$$
\text { Lecture } 18-03-25
$$

Instructor: Shashanka Ubaru
Scribe: Gabriel H. Brown

1 Leverage scores and coherence

Recall the definition of row leverage scores of a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times r}$. If \boldsymbol{U} is an orthonormal basis for $\operatorname{span}(\boldsymbol{A})$, then the i th leverage score is given by

$$
\begin{equation*}
\ell_{i}(\boldsymbol{A})=\sup _{\boldsymbol{x}} \frac{\left(\boldsymbol{A}_{i:} \boldsymbol{x}\right)^{2}}{\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}}=\left\|\boldsymbol{U}_{i:}\right\|_{2}^{2}, i \in[n] . \tag{1}
\end{equation*}
$$

One can then sample rows according to probabilities $p_{i}=\ell_{i} / r$. It is also possible to approximately compute leverage scores at a reduced complexity.

The coherence of \boldsymbol{A}, denoted by $\mu(\boldsymbol{A})$ is the maximum leverage score, that is,

$$
\begin{equation*}
\mu(\boldsymbol{A})=\max _{i \in[n]} \ell_{i}(\boldsymbol{A}) . \tag{2}
\end{equation*}
$$

Coherence obeys the following inequalities: $\frac{r}{n} \leq \mu(\boldsymbol{A}) \leq 1$. The first follows from $1=\sum_{i=1}^{n} p_{i}=$ $\frac{1}{r} \sum_{i=1}^{n} \ell_{i} \Rightarrow r=\sum_{i=1}^{n} \ell_{i} \Rightarrow r \leq n \mu(\boldsymbol{A})$; the second follows from $\ell_{i}=\left\|\boldsymbol{U}_{i:}\right\|^{2}=\left\|e_{i} \boldsymbol{U}\right\|^{2} \leq 1^{2} \cdot 1^{2}$ by submultiplicativity. We say \boldsymbol{A} is incoherent if $\mu(\boldsymbol{A}) \approx \frac{r}{N}$.
One can use leverage scores to sample linear least squares problems, getting approximate solutions at a reduced cost.

Proposition 1. Given a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times r}$ and a fixed vector $\boldsymbol{b} \in \mathbb{R}^{n}$, let $\boldsymbol{x}^{*}=\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}$. Let $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ be a sampling matrix with probabilities $p_{i}=\ell_{i} / r$, and $\boldsymbol{S}_{i *}=\boldsymbol{e}_{j} / \sqrt{m p_{j}}$ with $\mathbb{P}(j=i)=p_{i}$. If $m=O(r \log (r / \delta) / \varepsilon)$ and $\tilde{\boldsymbol{x}}=\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{S}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})\|_{2}$, then, with high probability,

$$
\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b}\|_{2} \leq(1+\varepsilon)\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}
$$

2 Leverage score sampling for CP-ALS

Our goal is to accelerate CP-ALS by using leverage score sampling on the least squares subproblems that arise for the approximate CP factor matrices of tensor \mathcal{X} (here order 3)

$$
\begin{equation*}
\min _{\boldsymbol{A}_{1}}\left\|\left(\boldsymbol{A}_{3} \odot \boldsymbol{A}_{2}\right) \boldsymbol{A}_{1}^{T}-\boldsymbol{X}_{(1)}^{T}\right\|_{F}^{2} \tag{3}
\end{equation*}
$$

However, even approximately computing the leverage scores for $\left(\boldsymbol{A}_{3} \odot \boldsymbol{A}_{2}\right)$ can be prohibitively expensive. But we can estimate/bound the leverage scores for this Khatri-Rao structured matrix in terms of the leverage scores of the matrices \boldsymbol{A}_{2} and \boldsymbol{A}_{3}.
Lemma 1 Cheng, et al.: Theorem 3.2). $\mu(\boldsymbol{A} \odot \boldsymbol{B}) \leq \mu(\boldsymbol{A}) \mu(\boldsymbol{B})$

This implies that if two matrices $\boldsymbol{A}, \boldsymbol{B}$ are incoherent, then their Khatri-Rao product $\boldsymbol{A} \odot \boldsymbol{B}$ is also incoherent.

Motivated by Lemma 1 instead of sampling according to $p_{k}=\ell_{k}\left(\boldsymbol{A}_{3} \odot \boldsymbol{A}_{2}\right) / r$ we will instead use $p_{k}=\ell_{i}\left(\boldsymbol{A}_{3}\right) \ell_{j}\left(\boldsymbol{A}_{2}\right) / r^{2}$, which requires only $\mathcal{O}\left(\left(n_{2}+n_{3}\right) r\right)$ work. Specifically, we'll use the following procedure:

- choose $i \sim p_{i}=\ell_{i}\left(\boldsymbol{A}_{3}\right) / r$
- choose $j \sim p_{j}=\ell_{j}\left(\boldsymbol{A}_{2}\right) / r$
- select row $k=i+(j-1) n_{3}$.

The guarantee for this procedure is as follows.
Theorem 1 (Larsen and Kolda: Theorem 6). Let $\boldsymbol{A}_{i} \in \mathbb{R}^{n_{i} \times r}, \boldsymbol{X}_{(1)} \in R^{n_{2} n_{3} \times n_{1}}$ and consider the linear least squares problem

$$
\underset{\boldsymbol{A}_{1}}{\arg \min }\left\|\left(\boldsymbol{A}_{3} \odot \boldsymbol{A}_{2}\right) \boldsymbol{A}_{1}^{T}-\boldsymbol{X}_{(1)}^{T}\right\|_{F}^{2} .
$$

with optimal solution \boldsymbol{A}_{1}^{*}. Now let $\tilde{\boldsymbol{A}}_{1}$ be the optimal solution to the problem

$$
\underset{\boldsymbol{A}_{1}}{\arg \min } \|\left(\boldsymbol{S}\left(\boldsymbol{A}_{3} \odot \boldsymbol{A}_{2}\right) \boldsymbol{A}_{1}^{T}-\boldsymbol{S} \boldsymbol{X}_{(1)}^{T} \|_{F}^{2} .\right.
$$

where $\boldsymbol{S} \in \mathbb{R}^{s \times n_{2} n_{3}}$ is the leverage score sampling matrix which samples according to the procedure described above.
If $s=r^{4} \max \{1700 \log (r / \delta), 1 /(\delta \epsilon)\}$, then

$$
\operatorname{Pr}\left[\left\|\left(\boldsymbol{A}_{3} \odot \boldsymbol{A}_{2}\right) \tilde{\boldsymbol{A}}_{1}^{T}-\boldsymbol{X}_{(1)}^{T}\right\|_{F}^{2} \leq(1+\epsilon)\left\|\left(\boldsymbol{A}_{3} \odot \boldsymbol{A}_{2}\right)\left(\boldsymbol{A}_{1}^{*}\right)^{T}-\boldsymbol{X}_{(1)}^{T}\right\|_{F}^{2}\right] \geq 1-\delta .
$$

Larsen and Kolda also suggest additional practical tips for efficient implementation:

- hybrid approach: deterministically include all rows whose leverage scores/probabilities are above some threshold and randomly sample from the remaining rows; using the hybrid strategy, they demonstrate equally good or better decompositions with the same number of total samples
- unfoldings: never form $\boldsymbol{X}_{(i)}^{T}$ explicitly if \mathcal{X} is sparse, instead precompute linear indices for every nonzero for each mode to directly form a sparse unfolding/right hand side; this requires $3 \mathrm{nnz}(\mathcal{X})$ extra memory
- estimate residual: calculating the residual is necessary to determine when the approximation is sufficiently converged, but computing the residual can take many times longer then updating all three factor matrices; therefore, as a practical hack with no theoretical guarantees the authors suggest estimating the residual based on a random sample of tensor elements (using a stratified sampling to correct for problems introduced by sparsity)

We conclude this discussion by comparing the complexities of the two main kernels in CP-ALS: computation of the residual and the formation and solution of (one) linear least squares problem. Here $s_{f i t}$ is the user specified number of elements used to sample and estimate the residual and j corresponds the the mode being updates by the least squares subproblem.

operation	sparse/dense	complexity $($ big $\mathcal{O})$	sampled complexity
residual	dense	$r n_{1} n_{2} n_{3}$	$r s_{\text {fit }}$
	sparse	$r \mathrm{nnz}(\mathcal{X})$	$r s_{f i t}$
least squares	dense	$r n_{1} n_{2} n_{3}$	$3 s r+s r^{2}+s r n_{j}$
$($ mode $j)$			
	sparse	$r n_{1} n_{2} n_{3}$	$3 s r+s r^{2}+r \operatorname{nnz}\left(\boldsymbol{X}_{(j)}\right)$

3 Troubles with CP decomposition

Finally, we summarize some mathematical troubles that plague the CP decomposition, stressing that these are independent of algorithm.

- ill-posedness: from de Silva and Lim there is no guarantee that the best rank k approximation exists; for example no rank $3 \times 2 \times 2$ tensor has a best rank 2 approximation, and a random $m \times n \times p$ tensor has no best rank 2 approximation with probability; in general this rules out the possibility of a theorem like Echart-Young-Mirsky for tensors
- complexity of determining rank: given a tensor \mathcal{T}, determining its real rank is NP hard (and so are many other tensor problems, see Lim)
- many local minima: the best rank k approximation problem is non-convex and non-linear, and so may have many local minima; no known results suggest that the standard algorithms frequently find "good" local minima

