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1 Leverage scores and coherence

Recall the definition of row leverage scores of a matrix A ∈ Rn×r. If U is an orthonormal basis for
span(A), then the ith leverage score is given by

ℓi(A) = sup
x

(Ai:x)2

∥Ax∥2
2

= ∥Ui:∥2
2, i ∈ [n]. (1)

One can then sample rows according to probabilities pi = ℓi/r. It is also possible to approximately
compute leverage scores at a reduced complexity.

The coherence of A, denoted by µ(A) is the maximum leverage score, that is,

µ(A) = max
i∈[n]

ℓi(A). (2)

Coherence obeys the following inequalities: r
n ≤ µ(A) ≤ 1. The first follows from 1 = ∑n

i=1 pi =
1
r

∑n
i=1 ℓi ⇒ r = ∑n

i=1 ℓi ⇒ r ≤ nµ(A); the second follows from ℓi = ∥Ui:∥2 = ∥eiU∥2 ≤ 12 · 12 by
submultiplicativity. We say A is incoherent if µ(A) ≈ r

N .

One can use leverage scores to sample linear least squares problems, getting approximate solutions
at a reduced cost.

Proposition 1. Given a matrix A ∈ Rn×r and a fixed vector b ∈ Rn, let x∗ = minx∈Rd ∥Ax − b∥2.
Let S ∈ Rm×n be a sampling matrix with probabilities pi = ℓi/r, and Si∗ = ej/

√
mpj with

P(j = i) = pi. If m = O(r log(r/δ)/ε) and x̃ = minx∈Rd ∥S(Ax − b)∥2, then, with high probability,

∥Ax̃ − b∥2 ≤ (1 + ε)∥Ax∗ − b∥2.

2 Leverage score sampling for CP-ALS

Our goal is to accelerate CP-ALS by using leverage score sampling on the least squares subproblems
that arise for the approximate CP factor matrices of tensor X (here order 3)

min
A1

∥(A3 ⊙ A2)AT
1 − XT

(1)∥
2
F . (3)

However, even approximately computing the leverage scores for (A3 ⊙ A2) can be prohibitively
expensive. But we can estimate/bound the leverage scores for this Khatri-Rao structured matrix in
terms of the leverage scores of the matrices A2 and A3.

Lemma 1 (Cheng, et al.: Theorem 3.2). µ(A ⊙ B) ≤ µ(A)µ(B)
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This implies that if two matrices A, B are incoherent, then their Khatri-Rao product A ⊙ B is also
incoherent.

Motivated by Lemma 1, instead of sampling according to pk = ℓk(A3 ⊙ A2)/r we will instead use
pk = ℓi(A3)ℓj(A2)/r2, which requires only O((n2 + n3)r) work. Specifically, we’ll use the following
procedure:

• choose i ∼ pi = ℓi(A3)/r

• choose j ∼ pj = ℓj(A2)/r

• select row k = i + (j − 1)n3 .

The guarantee for this procedure is as follows.

Theorem 1 (Larsen and Kolda: Theorem 6). Let Ai ∈ Rni×r, X(1) ∈ Rn2n3×n1 and consider the
linear least squares problem

arg min
A1

∥(A3 ⊙ A2)AT
1 − XT

(1)∥
2
F .

with optimal solution A∗
1. Now let Ã1 be the optimal solution to the problem

arg min
A1

∥(S(A3 ⊙ A2)AT
1 − SXT

(1)∥
2
F .

where S ∈ Rs×n2n3 is the leverage score sampling matrix which samples according to the procedure
described above.
If s = r4 max{1700 log(r/δ), 1/(δϵ)}, then

Pr
[
∥(A3 ⊙ A2)ÃT

1 − XT
(1)∥

2
F ≤ (1 + ϵ)∥(A3 ⊙ A2)(A∗

1)T − XT
(1)∥

2
F

]
≥ 1 − δ.

Larsen and Kolda also suggest additional practical tips for efficient implementation:

• hybrid approach: deterministically include all rows whose leverage scores/probabilities
are above some threshold and randomly sample from the remaining rows; using the hybrid
strategy, they demonstrate equally good or better decompositions with the same number of
total samples

• unfoldings: never form XT
(i) explicitly if X is sparse, instead precompute linear indices for

every nonzero for each mode to directly form a sparse unfolding/right hand side; this requires
3nnz(X ) extra memory

• estimate residual: calculating the residual is necessary to determine when the approximation
is sufficiently converged, but computing the residual can take many times longer then updating
all three factor matrices; therefore, as a practical hack with no theoretical guarantees the
authors suggest estimating the residual based on a random sample of tensor elements (using a
stratified sampling to correct for problems introduced by sparsity)

We conclude this discussion by comparing the complexities of the two main kernels in CP-ALS:
computation of the residual and the formation and solution of (one) linear least squares problem.
Here sfit is the user specified number of elements used to sample and estimate the residual and j
corresponds the the mode being updates by the least squares subproblem.
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operation sparse/dense complexity (big O) sampled complexity
residual dense rn1n2n3 rsfit

sparse rnnz(X ) rsfit

least squares
(mode j)

dense rn1n2n3 3sr + sr2 + srnj

sparse rn1n2n3 3sr + sr2 + rnnz(X(j))

3 Troubles with CP decomposition

Finally, we summarize some mathematical troubles that plague the CP decomposition, stressing
that these are independent of algorithm.

• ill-posedness: from de Silva and Lim there is no guarantee that the best rank k approximation
exists; for example no rank 3 2 × 2 × 2 tensor has a best rank 2 approximation, and a random
m × n × p tensor has no best rank 2 approximation with probability; in general this rules out
the possibility of a theorem like Echart-Young-Mirsky for tensors

• complexity of determining rank: given a tensor T , determining its real rank is NP hard
(and so are many other tensor problems, see Lim)

• many local minima: the best rank k approximation problem is non-convex and non-linear,
and so may have many local minima; no known results suggest that the standard algorithms
frequently find “good” local minima
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