1 Probability Review

Here are some basic facts about the probability theory.

1. If X is a random variable on \mathbb{R} with density $p(x)$, then $\mathbb{E} X=\int x p(x) d x$.
2. If X is discrete with probability mass function q supported on $S \subseteq \mathbb{R}$, then $\mathbb{E} X=\sum_{s \in S} s q(s)$.
3. $\operatorname{Var} X=\mathbb{E}(X-\mathbb{E} X)^{2}=\mathbb{E} X^{2}-(\mathbb{E} X)^{2}$.
4. For a scalar $\alpha, \mathbb{E}(\alpha X)=\alpha \mathbb{E} X$ and $\operatorname{Var}(\alpha X)=\alpha^{2} \operatorname{Var} X$.
5. For constants $\alpha, \beta, \mathbb{E}(\alpha X+\beta Y)=\alpha \mathbb{E} X+\beta \mathbb{E} Y$.
6. For disjoint events $\left\{A_{i}\right\}_{i}, \mathbb{E} X=\sum_{i} \mathbb{E}\left(X \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)$.
7. If X and Y are independent, then $\mathbb{E} X Y=\mathbb{E} X \mathbb{E} Y$ and $\operatorname{Var}(X+Y)=\operatorname{Var} X+\operatorname{Var} Y$.
8. For two events A and $B, \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(A \mid B)=\mathbb{P}(B) \mathbb{P}(B \mid A)$.
9. A and B are independent if and only if $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.
10. A and B are called mutually exclusive if $\mathbb{P}(A \cap B)=0$.
11. $\|X\|_{p}=\left(\mathbb{E}|X|^{p}\right)^{1 / p}$ defines a norm on random variables for all $1 \leqslant p<\infty$.

2 Concentration Inequalities

Proposition 2.1 (Markov's inequality). Let X be a non-negative random variable. Then for any $t>0$,

$$
\mathbb{P}(X \geqslant t) \leqslant \frac{\mathbb{E} X}{t} .
$$

Proof. Let the distribution of X be μ. If X does not have finite expectation, the inequality trivially holds. Assume X is integrable, then $\mathbb{P}(X \geqslant t)=\int_{t}^{+\infty} d \mu=t^{-1} \int_{t}^{+\infty} t d \mu \leqslant t^{-1} \int_{t}^{+\infty} x d \mu \leqslant$ $t^{-1} \mathbb{E} X$.

Proposition 2.2 (Chebyshev's inequality). Let X be a random variable with finite expectation, then for any $k>0$,

$$
\mathbb{P}(|X-\mathbb{E} X| \geqslant k) \leqslant \frac{\operatorname{Var} X}{k^{2}}
$$

Proof. Apply Markov's inequality to $Y=(X-\mathbb{E} X)^{2}$.
The following sub-additivity property of probability measures can be useful. It is often called the union bound.

Proposition 2.3 (Union bound). For countably many events $\left\{A_{i}\right\}_{i}$,

$$
\mathbb{P}\left(\bigcup_{i} A_{i}\right) \leqslant \sum_{i} \mathbb{P}\left(A_{i}\right)
$$

In particular,

$$
\mathbb{P}\left(\bigcap_{i} A_{i}\right) \geqslant 1-\sum_{i} \mathbb{P}\left(A_{i}^{c}\right) .
$$

The second bound is proved by applying the first bound to A_{i}^{c}. This is useful when we want to lower bound the probability of the good event in which all conditions A_{i} are satisfied.

Next, we define two important classes of random variables called respectively the sub-Gaussian and sub-exponential random variables.

Definition 2.4 (sub-Gaussian). A random variable X is called sub-Gaussian if there is some constant $C<+\infty$ such that $\|X\|_{p} \leqslant C \sqrt{p}$ for all $p \geqslant 1$. The infimum of all possible choices of C is called the sub-Gaussian norm of X, denoted as $\|X\|_{\psi_{2}}$.

Definition 2.5 (sub-exponential). A random variable X is called sub-exponential if there is some constant $C<+\infty$ such that $\|X\|_{p} \leqslant C p$ for all $p \geqslant 1$. The infimum of all possible choices of C is called the sub-exponential norm of X, denoted as $\|X\|_{\psi_{1}}$.
Proposition 2.6. Sub-Gaussian and sub-exponential random variables respectively form two vector spaces, and $\|\cdot\|_{\psi_{2}},\|\cdot\|_{\psi_{1}}$ are valid norms on the said spaces, respectively.
Proposition 2.7. Normal random variables are sub-Gaussian. Gamma and exponential random variables are sub-exponential.

We can control the growth rate of the moment generating function of these classes of random variables. Applying the Markov's inequality to random variables $e^{\lambda X}$ for some carefully chosen $\lambda>0$ can then lead to the so-called Cramer-Chernoff bound. Below are some examples.

Proposition 2.8 (concentration for sub-Gaussian rvs). Let X be a sub-Gaussian random variable. Then for any $t \geqslant 0$,

$$
\mathbb{P}(|X-\mathbb{E} X| \geqslant t) \leqslant 2 e^{-c t^{2} /\|X\|_{\psi_{2}}^{2}},
$$

where c is an absolute constant.
Proposition 2.9 (Chernoff bounds for Bernoulli). Let $X_{i}, i=1, \ldots, n$ be independent Bernoulli random variables with success rate p_{i}. Let $S=\sum_{i=1}^{n} X_{i}$. Then for all $\delta>0$,

$$
\mathbb{P}(S \geqslant(1+\delta) \mathbb{E} S) \leqslant e^{-\frac{\delta^{2}}{2+\delta} \cdot \mathbb{E} S}
$$

and for all $0<\delta<1$,

$$
\mathbb{P}(S \leqslant(1-\delta) \mathbb{E} S) \leqslant e^{-\frac{\delta^{2}}{2} \cdot \mathbb{E} S}
$$

Proposition 2.10 (Bernstein's inequality for sub-exponential rvs). Let $X_{i}, i=1, \ldots, n$ be independent sub-exponential random variables. Let $S=\sum_{i} X_{i}$ and $\mu=\mathbb{E} S$. Then for some absolute constant c,

$$
\mathbb{P}(|S-\mu| \geqslant t) \leqslant 2 \exp \left(-c \min \left\{\frac{t^{2}}{\sum_{i=1}^{n}\left\|X_{i}\right\|_{\psi_{1}}^{2}}, \frac{t}{\max _{i}\left\|X_{i}\right\|_{\psi_{1}}}\right\}\right) .
$$

Proposition 2.11 (Hoeffding's inequality for bounded rvs). Let $X_{i}, i=1, \ldots, n$ be independent random variables. Let $S=\sum_{i=1}^{n} X_{i}$. Then for all $t>0$,

$$
\mathbb{P}(|S-\mathbb{E} S| \geqslant t) \leqslant 2 e^{-2 t^{2} / \sum_{i}\left(b_{i}-a_{i}\right)^{2}}
$$

Example 2.12. Consider flipping a biased coin which lands on heads with probability p. We want to find k such that after k flips we ensure

$$
\mathbb{P}(|\# h e a d s-p k| \geqslant \varepsilon k) \leqslant \delta
$$

To this end, let X_{i} be a Bernoulli random variable taking value 1 if the ith flip is a head, and $S=\sum_{i} X_{i}$. Using Hoeffding Proposition 2.11,

$$
\mathbb{P}(|S-p k| \geqslant \varepsilon k) \leqslant 2 e^{-\frac{2(\varepsilon k)^{2}}{k}}=2 e^{-2 \varepsilon^{2} k}
$$

To ensure that the right-hand side is bounded by δ, the desired k is

$$
k_{\text {Hoeff }}=\mathcal{O}\left(\varepsilon^{-2} \log (1 / \delta)\right) .
$$

Using Chernoff Proposition 2.9), for $\varepsilon<p$ we have

$$
\mathbb{P}(|S-p k| \geqslant \varepsilon k) \leqslant 2 e^{-\frac{(\varepsilon / p)^{2}}{3} p k}=2 e^{-\frac{\varepsilon^{2}}{3 p} k} .
$$

Consequently the desired k is

$$
k_{\text {Chern }}=\mathcal{O}\left(p \varepsilon^{-2} \log (1 / \delta)\right) .
$$

Using a naive bound like Chebyshev, we have

$$
\mathbb{P}(|S-p k| \geqslant \varepsilon k) \leqslant \frac{k p(1-p)}{\varepsilon^{2} k^{2}}=\frac{p(1-p)}{\varepsilon^{2}} k^{-1}
$$

The desired k is then

$$
k_{\text {Cheby }}=\mathcal{O}\left(p \varepsilon^{-2} \delta^{-1}\right)
$$

