Lecture 14 - Mar 4
Instructor: Shashanka Ubaru

Stochastic Trace Estimation

Matrix Trace

- Given a matrix $A \in \mathbb{R}^{d \times d}$ our goal is to compute the trace:

$$
\operatorname{Tr}(A)=\sum_{i=1}^{d} A_{i i}
$$

- In terms of the eigenvalues, if $A=U \Lambda U^{T}$ with $\Lambda=\operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{d}\right]$, we know:

$$
\operatorname{Tr}(A)=\sum_{i=1}^{d} \lambda_{i} .
$$

- In many situations, access to A available only implicitly through a matrix-vector multiplication oracle.

Spectral Sums

Given a symmetric positive semidefinite (PSD) matrix $A \in \mathbb{R}^{d \times d}$ with eigen-decomposition $A=$ $U \Lambda U^{T}$ and eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{d}$, and desired function $f(\cdot)$, compute the trace of the matrix function $f(A)=U f(\Lambda) U^{T}$, i.e.,

$$
\operatorname{Tr}(f(A))=\sum_{i=1}^{d} f\left(\lambda_{i}\right) .
$$

- Popular examples: \log-determinant $(\log (x))$, numerical rank (step function), spectral density $\delta\left(x-\lambda_{i}\right)$, Schatten p-norms $\left(x^{p / 2}\right)$, von Neumann Entropy $(x \log (x))$, Estrada index $(\exp (x))$, trace of matrix inverse $\left(\frac{1}{x}\right)$.
- Applications: machine learning, graph signal processing, quantum algorithms, scientific computing, statistics, computational biology and physics.
- Naive approaches: Eigenvalue decomposition, Cholesky Decomposition, singular value decomposition (SVD).
Cost: $O\left(d^{3}\right)$ or [Theory: $O\left(d^{\omega}\right)$ and $\left.\omega=2.373\right]$.

Implicit Trace Estimation

- Access to A implicitly through a matrix-vector multiplication oracle.
- Typically useful when A is not stored explicitly, but we have an efficient algorithm for multiplying A by a vector.
- Matrix-vector products (Matvecs) cost $O(\mathrm{nnz}(A))$.
- Examples: Hessians in optimization, matrix functions as polynomials, structured matrices, etc.

Figure 1: How many matvecs $A \mathbf{x}_{1}, \ldots, A \mathbf{x}_{m}$ are needed to estimate the trace?

A naive approach

- Set $x_{l}=e_{l}$ for $l=1, \ldots, d$.
- Return $\operatorname{Tr}(A)=\sum_{l=1}^{d} x_{l}^{T} A x_{l}$.
- Total computational cost $O(\mathrm{nnz}(A) d)$.

Figure 2: Exact solution, but required d matvecs. Can we approximately estimate the trace with $\ll d$ matvecs?

Hutchinson's Stochastic Trace Estimator

- Hutchinson [Hutchinson, 1990] proposed a method for implicit matrix trace estimation:

$$
\begin{equation*}
\operatorname{Tr}(A) \approx \frac{1}{m} \sum_{l=1}^{m} \mathbf{x}_{l}^{T} A \mathbf{x}_{l} \tag{1}
\end{equation*}
$$

where $\mathbf{x}_{l}, l=1, \ldots, m$, are random vectors with i.i.d. random $\{+1,-1\}$ entries.

- Randomized method: Simple, powerful, and widely used method for trace estimation.
- Theoretical analyses were presented in [Avron, Toledo 2011], [Roosta, Ascher 2015].

Figure 3: Radamacher distribution: vectors with ± 1 entries with equal probabilities.
Theorem 1. Let A be an $d \times d$ symmetric positive semidefinite (PSD) matrix and $x_{l}, l=1, \ldots, m$ be random starting vectors with Rademacher distribution. Then, for $\tilde{T} r_{m}(A)=\frac{1}{m} \sum_{l=1}^{m} x_{l}^{T} A x_{l}$, with $m=O\left(\frac{\log (1 / \eta)}{\varepsilon^{2}}\right)$, we have

$$
\mathbb{P}\left[\left|\tilde{T} r_{m}(A)-\operatorname{Tr}(A)\right| \leq \varepsilon|\operatorname{Tr}(A)|\right] \geq 1-\eta
$$

Theorem 2 (Hutchinson's Estimator). Draw $x_{l}, l=1, \ldots, m$, vectors with i.i.d. random $\{+1,-1\}$ entries. Return $\tilde{\operatorname{Tr}} r_{m}(A)=\frac{1}{m} \sum_{l=1}^{m} x_{l}^{T} A x_{l}$ as an approximation to $\operatorname{Tr}(A)$.

Expected value analysis:

For a single random ± 1 vector x, we have

$$
E\left[\tilde{T}_{m}(A)\right]=E\left[x^{T} A x\right]=E\left[\sum_{i=1}^{d} \sum_{j=1}^{d} x_{i} x_{j} A_{i j}\right]=\sum_{i=1}^{d} \sum_{j=1}^{d} E\left[x_{i} x_{j} A_{i j}\right]=\sum_{i=1}^{d} A_{i i}
$$

So the estimator is correct in expectation:

$$
E\left[\tilde{T} r_{m}(A)\right]=\operatorname{Tr}(A)
$$

It is unbiased estimator.

Variance analysis:

$$
\begin{aligned}
& \operatorname{Var}\left[\tilde{\operatorname{Tr}}_{m}(A)\right]=\frac{1}{m} \operatorname{Var}\left[\mathbf{x}_{l}^{T} A \mathbf{x}_{l}\right]=\frac{1}{m}\left(\mathbb{E}\left[\left(\mathbf{x}_{l}^{T} A \mathbf{x}_{l}\right)^{2}\right]-\operatorname{Tr}(A)^{2}\right) \\
& \mathbb{E}\left[\left(\mathbf{x}_{l}^{T} A \mathbf{x}_{l}\right)^{2}\right]=\mathbb{E}\left[\left(\sum_{i, j} x_{i} x_{j} A_{i j}\right)\left(\sum_{i^{\prime}, j^{\prime}} x_{i^{\prime}} x_{j^{\prime}} A_{i^{\prime} j^{\prime}}\right)\right] \\
& \\
& =\sum_{i \neq j} 2 A_{i j}^{2}+\sum_{i \neq j} A_{i j} A_{j i}+\sum_{i} A_{i i}^{2}
\end{aligned}
$$

We used that $x_{i} x_{j}$ and $x_{i^{\prime}} x_{j^{\prime}}$ are pairwise independent. Therefore,

$$
\operatorname{Var}\left[\tilde{\operatorname{Tr}}_{m}(A)\right]=\frac{2}{m} \sum_{i \neq j} A_{i j}^{2}+\frac{2}{m}\|\mathbf{A}\|_{F}^{2}
$$

Analysis

Chebyshev's inequality:

$$
\operatorname{Pr}(|X-\mathbb{E}[X]| \geq \tau) \leq \frac{\operatorname{Var}(X)}{\tau^{2}}
$$

We have $\mathbb{E}\left[\tilde{\operatorname{Tr}}_{m}(A)\right]=\operatorname{Tr}(A)$ and $\operatorname{Var}\left[\tilde{\operatorname{Tr}}_{m}(A)\right] \leq \frac{2}{m}\|\mathbf{A}\|_{F}^{2}$. Choosing $\tau=\epsilon \cdot \operatorname{Tr}(A)$:

$$
\operatorname{Pr}\left(\left|\tilde{\operatorname{Tr}}_{m}(A)-\operatorname{Tr}(A)\right| \geq \epsilon \cdot \operatorname{Tr}(A)\right) \leq \frac{\operatorname{Var}\left[\tilde{\operatorname{Tr}}_{m}(A)\right]}{(\epsilon \cdot \operatorname{Tr}(A))^{2}} \leq \frac{2}{m \epsilon^{2}}
$$

For probability η, we can select $m \geq \frac{2}{\eta \epsilon^{2}}$.
Can improve this to $m=O\left(\frac{\log (1 / \eta)}{\epsilon^{2}}\right)$, using Hanson-Wright inequality.

Improved Analysis

Hanson-Wright inequality [Hanson \& Wright, 1971]: Given a symmetric matrix A and random vector x with i.i.d. sub-Gaussian entries, with constant sub-Gaussian parameter C, we have for $t \geq 0$:

$$
\operatorname{Pr}\left(\left|\mathbf{x}^{T} A \mathbf{x}-\mathbb{E}\left[\mathbf{x}^{T} A \mathbf{x}\right]\right| \geq t\right) \leq 2 \exp \left(-c \cdot \min \left(\frac{t^{2}}{\|\mathbf{A}\|_{F}^{2}}, \frac{t}{\|\mathbf{A}\|}\right)\right)
$$

for some universal constant $c>0$ that only depending on C.

Markov's inequality:

$$
\operatorname{Pr}(|X-\mathbb{E}[X]| \geq \tau) \leq \frac{\mathbb{E}\left[X^{q}\right]}{\tau^{q}}
$$

Choose $\tau=\left(2 \epsilon-\epsilon^{2}\right) \cdot \operatorname{Tr}(A)$ and $q=\log (1 / \eta)$, then with some work we get the theorem with

$$
m=O\left(\frac{\log (1 / \eta)}{\epsilon^{2}}\right) .
$$

Alternatively, can also use the Markov's inequality (the exponential version) and some recent results, see [Roosta, Ascher 2015].

Exercise:

- Would the proof using the Chebyshev inequality work if x_{l} 's are drawn from i.i.d Gaussian distribution $\mathcal{N}(0,1)$? What are the expectation and the variance of the estimate? (Hint: Note that $y_{l}=U x_{l}$ are also Gaussian for unitary $U . \chi^{2}$-distribution.)

Exercise Solution:

For vectors x_{l} drawn from an i.i.d Gaussian distribution $\mathcal{N}(0,1)$, the proof using the Chebyshev inequality would still be valid because Gaussian random variables have finite variance. The expectation and variance of the estimate can be computed as follows:

The expectation of the estimator $\tilde{\operatorname{Tr}}_{m}(A)$ is:

$$
\mathbb{E}\left[\tilde{\operatorname{Tr}}_{m}(A)\right]=\mathbb{E}\left[\frac{1}{m} \sum_{l=1}^{m} x_{l}^{T} A x_{l}\right]=\mathbb{E}\left[x_{l}^{T} A x_{l}\right]=\operatorname{Tr}(A)
$$

since the expectation of x_{i}^{2} is 1 and the expectation of $x_{i} x_{j}$ for $i \neq j$ is 0 .
The variance of $x_{l}^{T} A x_{l}$ when x_{l} has a Gaussian distribution is:

$$
\operatorname{Var}\left(x_{l}^{T} A x_{l}\right)=2 \sum_{i \neq j} A_{i j}^{2}
$$

which is 2 times the sum of the squares of the off-diagonal elements of A, due to the property that $y_{l}=U x_{l}$ are also Gaussian for unitary U, which maintains the distribution of x_{l} due to the rotational invariance of the Gaussian distribution. The χ^{2}-distribution of $y_{l}^{T} y_{l}$ has a variance of $2 d$ where d is the number of degrees of freedom.

Therefore, the variance of our estimator $\tilde{\operatorname{Tr}}_{m}(A)$ is:

$$
\operatorname{Var}\left[\tilde{\operatorname{Tr}}_{m}(A)\right]=\frac{1}{m} \operatorname{Var}\left(x_{l}^{T} A x_{l}\right)=\frac{2}{m} \sum_{i \neq j} A_{i j}^{2}
$$

Hutch++

Hutch++: Improved trace estimator

- Hutchinson's estimator is powerful, and gives a nice rate of convergence. But requires $m=O\left(1 / \epsilon^{2}\right)$ random vectors and matvecs.
- Recent results by Meyer et al., 2021, showed we can improve this to $m=O(1 / \epsilon)$ matvecs.
- Idea of Hutch++- Matrices might have decaying eigenvalues. Trace of a low rank approximation of the matrix is a good approximation to the matrix trace.
- Split the trace (spectrum) as sum of trace of top k eigenvalues and bottom $n-k$ eigenvalues.

$$
\operatorname{Tr}(A)=\operatorname{Tr}\left(A_{k}\right)+\operatorname{Tr}\left(A-A_{k}\right) .
$$

Explicitly estimate the top few eigenvalues of A. Use Hutchinson's for the rest.

- Find a good rank- k approximation \hat{A}_{k}.
- Observe $\operatorname{Tr}(A)=\operatorname{Tr}\left(\hat{A}_{k}\right)+\operatorname{Tr}\left(A-\hat{A}_{k}\right)$.
- Compute $\operatorname{Tr}\left(\hat{A}_{k}\right)$ exactly.
- Return Hutch ${ }^{++}(A)=\operatorname{Tr}\left(\hat{A}_{k}\right)+\tilde{\operatorname{Tr}}_{m}\left(A-\hat{A}_{k}\right)$.

If $k=m=O(1 / \epsilon)$, then $\left|\operatorname{Hutch}^{++}(A)-\operatorname{Tr}(A)\right| \leq \epsilon \operatorname{Tr}(A)$.

Good low rank approximation

Let A_{k} be the best rank- k approximation of A.

Lemma (Woo14)

Let $S \in \mathbb{R}^{d x m}$ have i.i.d. random entries from $\mathcal{N}(0,1), Q=\operatorname{orth}(A S)$ and $\hat{A}_{k}=Q Q^{T} A$. Then if $m=O(k+\log (1 / \delta))$, with probability $1-\delta$,

$$
\left\|A-\hat{A}_{k}\right\|_{F} \leq 2\left\|A-A_{k}\right\|_{F} .
$$

We can compute $\operatorname{Tr}\left(\hat{A}_{k}\right)$ with $2 m$ matvecs with A and $O(m n)$ space:

$$
\operatorname{Tr}\left(\hat{A}_{k}\right)=\operatorname{Tr}\left(Q Q^{T} A\right)=\operatorname{Tr}\left(Q^{T}(A Q)\right)
$$

Hutch++ Algorithm

Input: Number of matvecs m and input matrix A.

- Sample $S \in \mathbb{R}^{d \times m / 3}$ and $G \in \mathbb{R}^{d \times m / 3}$ with i.i.d. entries from $\mathcal{N}(0,1)$.
- Compute $Q=\operatorname{orth}(A S)$.
- Return Hutch $++(A)=\operatorname{Tr}\left(Q^{T}(A Q)\right)+\frac{3}{m} \operatorname{Tr}\left(G^{T}\left(I-Q Q^{T}\right) A\left(I-Q Q^{T}\right) G\right)$.

We have the following result:

Lemma

Let $A \in \mathbb{R}^{d \times d}$ be a PSD matrix and A_{k} be its best rank- k approximation. Then,

$$
\left\|A-A_{k}\right\|_{F} \leq \frac{1}{2 \sqrt{k}} \operatorname{Tr}(A)
$$

Hutch++ mean and variance

Theorem 3. Let $A \in \mathbb{R}^{d \times d}$ be a PSD matrix, for fixed k and m, construct $Q \in \mathbb{R}^{d \times m}$ as before. Let Hutch $++(A)=\operatorname{Tr}\left(Q^{T}(A Q)\right)+\tilde{\operatorname{Tr}}_{m}\left(\left(I-Q Q^{T}\right) A\right)$. Then,

$$
\begin{aligned}
\mathbb{E}[\operatorname{Hutch}++(A)] & =\operatorname{Tr}(A) \\
\operatorname{Var}[\operatorname{Hutch}++(A)] & \leq \frac{1}{k} \operatorname{Tr}\left(A^{2}\right)
\end{aligned}
$$

For the mean, we have $\mathbb{E}[$ Hutch $++(A)]=\mathbb{E}\left[\operatorname{Tr}\left(Q^{T}(A Q)\right)\right]+\mathbb{E}\left[\tilde{\operatorname{Tr}}_{m}\left(\left(I-Q Q^{T}\right) A\right)\right]$.
For variance, we use the Conditional Variance Formula,

$$
\operatorname{Var}[\operatorname{Hutch}++(A)]=\mathbb{E}[\operatorname{Var}[\operatorname{Hutch}++(A) \mid Q]]+\operatorname{Var}[\mathbb{E}[\operatorname{Hutch}++(A) \mid Q]]
$$

Can show $\operatorname{Var}[\mathbb{E}[$ Hutch $++(A) \mid Q]]=0$.
Given Q fixed, $\operatorname{Tr}\left(Q^{T}(A Q)\right)$ is a constant as it is the exact trace of the k-rank approximation of A. Therefore, the conditional expectation $\mathbb{E}[\operatorname{Hutch}++(A) \mid Q]$ given Q is also a constant. Hence, the conditional variance $\operatorname{Var}[\mathbb{E}[$ Hutch $++(A) \mid Q]]$ is zero, because the variance of a constant is zero.

$$
\operatorname{Var}[\mathbb{E}[\operatorname{Hutch}++(A) \mid Q]]=0
$$

since the variance of a constant, which is the value of $\operatorname{Hutch}++(A)$ given Q, is always zero regardless of the distribution of Q.
Now,

$$
\begin{aligned}
\mathbb{E}[\operatorname{Var}[\operatorname{Hutch}++(A) \mid Q]] & =\mathbb{E}\left[\operatorname{Var}\left[\operatorname{Tr}\left(Q^{T}(A Q)\right)\right]+\mathbb{E}\left[\operatorname{Var}\left[\tilde{\operatorname{Tr}}_{m}\left(\left(I-Q Q^{T}\right) A\right)\right]\right]\right. \\
& =0+\frac{2}{m} \mathbb{E}\left[\left\|\tilde{\operatorname{Tr}}_{m}\left(\left(I-Q Q^{T}\right) A\right)\right\|_{F}^{2}\right] \\
& \leq \frac{4}{m}\left\|A-A_{k}\right\|_{F}^{2} \\
& \leq \frac{1}{k m} \operatorname{Tr}^{2}(A)
\end{aligned}
$$

