CSE 392: Matrix and Tensor Algorithms for Data Spring 2024

Lecture 18 — 03-25
Instructor: Shashanka Ubaru Scribe: Gabriel H. Brouwn

1 Leverage scores and coherence

Recall the definition of row leverage scores of a matrix A € R™*". If U is an orthonormal basis for
span(A), then the ith leverage score is given by

Ai:m 2 .
£A) = sup oS — OB, i € (o] )

One can then sample rows according to probabilities p; = ¢;/r. It is also possible to approximately
compute leverage scores at a reduced complexity.

The coherence of A, denoted by u(A) is the mazimum leverage score, that is,

u(A) = max/;(A). (2)

i€[n]

Coherence obeys the following inequalities: T < u(A) < 1. The first follows from 1 = 77, p; =
s b= r =" 0= r <nu(A); the second follows from ¢; = |U;.||> = ||le;U||> < 12 - 12 by

T i=1

submultiplicativity. We say A is incoherent if u(A) ~ £.

One can use leverage scores to sample linear least squares problems, getting approximate solutions
at a reduced cost.

Proposition 1. Given a matrix A € R™™" and a fixed vector b € R", let * = min,cpa || Az — bl|2.
Let § € R™*" be a sampling matrix with probabilities p; = ¢;/r, and S, = e;/,/mp; with
P(j =14) =p;. If m = O(rlog(r/d)/e) and & = mingcpa ||S(Ax — b)||2, then, with high probability,

Az — blls < (1 +¢)[[Az" - b]2.

2 Leverage score sampling for CP-ALS

Our goal is to accelerate CP-ALS by using leverage score sampling on the least squares subproblems
that arise for the approximate CP factor matrices of tensor X' (here order 3)

min [|(As © Az) AT — X (17 (3)

However, even approximately computing the leverage scores for (As ® Ag) can be prohibitively
expensive. But we can estimate/bound the leverage scores for this Khatri-Rao structured matrix in
terms of the leverage scores of the matrices As and As.

Lemma 1 (Cheng, et al.: Theorem 3.2). u(A ® B) < u(A)u(B)


https://proceedings.neurips.cc/paper/2016/file/f4f6dce2f3a0f9dada0c2b5b66452017-Paper.pdf

This implies that if two matrices A, B are incoherent, then their Khatri-Rao product A ® B is also
incoherent.

Motivated by Lemma |1}, instead of sampling according to py = {i(As ® Asg)/r we will instead use
pr = Li(A3)l;(As)/r?, which requires only O((ng + n3)r) work. Specifically, we’ll use the following
procedure:

o choose i ~ p; = ;(As)/r
o choose j ~ pj = l;(Ag)/r

o select row k =i+ (j — 1)ns .

The guarantee for this procedure is as follows.

Theorem 1 (Larsen and Kolda: Theorem 6). Let A; € R"*" Xy € R"™™>™ and consider the
linear least squares problem

aramin (A3 © A)AT — X(T1) I
1

with optimal solution A}. Now let A, be the optimal solution to the problem

argmin ||(S(A3 © Ag)AT — SX(Tl)H%
1
where S € R¥*™2"3 4 the leverage score sampling matrix which samples according to the procedure

described above.
If s = r* max{1700log(r/8),1/(d€)}, then

Pr[[(As © A2) AT — X[} < (14 )[[(A5 © A2)(AD)T = XT[1}3] =16,
Larsen and Kolda also suggest additional practical tips for efficient implementation:

o hybrid approach: deterministically include all rows whose leverage scores/probabilities
are above some threshold and randomly sample from the remaining rows; using the hybrid
strategy, they demonstrate equally good or better decompositions with the same number of
total samples

o unfoldings: never form X (7;) explicitly if X is sparse, instead precompute linear indices for

every nonzero for each mode to directly form a sparse unfolding/right hand side; this requires
3nnz(X) extra memory

o estimate residual: calculating the residual is necessary to determine when the approximation
is sufficiently converged, but computing the residual can take many times longer then updating
all three factor matrices; therefore, as a practical hack with no theoretical guarantees the
authors suggest estimating the residual based on a random sample of tensor elements (using a
stratified sampling to correct for problems introduced by sparsity)

We conclude this discussion by comparing the complexities of the two main kernels in CP-ALS:
computation of the residual and the formation and solution of (one) linear least squares problem.
Here sy;; is the user specified number of elements used to sample and estimate the residual and j
corresponds the the mode being updates by the least squares subproblem.


https://arxiv.org/pdf/2006.16438.pdf

operation sparse/dense | complexity (big O) sampled complexity
residual dense rMIN9N3 TS fit

sparse ronz(X) TS fit
least squares dense rMIN9N3 3sr + sr? + SN
(mode 7)

sparse rNIN2N3 3sr + sr? + rnz(X ;)

3 Troubles with CP decomposition

Finally, we summarize some mathematical troubles that plague the CP decomposition, stressing
that these are independent of algorithm.

o ill-posedness: from de Silva and Lim there is no guarantee that the best rank k approximation
exists; for example no rank 3 2 x 2 x 2 tensor has a best rank 2 approximation, and a random
m X n X p tensor has no best rank 2 approximation with probability; in general this rules out
the possibility of a theorem like Echart-Young-Mirsky for tensors

o complexity of determining rank: given a tensor 7, determining its real rank is NP hard
(and so are many other tensor problems, see Lim)

e many local minima: the best rank k& approximation problem is non-convex and non-linear,
and so may have many local minima; no known results suggest that the standard algorithms
frequently find “good” local minima


https://arxiv.org/pdf/math/0607647.pdf
https://www.stat.uchicago.edu/~lekheng/work/jacm.pdf
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