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1 Probability Review

Here are some basic facts about the probability theory.

1. If X is a random variable on R with density p(x), then EX =
∫
xp(x)dx.

2. If X is discrete with probability mass function q supported on S ⊆ R, then EX =
∑

s∈S sq(s).

3. VarX = E(X − EX)2 = EX2 − (EX)2.

4. For a scalar α, E(αX) = αEX and Var(αX) = α2 VarX.

5. For constants α, β, E(αX + βY ) = αEX + βEY .

6. For disjoint events {Ai}i, EX =
∑

iE(X|Ai)P(Ai).

7. If X and Y are independent, then EXY = EX EY and Var(X + Y ) = VarX + VarY .

8. For two events A and B, P(A ∩B) = P(A)P(A|B) = P(B)P(B|A).

9. A and B are independent if and only if P(A ∩B) = P(A)P(B).

10. A and B are called mutually exclusive if P(A ∩B) = 0.

11. ‖X‖p = (E |X|p)1/p defines a norm on random variables for all 1 6 p <∞.

2 Concentration Inequalities

Proposition 2.1 (Markov’s inequality). Let X be a non-negative random variable. Then for any
t > 0,

P(X > t) 6
EX

t
.

Proof. Let the distribution of X be µ. If X does not have finite expectation, the inequality trivially
holds. Assume X is integrable, then P(X > t) =

∫ +∞
t dµ = t−1

∫ +∞
t tdµ 6 t−1

∫ +∞
t xdµ 6

t−1EX. �

Proposition 2.2 (Chebyshev’s inequality). Let X be a random variable with finite expectation,
then for any k > 0,

P(|X − EX| > k) 6
VarX

k2
.
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Proof. Apply Markov’s inequality to Y = (X − EX)2. �

The following sub-additivity property of probability measures can be useful. It is often called the
union bound.

Proposition 2.3 (Union bound). For countably many events {Ai}i,

P
(⋃

i

Ai

)
6
∑
i

P(Ai).

In particular,

P
(⋂

i

Ai

)
> 1−

∑
i

P(Aci ).

The second bound is proved by applying the first bound to Aci . This is useful when we want to
lower bound the probability of the good event in which all conditions Ai are satisfied.

Next, we define two important classes of random variables called respectively the sub-Gaussian and
sub-exponential random variables.

Definition 2.4 (sub-Gaussian). A random variable X is called sub-Gaussian if there is some
constant C < +∞ such that ‖X‖p 6 C

√
p for all p > 1. The infimum of all possible choices of C

is called the sub-Gaussian norm of X, denoted as ‖X‖ψ2
.

Definition 2.5 (sub-exponential). A random variable X is called sub-exponential if there is some
constant C < +∞ such that ‖X‖p 6 Cp for all p > 1. The infimum of all possible choices of C is
called the sub-exponential norm of X, denoted as ‖X‖ψ1

.

Proposition 2.6. Sub-Gaussian and sub-exponential random variables respectively form two vector
spaces, and ‖·‖ψ2

, ‖·‖ψ1
are valid norms on the said spaces, respectively.

Proposition 2.7. Normal random variables are sub-Gaussian. Gamma and exponential random
variables are sub-exponential.

We can control the growth rate of the moment generating function of these classes of random
variables. Applying the Markov’s inequality to random variables eλX for some carefully chosen
λ > 0 can then lead to the so-called Cramer-Chernoff bound. Below are some examples.

Proposition 2.8 (concentration for sub-Gaussian rvs). Let X be a sub-Gaussian random variable.
Then for any t > 0,

P(|X − EX| > t) 6 2e
−ct2/‖X‖2ψ2 ,

where c is an absolute constant.

Proposition 2.9 (Chernoff bounds for Bernoulli). Let Xi, i = 1, . . . , n be independent Bernoulli
random variables with success rate pi. Let S =

∑n
i=1Xi. Then for all δ > 0,

P(S > (1 + δ)ES) 6 e−
δ2

2+δ
·ES ,

and for all 0 < δ < 1,

P(S 6 (1− δ)ES) 6 e−
δ2

2
·ES ,
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Proposition 2.10 (Bernstein’s inequality for sub-exponential rvs). Let Xi, i = 1, . . . , n be inde-
pendent sub-exponential random variables. Let S =

∑
iXi and µ = ES. Then for some absolute

constant c,

P(|S − µ| > t) 6 2 exp

(
−cmin

{
t2∑n

i=1 ‖Xi‖2ψ1

,
t

maxi ‖Xi‖ψ1

})
.

Proposition 2.11 (Hoeffding’s inequality for bounded rvs). Let Xi, i = 1, . . . , n be independent
random variables. Let S =

∑n
i=1Xi. Then for all t > 0,

P(|S − ES| > t) 6 2e−2t
2/

∑
i(bi−ai)2 .

Example 2.12. Consider flipping a biased coin which lands on heads with probability p. We want
to find k such that after k flips we ensure

P(|#heads− pk| > εk) 6 δ.

To this end, let Xi be a Bernoulli random variable taking value 1 if the ith flip is a head, and
S =

∑
iXi. Using Hoeffding (Proposition 2.11),

P(|S − pk| > εk) 6 2e−
2(εk)2

k = 2e−2ε
2k.

To ensure that the right-hand side is bounded by δ, the desired k is

kHoeff = O(ε−2 log(1/δ)).

Using Chernoff (Proposition 2.9), for ε < p we have

P(|S − pk| > εk) 6 2e−
(ε/p)2

3
pk = 2e

− ε
2

3p
k
.

Consequently the desired k is
kChern = O(pε−2 log(1/δ)).

Using a naive bound like Chebyshev, we have

P(|S − pk| > εk) 6
kp(1− p)
ε2k2

=
p(1− p)

ε2
k−1

The desired k is then
kCheby = O(pε−2δ−1).
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