
CSE 392: Matrix and Tensor Algorithms for Data Spring 2024

Lecture 20 — 04/01/2024
Instructor: Shashanka Ubaru Scribe: Shourya Pandey

1 Randomized Tucker Decomposition

Last lecture, we saw the HOSVD and STHOSVD algorithms for the tucker decomposition of a
tensor. The tucker decomposition of a three-mode tensor X ∈ Rm×n×p is given by

X ≈ G ×1 A×2 B ×3 C =: [[G; A, B, C]],

where G ∈ Rk1×k2×k3 is called the core of the tensor X and A ∈ Rm×k1 , B ∈ Rn×k2 , and C ∈ Rp×k3

are called factor matrices. Typically, k1, k2, and k3 are respectively much smaller than m, n, and p.

Both HOSVD and STHOSVD algorithms rely on matrix SVD algorithms. The first step towards a
randomized tucker decomposition is to use randomized SVD instead of full SVD.

Algorithm 1: RandSVD [6]
Data: X ∈ Rm×n, target rank r ∈ N, oversampling parameter p ≥ 0, r + p ≤ min (m, n)

1 Draw a random Gaussian matrix Ω ∈ Rn×(r+p).
2 Y ←XΩ
3 QR-factorize Y = QR

4 B ← Q⊤X

5 Calculate the thin-SVD B = ÛBŜV̂
⊤

6 Û , Ŝ, V̂ ← Q(ÛB):,1:r, Ŝ1:r,1:r, V̂ :,1:r
7 return [Û , Ŝ, V̂ ]

Algorithm 2: R-HOSVD [17]
Data: A ∈ Rn1×n2×···×nd , target rank vector r ∈ Nd, oversampling parameter p ≥ 0 such that

rj + p ≤ min
(
nj ,

∏
i ̸=j ni

)
for all j ∈ [d]

1 for j = 1, 2, . . . , d do
2 Draw a random Gaussian matrix Ωj ∈ R

∏
i̸=j

ni×(r+p)

3 [Û , Ŝ, V̂ ]← RandSVD
(
A(j), rj , p, Ωj

)
4 U (j) ← Û

5 C ← A×d
i=1 (U (j))⊤

6 return [[C; U (1), . . . , U (d)]]

The following theorem records the guarantee of R-HOSVD.

1



Theorem 1 (R-HOSVD [10]). Let Â = [[C; U (1), . . . , U (d)]] be the output of Algorithm 2 with input
ranks r = (r1, r2, . . . , rd) and oversampling parameter p ≥ 2, such that rj + p ≤ min

(
nj ,

∏
i ̸=j ni

)
for all j ∈ [d]. Then,

E
{Ωj}j∈[d]

[
∥Â − A∥F

]
≤

 d∑
j=1

(
1 + rj

p− 1

)
∆2

j (A)

1/2

≤
(

1 +
∑d

j=1 rj

p− 1

)1/2

∥A − Âopt∥F , (1)

where ∆2
j (A) := ∑nj

i=rj+1 σ2
i (A(j)). Moreover, if r = maxj∈[d] rj and p = r + 1, then

E
{Ωj}j∈[d]

[
∥Â − A∥F

]
≤
√

2∥A − ÂHOSVD∥F ≤
√

2d∥A − Âopt∥F ,

and if p = ⌈r/ϵ⌉+ 1 for some ϵ > 0, then

E
{Ωj}j∈[d]

[
∥Â − A∥F

]
≤
√

1 + ε∥A − ÂHOSVD∥F ≤
√

d(1 + ε)∥A − Âopt∥F .

Remark 1. Similar to randomized HOSVD, there exists a randomized STHOSVD algorithm [10].
When bounding the error in expectation for R-STHOSVD, at each intermediate step the truncated
core tensor is a random tensor. It achieves the same error in expectation as R-HOSVD independent
of the processing order. In practice, a data-driven choice of the processing order generally makes
R-STHOSVD computationally and statistically more efficient than R-HOSVD.

1.1 Dynamic Randomized HOSVD and STHOSVD

The algorithms described in the previous section requires knowledge of the target rank r. Given a
tensor A it is desirable to find a low rank tensor Â such that

∥Â − A∥F ≤ ε∥A∥F , (2)

but picking the correct rank is often a difficult task. Many adaptive randomized range finders have
been suggested, see [6, 9, 16]. Given a matrix X, the goal here is to compute an orthonormal matrix Q
of low rank such that ∥X−QQ⊤X∥F ≤ ε∥X∥. This subroutine, called AdaptiveRangeFinder (X, ε, b)
can be used for an adaptive R-HOSVD algorithm. Here, X is the matrix to be approximated, ε is
the tolerance parameter, and b is a called blocking integer which is a “step size” for the rank.

Algorithm 3: Adaptive R-HOSVD [10]
Data: A ∈ Rn1×n2×···×nd , tolerance ε ∈ (0, 1), blocking integer b ≥ 1

1 for j = 1, 2, . . . , d do
2 U (j) ← AdaptiveRangeFinder

(
X(j), ε/

√
d, b
)

3 C ← A×d
i=1 (U (j))⊤

4 return [[C; U (1), . . . , U (d)]]

2



2 Preserving Tensor Structure

None of the above algorithms have guarantees on the structure of the tensor. If the tensor A
has additional properties such as sparsity or non-negativity, can we compute decompositions
of A such that the core preserves these structural properties? We are interested in computing
a low-rank decomposition where the core C has entries taken from the original tensor A, i.e.
A ≈ C ×d

j=1 U (j), where U (j) need not be orthonormal. We call such decompositions as structure
preserving decompositions.

The idea is that instead of approximating X ≈ QQ⊤X via adaptive range finding methods
from [9, 16], we compute the strong rank-revealing QR-factorization of Q⊤ as Q⊤S = ZN . Letting
P := S:,1:s, we define the oblique projector Q

(
P ⊤Q

)−1
P ⊤ and apply it to X:

X ≈ Q
(
P ⊤Q

)−1
P ⊤X︸ ︷︷ ︸

X̂

. (3)

The matrix Q
(
P ⊤Q

)−1
doesn’t necessarily have orthonormal columns but is well-conditioned, and

that X̂ has rows from the matrix X determined by the operator P [10].

Algorithm 4: SP-STHOSVD [10]
Data: A ∈ Rn1×n2×···×nd , target rank vector r ∈ Nd, oversampling parameter p ≥ 0 such that

rj + p ≤ min
(
nj ,

∏
i ̸=j ni

)
for all j ∈ [d], processing order ρ

1 C ← A
2 for j = 1, 2, . . . , d do

3 Draw a Gaussian matrix Ωρj ∈ R
∏

ρi ̸=ρj
nρi ×(rρi +p)

4 Y ← Cρj Ωρj

5 Thin QR factorization Y ← Qρj
R

6 Strong RRQR on Q⊤
ρj

with parameter η = 2: Q⊤
ρj

[S1 S2] = Z [R11 R12]
7 P ρj = S1 ∈ Rnρj ×rρj containg the columns from the identity matrix
8 Uρj ← Qρj

(
P ⊤

ρj
Q
)−1

9 Cρj ← P ⊤
ρj

Cρj

10 C ← Cρd
in tensor format

11 return [[C; U (1), . . . , U (d)]]

The SP-STHOSVD algorithm is computationally faster than the previous methods, especially for
sparse tensors.

Theorem 2 (SP-STHOSVD [10]). Let Â = [[C; U (1), . . . , U (d)]] be the output of Algorithm 2
with input ranks r = (r1, r2, . . . , rd) and oversampling parameter p ≥ 2, such that rj + p ≤
min

(
nj ,

∏
i ̸=j ni

)
for all j ∈ [d]. For any processing order ρ, the expected approximation error

satisfies

E
{Ωj}j∈[d]

[
∥Â − A∥F

]
≤

d∑
j=1

 j∏
k=1

√
1 + 4rj(nj − rj)

(1 + rj

p− 1

)1/2
∥A − Âopt∥F . (4)

3



2.1 Numerical Results on the FROSTT Database

The Formidable Repository of Open Sparse Tensors and Tools (FROSTT) [15] is a collection of
publicly available sparse tensor datasets and tools. [10] consider two representative large and sparse
tensor datasets. NELL-2 is a dataset built from the Web via an intelligent agent called Never-Ending
Language Learner [3]. It is a three-dimensional dataset whose modes represent entity, relation, and
entity respectively. Enron [14] contains word counts in emails released during an investigation by
FERC. The modes represent sender, receiver, word, and date.

4



3 Sketching in the Tensor World

To motivate this section, recall the CountSketch approach for sketching, introduced in [5] to estimate
the frequency of items in a stream. The sampling matrix S is of the form

S =


0 −1 0 0 . . . 0

+1 0 0 +1 . . . 0
0 0 −1 0 . . . 0
0 0 0 0 . . . +1

 ,

where each column has exactly one non-zero entry (and these non-zero entries are iid Rademachers).
Each ±1 entry in the ith row of S contributes ±Ai∗ to one of the rows of SA. Suppose now that
the matrix A is a Kronecker product or a Khatri-Rao product of two smaller matrices; this is
common in many applications such as compressed matrix multiplication and efficient approximation
of SVM polynomial kernels. To this end, efficient sketching methods have been proposed such as
the TensorSketch [13] and GaussianSketch [2].

The CountSketch algorithm defines the sampling matrix S = P D ∈ Rm×N , where the columns of P
are iid and of the m canonical basis vectors in Rm (uniformly at random) and D is a diagonal matrix
with iid Rademacher entries. The TensorSketch algorithm, introduced in [13], uses a sketching
matrix of the form

S = P (DC ⊗DB) , where DC ∈ Rn3×n3 and DB ∈ Rn2×n2 ,

where DB and DC are diagonal matrices with iid Rademacher entries (but with a much smaller
dimension).

If C ∈ Rn3×m3 and B ∈ Rn2×m2 then the following identities hold:

S (C ⊙B) = FFT−1 (FFT (SCC) ∗ FFT (SBB)) (5)

S (C ⊗B) = FFT−1
((

FFT (SCC)⊤ ⊙ FFT (SBB)⊤
)⊤
)

(6)

TensorSketch sketches provide approximate matrix multiplication (AMM) and oblivious subspace
embedding guarantees similar to CountSketch:

Theorem 3 (TensorSketch [1]). Let S ∈ Rm×nq be a TensorSketch matrix, and let ε, δ ∈ (0, 1) be
parameters. Then, S satisfies the following:

5



• (AMM) Let A ∈ Rnq×d and B ∈ Rd×nq . If m ≥ 2+3q

ε2δ
, then with probability at least 1− δ,

∥BS⊤SA−BA∥F ≤ ϵ∥BA∥F .

• (Oblivious Subspace Embedding) Let U be some fixed r-dimensional subspace. If m ≥ r2(2+3q)
ε2δ

,
then with probability at least 1− δ,

∥U⊤S⊤SU − I∥ ≤ ε.

Remark 2. There are other such extensions of matrix sketches to the tensor setting; one such sketch
is the structured Gaussian sketch. If C ∈ Rn3×r and B ∈ Rn2×r, then a the standard Gaussian
sketching matrix S designed for C ⊙B has dimension m × n2n3. Instead, [2] suggest SC ⊙ SB,
where SC ∈ Rn3×m and SB ∈ Rn2×m are Gaussian sketches. Note that

S⊤ (C ⊙B) = (SC ⊙ SB)⊤ (C ⊙B) =
(
S⊤

CC
)
∗
(
S⊤

BB
)

.

Remark 3 (Tensor-TS). In a seminal work on low-rank Tucker decompositions, [8] propose an
algorithm that uses TensorSketch [12, 13].

Algorithm 5: TUCKER-TS [8]
Data: A ∈ Rn1×n2×···×nd , target rank vector r ∈ Nd, sketch dimensions m1, m2

1 Initialize C, U (1), U (2), . . . , U (d)

2 Define TENSORSKETCH operators T (i) ∈ Rm1×
∏

j ̸=i
nj for i ∈ [d] and T (d+1) ∈ Rm2×

∏
j

nj

3 while termination criteria is not met do
4 for j = 1, 2, . . . , d do
5 U (j) ← arg minU∥

(
T (j) ⊗1

j ̸=i U (i)
)

C⊤
i U⊤ − T (j)A⊤

i ∥2F

6 C ← arg minZ∥
(
T (d+1) ⊗1

j=N U (j)
)

vec(Z)− T (d+1)vec(A)∥2F
7 Orthogonalize each U (j) and update C
8 return [[C; U (1), . . . , U (d)]]

6



4 Tensor Train Decomposition

Recall that the canonical decomposition of a tensor A ∈ Rn1×···×nd is given by [4, 7]:

Ai1,i2,...,id
=

r∑
α=1

U1(i1, α)U2(i2, α) . . . Ud(id, α).

The smallest r for which such a decomposition exists is called the rank of A, and Uk are called the
canonical factors. Unfortunately, computing r and these factors is NP-hard.

[11] suggests a different decomposition method. To demonstrate this, consider the unfolding of a
6-dimensional tensor:

A(i1i2; i3i4i5i6) =
∑
α2

U(i1, i2; α2)V(i3, i4, i5, i6; α2).

If we are provided with some a-priori knowledge about near-eparability of the variables, the dimension
can be reduced (here, we have decomposed A into a sum of product of a 3-dimensional tensor and a
5-dimensional tensor). This process can be repeated for these tensors, leading to the tensor train
decomposition.

The TT-decomposition of a tensor A is of the form

A(i1, i2, . . . , id) =
∑

α0,α1,...,αd

C1(α0, i1, α1)C2(α1, i2, α2) . . . Cd(αd−1, id, αd),

which can be represented compactly as a matrix product

A(i1, i2, . . . , id) = C1[i1]︸ ︷︷ ︸
1×r1

C2[i2]︸ ︷︷ ︸
r1×r2

. . . Cd[id]︸ ︷︷ ︸
rd×1

.

The tensors Ci are called the TT-cores, and the ranks ri are called TT-ranks. If r := maxi ri is the
maximum TT-rank, then TT uses O

(
ndr2) memory to store the O(nd) elements. Therefore, it is

efficient if the ranks are small.

7



References

[1] Haim Avron, Huy Nguyen, and David Woodruff. Subspace embeddings for the polynomial
kernel. Advances in neural information processing systems, 27, 2014.

[2] David J Biagioni, Daniel Beylkin, and Gregory Beylkin. Randomized interpolative decomposition
of separated representations. Journal of Computational Physics, 281:116–134, 2015.

[3] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam Hruschka, and Tom
Mitchell. Toward an architecture for never-ending language learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 24, pages 1306–1313, 2010.

[4] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional
scaling via an n-way generalization of eckart-young decomposition. Psychometrika, 35(3):283–
319, 1970.

[5] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In International Colloquium on Automata, Languages, and Programming, pages
693–703. Springer, 2002.

[6] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review,
53(2):217–288, 2011.

[7] Richard A Harshman et al. Foundations of the parafac procedure: Models and conditions for
an explanatory multi-modal factor analysis. UCLA working papers in phonetics, 16(1):84, 1970.

[8] Osman Asif Malik and Stephen Becker. Low-rank tucker decomposition of large tensors using
tensorsketch. Advances in neural information processing systems, 31, 2018.

[9] Per-Gunnar Martinsson and Sergey Voronin. A randomized blocked algorithm for efficiently
computing rank-revealing factorizations of matrices. SIAM Journal on Scientific Computing,
38(5):S485–S507, 2016.

[10] Rachel Minster, Arvind K Saibaba, and Misha E Kilmer. Randomized algorithms for low-rank
tensor decompositions in the tucker format. SIAM journal on mathematics of data science,
2(1):189–215, 2020.

[11] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[12] Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computation Theory
(TOCT), 5(3):1–17, 2013.

[13] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature maps.
In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 239–247, 2013.

[14] Jitesh Shetty and Jafar Adibi. The enron email dataset database schema and brief statistical
report (2004). Available on< http://www. isi. edu/˜ adibi/Enron/Enron_Dataset_Report. pdf.

8



[15] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George
Karypis. FROSTT: The formidable repository of open sparse tensors and tools, 2017. URL:
http://frostt.io/.

[16] Wenjian Yu, Yu Gu, and Yaohang Li. Efficient randomized algorithms for the fixed-precision
low-rank matrix approximation. SIAM Journal on Matrix Analysis and Applications, 39(3):1339–
1359, 2018.

[17] Guoxu Zhou, Andrzej Cichocki, and Shengli Xie. Decomposition of big tensors with low
multilinear rank. arXiv preprint arXiv:1412.1885, 2014.

9

http://frostt.io/

	Randomized Tucker Decomposition
	Dynamic Randomized HOSVD and STHOSVD

	Preserving Tensor Structure
	Numerical Results on the FROSTT Database

	Sketching in the Tensor World
	Tensor Train Decomposition

