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Stochastic Trace Estimation

Matrix Trace

« Given a matrix A € R¥? our goal is to compute the trace:

o In terms of the eigenvalues, if A = UAUT with A = diag[\1, ..., \4], we know:

e In many situations, access to A available only implicitly through a matriz-vector multiplication
oracle.

Spectral Sums

Given a symmetric positive semidefinite (PSD) matrix A € R¥9 with eigen-decomposition A =
UAUT and eigenvalues {)\i}le, and desired function f(-), compute the trace of the matrix
function f(A) = Uf(A)UT, ie.,

o Popular examples: log-determinant (log(z)), numerical rank (step function), spectral density
5(z — \;), Schatten p-norms (z?/2), von Neumann Entropy (zlog(z)), Estrada index (exp(z)),
trace of matrix inverse %)

e Applications: machine learning, graph signal processing, quantum algorithms, scientific
computing, statistics, computational biology and physics.

e Naive approaches: Eigenvalue decomposition, Cholesky Decomposition, singular value
decomposition (SVD).
Cost: O(d®) or [Theory: O(d¥) and w = 2.373].



Implicit Trace Estimation

e Access to A implicitly through a matriz-vector multiplication oracle.

Typically useful when A is not stored explicitly, but we have an efficient algorithm for
multiplying A by a vector.

Matrix-vector products (Matvecs) cost O(nnz(A)).

Ezamples: Hessians in optimization, matrix functions as polynomials, structured matrices, etc.
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Figure 1: How many matvecs Axjy, ..., AX,, are needed to estimate the trace?

A naive approach

e Setxy=¢ forl=1,...,d.
e Return Tr(A) = 20, 2] Az;.

» Total computational cost O(nnz(A)d).
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Figure 2: Exact solution, but required d matvecs. Can we approximately estimate the trace with
< d matvecs?

Hutchinson’s Stochastic Trace Estimator

o Hutchinson [Hutchinson, 1990] proposed a method for implicit matrix trace estimation:

Tr(A) =~ 1 leTAxl, (1)
M4



where x;, [ = 1,...,m, are random vectors with i.i.d. random {+1,—1} entries.
e Randomized method: Simple, powerful, and widely used method for trace estimation.

o Theoretical analyses were presented in [Avron, Toledo 2011], [Roosta, Ascher 2015].
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Figure 3: Radamacher distribution: vectors with +1 entries with equal probabilities.

Theorem 1. Let A be an d x d symmetric positive semidefinite (PSD) matriz and z;,l =1,...,m
be random starting vectors with Rademacher distribution. Then, for Trpy(A) = % Yoy :UlTAxl, with

m=0 (b%#), we have
P[|Trm(A) - Tr(4)| < e |Tr(A)]] > 1 -7

Theorem 2 (Hutchinson’s Estimator). Draw z;,l = 1,...,m, vectors with i.i.d. random {+1,—1}
entries. Return Trp,(A) = LY o] Az as an approzimation to Tr(A).

Expected value analysis:
For a single random +1 vector x, we have

Z Z zixjAij

i=17=1

E|Trm(A)] = E[zT Az] =

d d
:ZZE.TZ.TJ :ZA”
=1

i=1j=1

So the estimator is correct in expectation:
E[frm(A)] =Tr(A).
It is unbiased estimator.

Variance analysis:

Var[Tr,, (A)] = %Var[xlTAxl] = % (E[(XITAXZ)Q] - Tr(A)2>
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We used that z;z; and zyxj are pairwise independent. Therefore,
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Analysis

Chebyshev’s inequality:

< Var(X)'

— 2

Pr(|X —E[X]| > 1) .

We have E[Tr,,(A)] = Tr(A) and Var[Tr,,(A)] < Z||A||%. Choosing 7 = € - Tr(A):

Pr (| T (4) = Tr(4)] > e Te(4)) < \(fjr[ga)f)lg] . m262'

. 2
For probability n, we can select m > 7eT
Can improve this to m = O (bgi#) using Hanson-Wright inequality.

Improved Analysis

Hanson-Wright inequality [Hanson & Wright, 1971]: Given a symmetric matrix A and random
vector x with i.i.d. sub-Gaussian entries, with constant sub-Gaussian parameter C, we have for

t>0:
Pr (|XTAX — ]E[XTAXH > t) < 2exp (—c - min ( £ t))

for some universal constant ¢ > 0 that only depending on C'.

Markov’s inequality:

E[X1]

Pr(X —E[X]| > 7) < =5

Choose 7 = (2¢ — €2) - Tr(A) and ¢ = log(1/7), then with some work we get the theorem with

sz(lOg(l/n)>.

€2

Alternatively, can also use the Markov’s inequality (the exponential version) and some recent results,
see [Roosta, Ascher 2015].

Exercise:

o Would the proof using the Chebyshev inequality work if z;’s are drawn from i.i.d Gaussian
distribution N (0,1)? What are the expectation and the variance of the estimate?
(Hint: Note that y; = Ux; are also Gaussian for unitary U. x2-distribution.)

Exercise Solution:

For vectors x; drawn from an i.i.d Gaussian distribution N (0, 1), the proof using the Chebyshev
inequality would still be valid because Gaussian random variables have finite variance. The
expectation and variance of the estimate can be computed as follows:



The expectation of the estimator Tr,,(A) is:
- 1 &
E[Tr,,(A)]=E [ > mlTAxl] = B[z} Az] = Tr(A),
m
=1

since the expectation of 3312 is 1 and the expectation of z;x; for ¢ # j is 0.

The variance of xlTAml when z; has a Gaussian distribution is:

Var(zi Az;) = 2 Z A?j,
i#]

which is 2 times the sum of the squares of the off-diagonal elements of A, due to the property
that y; = Uz are also Gaussian for unitary U, which maintains the distribution of x; due to the
rotational invariance of the Gaussian distribution. The y?-distribution of leyl has a variance of 2d
where d is the number of degrees of freedom.

Therefore, the variance of our estimator Tr,,(A) is:

~ 1 2
Var[Try, (A)] = EVM(%TA@”I) ~m § A?J*
i#j

Hutch++

Hutch++: Improved trace estimator

e Hutchinson’s estimator is powerful, and gives a nice rate of convergence. But requires
m = O(1/€?) random vectors and matvecs.

« Recent results by Meyer et al., 2021, showed we can improve this to m = O(1/€) matvecs.

o Idea of Hutch++ - Matrices might have decaying eigenvalues. Trace of a low rank approximation
of the matrix is a good approximation to the matrix trace.

 Split the trace (spectrum) as sum of trace of top k eigenvalues and bottom n — k eigenvalues.

Tr(A) = Tr(Ag) + Tr(A — Ay).
Explicitly estimate the top few eigenvalues of A. Use Hutchinson’s for the rest.

e Find a good rank-k approximation Ay,
o Observe Tr(A) = Tr(A;) + Tr(A — Ap).

Compute Tr(flk) exactly.

e Return Hutch™(4) = Tr(Ay) + Trn (A — Ay).

If k =m = O(1/¢), then |Hutcht(A) — Tr(4)| < eTr(A).



Good low rank approximation

Let Ay be the best rank-k approximation of A.
Lemma (Wool/)

Let S € R%™™ have i.i.d. random entries from N(0, 1), Q = orth(AS) and A, = QQTA. Then if
m = O(k + log(1/6)), with probability 1 — 4,

14 = Apllr < 2014 = Agllp.
We can compute Tr(A) with 2m matvecs with A and O(mn) space:

Tr(Ay) = Tr(QQTA) = T(QT(AQ))

Hutch++ Algorithm
Input: Number of matvecs m and input matrix A.
« Sample S € R¥>*™/3 and G € R¥™/3 with i.i.d. entries from A(0,1).

o Compute @ = orth(AS).
¢ Return Hutch++(4) = Tr(QT(AQ)) + 2Tr(GT(I — QQT)A(I — QQT)G).

We have the following result:
Lemma

Let A € R¥™9 be a PSD matrix and Ay, be its best rank-k approximation. Then,

1
A—A < —Tr(A
| k:HF_2\/E (A)

Hutch++4 mean and variance

Theorem 3. Let A € R4 pe a PSD matriz, for fized k and m, construct Q € RIX™ g5 before.
Let Hutch++(A) = Tr(QT(AQ)) + Trin((I — QQT)A). Then,

E[Hutch++(A)] = Tr(A)

Var[Hutch++(A)] < %Tr(AQ)

For the mean, we have E[Hutch++(A)] = E[Tr(Q” (AQ))] + E[Tr,,((I — QQT)A)].

For variance, we use the Conditional Variance Formula,

Var[Hutch++(A)] = E[Var[Hutch++(A4)|Q]] + Var[E[Hutch++(A4)|Q]]-



Can show Var[E[Hutch++(A4)|Q]] = 0.

Given @ fixed, Tr(QT(AQ)) is a constant as it is the exact trace of the k-rank approximation of A.
Therefore, the conditional expectation E[Hutch++(A)|Q] given @ is also a constant. Hence, the
conditional variance Var[E[Hutch++(A)|Q]] is zero, because the variance of a constant is zero.

Var[E[Hutch++(A)|Q]] =0

since the variance of a constant, which is the value of Hutch++(A) given @, is always zero regardless
of the distribution of Q.

Now,
E[Var{Hutch-++(4)|Q]] = E[Var[Tr(Q”(AQ))] + E[Var[Trn (I — QQT) A)]

— 0+ %E[||T~rm((1 - QQM)A)|13]

4
< Z||A = Apll?
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