
CSE 392: Matrix and Tensor Algorithms for Data Spring 2024

Lecture 17 — 03/20/2024
Instructor: Shashanka Ubaru Scribe: Stefan Rutledge

2 Randomized CP- I

2.1 Alternating Least Squares (CP-ALS) Review

Finding the rank of tensor X is an NP hard problem and thus an approximation algorithm will be
necessary. One potential algorithm is the Alternating Least Squares algorithm which optimizes
across all three variables, A, B, and C, one at a time. The general idea is to fix B and C and
solve for A, then fix A and C and solve for B, and fix A and B and solve for C, and repeat until
convergence. The equation to solve for A is shown below:

min
A
∥X(1) −A(C ⊙B)T ∥2F =

min
A
∥(C ⊙B)AT −XT

(1)∥
2
F

From normal equations:
(C ⊙B)T (C ⊙B)AT = (C ⊙B)T XT

(1)

(CT C ∗BT B)AT = (C ⊙B)T XT
(1)

AT = (CT C ∗BT B)−1(C ⊙B)T XT
(1)

A = X(1)(C ⊙B)(CT C ∗BT B)−1

This can be written for a general d-way tensor as the following:

min
Ak

∥X(k) −AAk
(Ad ⊙ ...⊙Ak+1 ⊙Ak−1 ⊙ ...⊙A1)T ∥2F =

min
Ak

∥ZkAT −XT
(k)∥

2
F

where Zk = Ad ⊙ ...⊙Ak+1 ⊙Ak−1 ⊙ ...⊙A1

ZT
k ZkAT

k = ZT
k XT

(k)

(AT
d Ad ∗ ... ∗AT

k+1Ak+1 ∗AT
k−1Ak−1 ∗ ... ∗AT

1 A1)AT
k = ZT

k XT
(k)

Ak = X(k)ZkV −1
k

where Vk = AT
d Ad ∗ ... ∗AT

k+1Ak+1 ∗AT
k−1Ak−1 ∗ ... ∗AT

1 A1

Finally for a d-way tensor the generalized alternating least squares algorithm is given as follows for
a desired rank r, also followed by a MATLAB example:
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1. Initialize Ak ∈ Rnk×r for all k ∈ [d]

2. repeat

3. for k = 1,...,d do

4. Zk ← Ad ⊙ ...⊙Ak+1 ⊙Ak−1 ⊙ ...⊙A1

5. Ak ← arg minB ∥ZkBT −XT
(k)∥

2
F

6. end

7. until ∥X − [[A1, A2, ..., Ad]]∥2F under threshold

Figure 3: MATLAB example of CP-ALS
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2.2 Adding Randomization

Similar to matrices, it is possible to add randomized sampling to tensors to aid in the optimization
process by reducing the dimensionality of the dataset. Recall the sketch and solve method for
matrices where a sketching matrix S ∈ Rm×n is used to solve the following minimization: x̃ =
minx∈Rd ∥SAx−Sb∥22 which approximates the solution x. Similar methods can be applied to tensors.

For following methods the tensor problem is defined as:

minB ∥ZBT − XT ∥2F where Z = Ad ⊙ ... ⊙ Ak+1 ⊙ Ak−1 ⊙ ... ⊙ A1, and is of size r x N, where
N =

∏d
l=1, ̸=k nl

X = X(k), the matricization of X along the kth dimension

B = Ak, the factorization matrix for the kth dimension.

2.3 Uniform Sampling

A simple method of adding randomization is by uniform sampling where sample matrix S of size s
x N is constructed, where s is the number of samples, and each row of S is a random row of N x
N identity matrix, scaled by 1√

s
. This matrix S can then be applied to Z and XT to reduce the

dimensionality from N to s and solve the following minimization problem: minB ∥SZBT − SXT ∥2F .

Figure 4: Randomized Reduced Tensor Problem

Uniform sampling is shown to be an effective optimization for the tensor problem since it helps
improve the computational and memory efficiency of the CP-ALS algorithm while still converging to
a satisfactory approximation. More specifically, it helps reduce the number of computations needed
to form Z by down sampling to SZ with a smaller size, s x r. Secondly, it reduces the memory size of
storing XT , also by down sampling to SXT . The following figures depict how the reduced matrices
improve the efficiency:
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Figure 5: Reduced KRP

Figure 6: Reduced XT
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Finally it is proven that the sampling algorithm still provides a satisfactory approximation even
when sampling less than 1% of the entire data and the speedup benefits improve as the tensor size
increases. The following figure depicts these finding:

Thus, the Alternating Least Squared algorithm with randomization, CP-ARLS, is given as follows
for a desired rank r and number of samples s, also followed by a MATLAB example:

1. Initialize Ak ∈ Rnk×r for all k ∈ [d]

2. Ω← the sampled indices for function value estimation

3. repeat

4. for k = 1,...,d do

5. S ← random rows of I scaled by 1√
s

6. Ẑ ← SKRP (S, A1, ..., Ak−1, Ak+1, ..., Ad)

7. X̂ ← STU(S, X, k)

8. Âk ← arg minB ∥ẐBT − X̂T ∥2F

9. end

10. until SFV (Ω, X, A1, A2, ..., Ad) ceases to decrease
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Figure 7: MATLAB example of CP-ARLS
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2.4 Sampling Alternatives

While the randomized uniform sampling method does converge and improves efficiency of the
CP-ALS algorithm it is only the most efficient when Z is incoherent. In other cases mixing the
sampling can lead to better optimizations.

One such mixing method involves using FJLTs. The randomized tensor problem with JFLTS is
defined as follows:

S is a s x N sampling matrix

F is an N x N FFT, or Hadamard, matrix

D is a N x N diagonal matrix with ±1 Radamacher entries

The above matrices can be applied to Z and XT to reduce the dimensionality from N to s and solve
the following minimization problem: minB ∥SFDZBT − SFDXT ∥2F .

Figure 8: Randomized Reduced Tensor Problem with FJLT mixing
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Another alternative method involves applying Kronecker products to FJLTS. The randomized tensor
problem with Kronecker JFLTS is defines as follows:

S is a s x N sampling matrix

F̄ = Fd ⊗ ...⊗ Fk+1 ⊗ Fk−1 ⊗ ...⊗ F1

D̄ = Dd ⊗ ...⊗Dk+1 ⊗Dk−1 ⊗ ...⊗D1

The above matrices can be applied to Z and XT to reduce the dimensionality from N to s and solve
the following minimization problem: minB ∥SF̄ D̄ZBT − SF̄ D̄XT ∥2F .

Figure 9: Randomized Reduced Tensor Problem with Kronecker FJLT mixing

Finally, the Alternating Least Squared algorithm with randomization and mixing, CP-ARLS-Mix,
is given as follows for a desired rank r and number of samples s:

1. Initialize Ak ∈ Rnk×r for all k ∈ [d]

2. Draw random diagonal Dk for all k ∈ [d]

3. Compute Âk = FkDkAk for all k ∈ [d]

4. Compute X̂ = X × F1D1 × F2D2...× FdDd

5. Ω← the sampled indices for function value estimation

6. repeat

7. for k = 1,...,d do

8. S ← random rows of I scaled by 1√
s

9. Ẑ ← SKRP (S, A1, ..., Ak−1, Ak+1, ..., Ad)

10. X̂ ← F ∗
k Dk(STU(S, X, k))

11. Ak ← arg minB ∥ẐBT − X̂T ∥2F

12. Âk ← FkDkAk
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13. end

14. until SFV (Ω, X, A1, A2, ..., Ad) ceases to decrease
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