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1 Canonical Polyadic (CP) Decomposition

1.1 Tensor Decomposition

Tensor Decomposition is analogous to Matrix Decomposition in several ways. Like matrices,
tensors are used to represent datasets and are generally very large in size. To combat this, tensor
decomposition can be used to compress the size for performance and storage benefits. Furthermore,
tensor decomposition can be used to de-noise the tensor and reduce it down to a more efficient
representation. Furthermore, tensor decomposition uses and reveals "hidden" correlations between
values and patterns that are typically difficult to see in multi-dimensional data. As with matrix
decomposition, there are different types of tensor decompositions that all have their associated pros
and cons and thus the ideal decomposition to use is always application dependent. Lastly, recall
in matrix factorization there are two paradigms of decomposing the matrix: one is to represent it
as a sum of rank-1 matrices and the other is the reduce it to representative subspaces. Similarly,
tensor factorization has two paradigms of decompositions. As shown in Figure 1, a tensor can be
represented as a sum of rank-1 tensors or as a set of representative subspaces.

Figure 1: Tensor Factorization

1



1.2 Matrix Factorization

This section will give more background on decomposing a matrix into a sum of rank-1 matrices to
build the basis for tensor factorization. To reduce a matrix X (m x n) into a rank-r approximation,
M (m x n), then factor matrices, A and B, are found, which are of sizes A = m x r and B = n x r.
Then M is composed of the sum of r outer products of each column of A and B, such that M =
ABT =

∑r
l=1 alb

T
l =

∑r
l=1 al ◦ bl.

Recall the SVD of a matrix is the traditional dimension reducer/feature extractor because it is
optimal for both performance and space. The SVD minimizes the Frobenius norm between matrix
A and rank-k approximation B which allows it to denoise and reduce the matrix to its principle
components and compress the matrix into k(n+m) values, as opposed to mn.

1.3 Tensor Factorization

In attempts to find an analogous of SVD for high-dimensional tensors, mathematicians proposed
decomposing a tensor X (a x b x c) into a sum of rank 1 tensors, which is called the Canonical
Polyadic (CP) Decomposition. Similar to matrices, to reduce a tensor X (m x n x p) into a rank-r
approximation M (m x n x p), then factor matrices A, B, and C, are found, which are of sizes A =
m x r, B = n x r, C = p x r. Then M is composed of the sum of r outer products of each column
of A, B, and C such that M =

∑r
l=1 al ◦ bl ◦ cl. This idea can be extended to a d-way tensor by

summing the outer products of the columns for all d factor matrices.

The Kruskal Notation is shown as M = [[A, B, C]] for a three way tensor decomposition. Also for a
unit normalized decomposition with diagonal vector λ: M = [[λ; A, B, C]]

1.4 Matrix Kronecker Product

The Kronecker product, denoted by ⊗, is a common operation on matrices or tensors. Given two
matrices A and B, the Kronecker product results in a larger block matrix, where each element of A
is multiplied by the entire matrix B.
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If A is an m× n matrix and B is a p× q matrix, then the Kronecker product of A and B is denoted
as A⊗B, and it results in an mp× nq block matrix.

The Kronecker product is defined as follows:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
... . . . ...

am1B am2B · · · amnB


Where aij represents the element in the i-th row and j-th column of matrix A, and aijB denotes
the matrix B scaled by aij .

The Kronecker Product upholds a number of properties:

1. (C ⊗B)⊗A = C ⊗ (B ⊗A)

2. (B ⊗A)T = BT ⊗AT

3. (B ⊗A)(C ⊗D) = (BD)⊗ (AC)

4. vec(AXBT ) = (B ⊗A)vec(X)

5. (B ⊗A)−1 = B−1 ⊗A−1

With the Kronecker product, for vectors a ∈ Rm, b ∈ Rn, c ∈ Rp, c ⊗ b ⊗ a produces a vector of
length mnp. Thus, the vectorized form of the rank-1 one tensor X is denoted as vec(X) = c⊗ b⊗ a

1.5 KhatriRao Product

The Khatri-Rao product, also known as the column-wise Kronecker product, is an operation on
two matrices. Given two matrices A and B, where A is of size m × r and B is of size n × r, the
Khatri-Rao product, denoted A ⊙ B, results in a matrix of size mn × r obtained by taking the
Kronecker product of the corresponding columns of the matrices.

Mathematically, the Khatri-Rao product is defined as follows:

Let A = [a1, a2, . . . , an] and B = [b1, b2, . . . , bn], where ai and bi represent the i-th column vectors
of A and B respectively. Then the Khatri-Rao product is given by:

A⊙B = [a1 ⊗ b1, a2 ⊗ b2, . . . , an ⊗ bn]

In this product, each column of the resulting matrix is formed by taking the Kronecker product of
the corresponding columns of A and B, (B ⊙A)∗j = B∗j ⊗A∗j .

The KRP upholds a number of properties:

1. C ⊙ (B ⊙A) = (C ⊙B)⊙A
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2. (B ⊙A)T (B ⊙A) = BT B ∗AT A

3. (B ⊗A)(D ⊙ C) = (BD)⊙ (AC)

1.6 Matricized Tensor Times KRP (MTTKRP)

With the KRP, a three way tensor, X, can be unfolded along the first dimension, aka matricized, by
the following equation:

X(1) =
r∑

l=1
al(cl ⊗ bl)T = [a1, ..., ar][c1 ⊗ b1, ..., cr ⊗ br]T = A(C ⊙B)T

Hence the three factorization matrices can be defined as:

A = X(1)(C ⊙B), B = X(2)(C ⊙A), C = X(3)(B ⊙A)

And for a d-way tensor the mode-k matricized tensor times KRP is given by:

V = X(k)(Ad ⊙ ...⊙Ak+1 ⊙Ak−1 ⊙ ...⊙A1)

1.7 CP Tensor Decomposition

With the above definitions let us return to the CP tensor decomposition as a rank-r approximation
of tnesor X. To find the CP decomposition is equivalent to minal,bl,cl

∥X −
∑r

l=1 σl · al ◦ bl ◦ cl∥F . If
the Frobenius norm is equal to 0 and r is minimized then r is the rank of tensor X. The solution
to CP decomposition does not uphold the orthogonal property, unlike SVD, and is not a matrix
product based factorization. However, the CP decomposition solution does uphold a uniqueness
property if rankk(A) + rankk(B) + rankk(C) ≥ 2r + 2. Note that rankk(A) is the maximum value
of k such that any k columns of A are linearly indepedent, NOT the rank of A.

1.8 Alternating Least Squares (CP-ALS)

Finding the rank of tensor X is an NP hard problem and thus an approximation algorithm will be
necessary. One potential algorithm is the Alternating Least Squares algorithm which optimizes
across all three variables, A, B, and C, one at a time. The general idea is to fix B and C and
solve for A, then fix A and C and solve for B, and fix A and B and solve for C, and repeat until
convergence. The equation to solve for A is shown below:

min
A
∥X(1) −A(C ⊙B)T ∥2F =

min
A
∥(C ⊙B)AT −XT

(1)∥
2
F

From normal equations:
(C ⊙B)T (C ⊙B)AT = (C ⊙B)T XT

(1)

(CT C ∗BT B)AT = (C ⊙B)T XT
(1)
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AT = (CT C ∗BT B)−1(C ⊙B)T XT
(1)

A = X(1)(C ⊙B)(CT C ∗BT B)−1

This can be written for a general d-way tensor as the following:

min
Ak

∥X(k) −AAk
(Ad ⊙ ...⊙Ak+1 ⊙Ak−1 ⊙ ...⊙A1)T ∥2F =

min
Ak

∥ZkAT −XT
(k)∥

2
F

where Zk = Ad ⊙ ...⊙Ak+1 ⊙Ak−1 ⊙ ...⊙A1

ZT
k ZkAT

k = ZT
k XT

(k)

(AT
d Ad ∗ ... ∗AT

k+1Ak+1 ∗AT
k−1Ak−1 ∗ ... ∗AT

1 A1)AT
k = ZT

k XT
(k)

Ak = X(k)ZkV −1
k

where Vk = AT
d Ad ∗ ... ∗AT

k+1Ak+1 ∗AT
k−1Ak−1 ∗ ... ∗AT

1 A1

Finally for a d-way tensor the generalized alternating least squares algorithm is given as follows for
a desired rank r, also followed by a MATLAB example:

1. Initialize Ak ∈ Rnk×r for all k ∈ [d]

2. repeat

3. for k = 1,...,d do

4. Zk ← Ad ⊙ ...⊙Ak+1 ⊙Ak−1 ⊙ ...⊙A1

5. Ak ← arg minB ∥ZkBT −XT
(k)∥

2
F

6. end

7. until ∥X − [[A1, A2, ..., Ad]]∥2F under threshold
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Figure 2: MATLAB example of CP-ALS
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