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Stochastic Trace Estimation

Matrix Trace

• Given a matrix A ∈ Rd×d our goal is to compute the trace:

Tr(A) =
d∑

i=1
Aii.

• In terms of the eigenvalues, if A = UΛUT with Λ = diag[λ1, . . . , λd], we know:

Tr(A) =
d∑

i=1
λi.

• In many situations, access to A available only implicitly through a matrix-vector multiplication
oracle.

Spectral Sums

Given a symmetric positive semidefinite (PSD) matrix A ∈ Rd×d with eigen-decomposition A =
UΛUT and eigenvalues {λi}d

i=1, and desired function f(·), compute the trace of the matrix
function f(A) = Uf(Λ)UT , i.e.,

Tr(f(A)) =
d∑

i=1
f(λi).

• Popular examples: log-determinant (log(x)), numerical rank (step function), spectral density
δ(x − λi), Schatten p-norms (xp/2), von Neumann Entropy (x log(x)), Estrada index (exp(x)),
trace of matrix inverse

(
1
x

)
.

• Applications: machine learning, graph signal processing, quantum algorithms, scientific
computing, statistics, computational biology and physics.

• Naive approaches: Eigenvalue decomposition, Cholesky Decomposition, singular value
decomposition (SVD).
Cost: O(d3) or [Theory: O(dω) and ω = 2.373].
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Implicit Trace Estimation

• Access to A implicitly through a matrix-vector multiplication oracle.

• Typically useful when A is not stored explicitly, but we have an efficient algorithm for
multiplying A by a vector.

• Matrix-vector products (Matvecs) cost O(nnz(A)).

• Examples: Hessians in optimization, matrix functions as polynomials, structured matrices, etc.

Figure 1: How many matvecs Ax1, . . . , Axm are needed to estimate the trace?

A naive approach

• Set xl = el for l = 1, . . . , d.

• Return Tr(A) =
∑d

l=1 xT
l Axl.

• Total computational cost O(nnz(A)d).

Figure 2: Exact solution, but required d matvecs. Can we approximately estimate the trace with
≪ d matvecs?

Hutchinson’s Stochastic Trace Estimator

• Hutchinson [Hutchinson, 1990] proposed a method for implicit matrix trace estimation:

Tr(A) ≈ 1
m

m∑
l=1

xT
l Axl, (1)
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where xl, l = 1, . . . , m, are random vectors with i.i.d. random {+1, −1} entries.

• Randomized method: Simple, powerful, and widely used method for trace estimation.

• Theoretical analyses were presented in [Avron, Toledo 2011], [Roosta, Ascher 2015].

Figure 3: Radamacher distribution: vectors with ±1 entries with equal probabilities.

Theorem 1. Let A be an d × d symmetric positive semidefinite (PSD) matrix and xl, l = 1, . . . , m
be random starting vectors with Rademacher distribution. Then, for T̃ rm(A) = 1

m

∑m
l=1 xT

l Axl, with
m = O

(
log(1/η)

ε2

)
, we have

P
[∣∣∣T̃ rm(A) − Tr(A)

∣∣∣ ≤ ε |Tr(A)|
]

≥ 1 − η.

Theorem 2 (Hutchinson’s Estimator). Draw xl, l = 1, . . . , m, vectors with i.i.d. random {+1, −1}
entries. Return T̃ rm(A) = 1

m

∑m
l=1 xT

l Axl as an approximation to Tr(A).

Expected value analysis:
For a single random ±1 vector x, we have

E[T̃ rm(A)] = E[xT Ax] = E

 d∑
i=1

d∑
j=1

xixjAij

 =
d∑

i=1

d∑
j=1

E[xixjAij ] =
d∑

i=1
Aii

So the estimator is correct in expectation:

E[T̃ rm(A)] = Tr(A).

It is unbiased estimator.

Variance analysis:

Var[T̃rm(A)] = 1
m

Var[xT
l Axl] = 1

m

(
E[(xT

l Axl)2] − Tr(A)2
)

E[(xT
l Axl)2] = E

∑
i,j

xixjAij

∑
i′,j′

xi′xj′Ai′j′


=
∑
i ̸=j

2A2
ij +

∑
i ̸=j

AijAji +
∑

i

A2
ii

We used that xixj and xi′xj′ are pairwise independent. Therefore,

Var[T̃rm(A)] = 2
m

∑
i ̸=j

A2
ij + 2

m
∥A∥2

F .
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Analysis

Chebyshev’s inequality:

Pr(|X − E[X]| ≥ τ) ≤ Var(X)
τ2 .

We have E[T̃rm(A)] = Tr(A) and Var[T̃rm(A)] ≤ 2
m∥A∥2

F . Choosing τ = ϵ · Tr(A):

Pr
(∣∣∣T̃rm(A) − Tr(A)

∣∣∣ ≥ ϵ · Tr(A)
)

≤ Var[T̃rm(A)]
(ϵ · Tr(A))2 ≤ 2

mϵ2 .

For probability η, we can select m ≥ 2
ηϵ2 .

Can improve this to m = O
(

log(1/η)
ϵ2

)
, using Hanson-Wright inequality.

Improved Analysis

Hanson-Wright inequality [Hanson & Wright, 1971]: Given a symmetric matrix A and random
vector x with i.i.d. sub-Gaussian entries, with constant sub-Gaussian parameter C, we have for
t ≥ 0:

Pr
(
|xT Ax − E[xT Ax]| ≥ t

)
≤ 2 exp

(
−c · min

(
t2

∥A∥2
F

,
t

∥A∥

))
,

for some universal constant c > 0 that only depending on C.

Markov’s inequality:
Pr(|X − E[X]| ≥ τ) ≤ E[Xq]

τ q
.

Choose τ = (2ϵ − ϵ2) · Tr(A) and q = log(1/η), then with some work we get the theorem with

m = O

( log(1/η)
ϵ2

)
.

Alternatively, can also use the Markov’s inequality (the exponential version) and some recent results,
see [Roosta, Ascher 2015].

Exercise:

• Would the proof using the Chebyshev inequality work if xl’s are drawn from i.i.d Gaussian
distribution N (0, 1)? What are the expectation and the variance of the estimate?
(Hint: Note that yl = Uxl are also Gaussian for unitary U . χ2-distribution.)

Exercise Solution:

For vectors xl drawn from an i.i.d Gaussian distribution N (0, 1), the proof using the Chebyshev
inequality would still be valid because Gaussian random variables have finite variance. The
expectation and variance of the estimate can be computed as follows:
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The expectation of the estimator T̃rm(A) is:

E[T̃rm(A)] = E
[

1
m

m∑
l=1

xT
l Axl

]
= E[xT

l Axl] = Tr(A),

since the expectation of x2
i is 1 and the expectation of xixj for i ̸= j is 0.

The variance of xT
l Axl when xl has a Gaussian distribution is:

Var(xT
l Axl) = 2

∑
i ̸=j

A2
ij ,

which is 2 times the sum of the squares of the off-diagonal elements of A, due to the property
that yl = Uxl are also Gaussian for unitary U , which maintains the distribution of xl due to the
rotational invariance of the Gaussian distribution. The χ2-distribution of yT

l yl has a variance of 2d
where d is the number of degrees of freedom.

Therefore, the variance of our estimator T̃rm(A) is:

Var[T̃rm(A)] = 1
m

Var(xT
l Axl) = 2

m

∑
i ̸=j

A2
ij .

Hutch++

Hutch++: Improved trace estimator

• Hutchinson’s estimator is powerful, and gives a nice rate of convergence. But requires
m = O(1/ϵ2) random vectors and matvecs.

• Recent results by Meyer et al., 2021, showed we can improve this to m = O(1/ϵ) matvecs.

• Idea of Hutch++ - Matrices might have decaying eigenvalues. Trace of a low rank approximation
of the matrix is a good approximation to the matrix trace.

• Split the trace (spectrum) as sum of trace of top k eigenvalues and bottom n − k eigenvalues.

Tr(A) = Tr(Ak) + Tr(A − Ak).

Explicitly estimate the top few eigenvalues of A. Use Hutchinson’s for the rest.

• Find a good rank-k approximation Âk.

• Observe Tr(A) = Tr(Âk) + Tr(A − Âk).

• Compute Tr(Âk) exactly.

• Return Hutch++(A) = Tr(Âk) + T̃rm(A − Âk).

If k = m = O(1/ϵ), then |Hutch++(A) − Tr(A)| ≤ ϵTr(A).
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Good low rank approximation

Let Ak be the best rank-k approximation of A.

Lemma (Woo14)

Let S ∈ Rdxm have i.i.d. random entries from N (0, 1), Q = orth(AS) and Âk = QQT A. Then if
m = O(k + log(1/δ)), with probability 1 − δ,

∥A − Âk∥F ≤ 2∥A − Ak∥F .

We can compute Tr(Âk) with 2m matvecs with A and O(mn) space:

Tr(Âk) = Tr(QQT A) = Tr(QT (AQ))

Hutch++ Algorithm

Input: Number of matvecs m and input matrix A.

• Sample S ∈ Rd×m/3 and G ∈ Rd×m/3 with i.i.d. entries from N (0, 1).

• Compute Q = orth(AS).

• Return Hutch++(A) = Tr(QT (AQ)) + 3
mTr(GT (I − QQT )A(I − QQT )G).

We have the following result:

Lemma

Let A ∈ Rd×d be a PSD matrix and Ak be its best rank-k approximation. Then,

∥A − Ak∥F ≤ 1
2
√

k
Tr(A)

Hutch++ mean and variance

Theorem 3. Let A ∈ Rd×d be a PSD matrix, for fixed k and m, construct Q ∈ Rd×m as before.
Let Hutch++(A) = Tr(QT (AQ)) + T̃rm((I − QQT )A). Then,

E[Hutch++(A)] = Tr(A)

Var[Hutch++(A)] ≤ 1
k

Tr(A2)

For the mean, we have E[Hutch++(A)] = E[Tr(QT (AQ))] + E[T̃rm((I − QQT )A)].

For variance, we use the Conditional Variance Formula,

Var[Hutch++(A)] = E[Var[Hutch++(A)|Q]] + Var[E[Hutch++(A)|Q]].
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Can show Var[E[Hutch++(A)|Q]] = 0.

Given Q fixed, Tr(QT (AQ)) is a constant as it is the exact trace of the k-rank approximation of A.
Therefore, the conditional expectation E[Hutch++(A)|Q] given Q is also a constant. Hence, the
conditional variance Var[E[Hutch++(A)|Q]] is zero, because the variance of a constant is zero.

Var[E[Hutch++(A)|Q]] = 0

since the variance of a constant, which is the value of Hutch++(A) given Q, is always zero regardless
of the distribution of Q.

Now,
E[Var[Hutch++(A)|Q]] = E[Var[Tr(QT (AQ))] + E[Var[T̃rm((I − QQT )A)]]

= 0 + 2
m
E[∥T̃rm((I − QQT )A)∥2

F ]

≤ 4
m

∥A − Ak∥2
F

≤ 1
km

Tr2(A)
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