:∥2F ≥ ∥S2,2,:∥2F ≥ . . .

Figure 6: Tensor-Tensor SVD

Practical algorithm:
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• Â ← A×M M

•
[
Û:,:,i,Ŝ:,:,i,V̂:,:,i,

]
= SVD(Â:,:,i,), for i = 1, . . . , n

• U = Û ×3 M−1,S = Ŝ ×3 M−1,V = V̂ ×3 M−1

Eckart-Young Theorem. Given A ∈ Rm×p×n, for k < min(m, p) and M as previously, we define

Ak =
k∑

i=1
U:,i,: ⋆M (Si,i,: ⋆M VT

:,i,:).

Then,
Ak = arg min

Ã∈Ω
∥A − Ã∥F ,

where Ω = {X ⋆M T | X ∈ Rm×k×n, T ∈ Rk×p×n}. The error is calculated as:

∥A −Ak∥F =
∑
j>k

∥Sj,j∥2F = c
n∑

i=1

∑
j>k

σ̂i
(j),

where c depends on M.

2.9 Theoretical Result

Theorem (Kilmer, Horesh, Avron, Newman (2021)) Suppose Ak is optimal k-term t-SVDM
approximation to A, and let Ak is optimal k-term matrix SVD approximation to A. Then

∥A −Ak∥F ≤ ∥A−Ak∥F

where strict inequality is achievable. This result works for any M that is multiple of unitary
(orthogonal) matrix.

2.10 t-SVDMII

Truncated t-SVDM ignores relative importance of faces. Global approach: order σ̂i
(j) := ˆSi,i,j ,

truncate on energy level.

Given Aρ, with ρi = rank(Â(i))

2.11 Comparison

Implicit rank = total number of non-zero σ̂i
(j).

Theorem (Kilmer, Horesh, Avron, Newman (2021))
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Figure 7: Demonstration of t-SVDMII.

Let Ak be the t-SVDM t-rank k approximation to A, and suppose its implicit rank is r. Define
µ = ∥Ak∥2F / ∥A∥2F . There exists γ ≤ µ such that the t-SVDMII approximation, Aρ, obtained for
this γ, has implicit rank less than or equal to the implicit rank of Ak and

∥A −Aρ∥F ≤ ∥A−Ak∥F ≤ ∥A−Ak∥F .
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