CSE 392: Matrix and Tensor Algorithms for Data	Spring 2024
Lecture $13 - 02/28/2024$	
Instructor: Shashanka Uharu	Scribe: Shourua Pandeu

1 Recap

In the last lecture, we introduced iterative methods, which predate sketching-based methods, for low rank approximation of a matrix. Recall the *Power Method* for computing the top singular vector of a matrix:

Algorithm 1: Power Method Data: $A \subset \mathbb{D}n \times d \subset \mathbb{N}$

	Data: $A \in \mathbb{R}$, $q \in \mathbb{N}$
1	$z_0 \sim \mathcal{N}(0, \boldsymbol{I}_{d \times d})$
2	$z_0 \leftarrow \frac{z_0}{\ z_0\ _2}$
3	for $\ell = 1, 2,, q$ do
4	$z_{\ell} \leftarrow \boldsymbol{A}^{ op} \left(\boldsymbol{A} z_{\ell-1} ight)$
5	$z_{\ell} \leftarrow \frac{z_{\ell}}{\ z_{\ell}\ _2}$
6	return z_q

The following theorems record the guarantee of the power method in the gapped and gapless cases. **Theorem 1** (Power Method, Gapped). Let $A \in \mathbb{R}^{n \times d}$ be a matrix with singular values $\sigma_1 \geq \sigma_1$ $\sigma_2 \geq \ldots \sigma_{\min(n,d)}$ and top singular vector v_1 , and let $\gamma := \frac{\sigma_1 - \sigma_2}{\sigma_1}$. Then, for any $\epsilon, \delta \in (0,1)$ with $\delta = \exp(-O(d))$, the Power Method (Algorithm 1) with $q = O\left(\frac{\log(d/\epsilon) + \log(1/\delta)}{\gamma}\right)$ satisfies

 $\|v_1 - z_q\|_2 \le \epsilon$

with probability at least $1 - \delta$. Moreover, the algorithm runs in time $O\left(\operatorname{nnz}\left(\boldsymbol{A}\right) \frac{\log(d/\epsilon) + \log(1/\delta)}{\gamma}\right)$.

Theorem 2 (Power Method, Gapless). Let $A \in \mathbb{R}^{n \times d}$ be a matrix with singular values $\sigma_1 \geq \sigma_1$ $\sigma_2 \geq \dots \sigma_{\min(n,d)}$ and top singular vector v_1 , and let $\gamma := \frac{\sigma_1 - \sigma_2}{\sigma_1}$. Then, for any $\epsilon, \delta \in (0,1)$ with $\delta = \exp(-O(d))$, the Power Method (Algorithm 1) with $q = O\left(\frac{\log(d/\epsilon) + \log(1/\delta)}{\epsilon}\right)$ satisfies

$$\|\boldsymbol{A} - \boldsymbol{A} z_q z_q^{\top}\|_F^2 \le (1+\epsilon) \|\boldsymbol{A} - \boldsymbol{A} v_1 v_1^{\top}\|_F^2$$

with probability at least $1 - \delta$. Moreover, the algorithm runs in time $O\left(\operatorname{nnz}\left(\boldsymbol{A}\right) \frac{\log(d/\epsilon) + \log(1/\delta)}{\epsilon}\right)$.

Note that either of these guarantees implies

$$\|\mathbf{A}z_q\|_2^2 \ge (1-\epsilon)^2 \sigma_1^2.$$

In the gapped case, we can closely align the vector z_q with the top singular vector v_1 , while in the gapless case the flexibility of the power method extends to aligning z_q with the eigenspace of right eigenvectors with sufficiently large singular values. Finally, we saw a natural extension of the Power Method, called the *Block Power Method*, for computing the top k singular vectors of A.

2 Krylov Subspaces

To motivate the definition of Krylov subspaces, consider a linear regression problem of the form

$$\min_{x \in \mathbb{R}^d} F(x) := \frac{1}{2} \| \boldsymbol{C}x - b \|_2^2 = \min_{x \in \mathbb{R}^d} \left(\frac{1}{2} x^\top \boldsymbol{A}x - x^\top v + \frac{1}{2} \| b \|_2^2 \right),$$

where $C \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$, $A = C^{\top}C$, and $v = A^{\top}b$. This is a convex optimization problem, because

$$\nabla^2 F(x) = \boldsymbol{C}^\top \boldsymbol{C} \succeq \boldsymbol{0}.$$

A natural approach is to use a descent algorithm. the gradient is given by $\nabla F(x) = \mathbf{A}x - v$, so we initialize the gradient descent method with x_0 equal to a multiple of v, then after q descent steps the point x_q is in the span of the vectors $v, \mathbf{A}v, \ldots, \mathbf{A}^q v$. We call

$$K_q(A, v) :=$$
Span $(v, Av, \dots, A^q v)$

the Krylov subspace of dimension q generated by (\mathbf{A}, v) . We will also use the notation \mathbf{K}_q for the Krylov subspace in case the matrix \mathbf{A} and the vector v is clear from the context. An equivalent definition is

 $K_q(A, v) := \{ p(A)v \mid p \text{ is a polynomial of degree at most } q \}.$

Suppose A has full rank. Then, the optimal solution to the linear regression problem is $x = A^{-1}v$. Krylov subspace methods try to avoid the $O(nd^{\omega-1} + d^{\omega})$ cost of matrix multiplication $(A = C^{\top}C)$ and matrix inversion by approximating A^{-1} using polynomials in A.

Remark 1. The definition of K_q immediately implies that $K_{q'} \subseteq K_q$ for $q' \leq q$. Moreover, $K_q \subseteq \mathbb{R}_d$, which has dimension d. This implies the existence of an index q_1 such that

$$K_0 \subsetneq K_1 \subsetneq \cdots \subsetneq K_{q_1} = K_{q_1+1}.$$

It can be shown that $\mathbf{K}_{q_1} = \mathbf{K}_q$ for all $q \ge q_1$. Consider the minimal polynomial p of degree $1 \le r \le d$ such that $p(\mathbf{A}) = \mathbf{0}$. Then, \mathbf{A}^r is expressible as a linear combination of the matrices $\mathbf{I}, \mathbf{A}, \ldots, \mathbf{A}^{r-1}$, which implies that $\mathbf{K}_r = \mathbf{K}_{r-1}$. Therefore, $q_1 \le r-1$. A partial converse is also true: there exists a vector z_1 such that q_1 achieves the value r-1.

3 Lanczos Algorithm

Reconsider the problem of finding the top eigenvector of a symmetric matrix A. The Krylov iteration methods introduced for linear regression apply more generally via a strategy known as *Lanczos algorithm* or *Lanczos iteration*. The Lanczos algorithm takes a symmetric matrix A and finds a matrix Z_q which is an orthonormal basis of a certain Krylov subspace $K(A, z_1)$, and such that $T_q := Z_q^\top A Z_q$ is a tridiagonal matrix. While the eigenvectors and eigenvalues are not apparent from the tridiagonal form, computing T_q is already a significant step towards it.

Algorithm 2: Lanczos Algorithm

Data: $A \in \mathbb{R}^{n \times d}, q \in \mathbb{N}$ 1 $z_0 \leftarrow 0, \beta_1 \leftarrow 0$ 2Choose a starting vector $z_1 \in \mathbb{R}^d$ with unit norm.3 $z_0 \sim \mathcal{N}(0, I_{d \times d})$ 4for $\ell = 1, 2, \dots, q - 1$ do5 $y_\ell \leftarrow Az_\ell - \beta_\ell z_{\ell-1}$ 6 $w_\ell \leftarrow \langle y_\ell, z_\ell \rangle$ 7 $y_\ell \leftarrow \eta_\ell - \alpha_\ell z_\ell$ 8 $\beta_{\ell+1} \leftarrow ||y_\ell||_2$. If $\beta_{\ell+1} = 0$ then exit the loop.9 $z_{\ell+1} \leftarrow \frac{y_\ell}{\beta_{\ell+1}}$ 10 $Z_q \leftarrow [z_1 \ z_2 \ \dots \ z_q]$ 11return Z_q

The matrix $T_q = Z_q^{\top} A Z_q$ is called the *Rayleigh Ritz-projection* and is given by

If u is a top eigenvector estimate of T_q , then $Z_q u$ is the estimate of the eigenvector of A.

Theorem 3 (Lanczos Algorithm, Gapped). Let $\gamma := \frac{\lambda_1 - \lambda_2}{\lambda_1}$ be the gap between the largest eigenvalue, λ_1 , and the second largest eigenvalue, λ_2 , of $\mathbf{A} \in \mathbb{S}_{\geq \mathbf{0}}^{d \times d}$, and let v_1 be the top eigenvector of \mathbf{A}^{-1} . Let $\epsilon, \delta \in (0, 1)$ with $\delta = \exp(-O(d))$. If the Lanczos's algorithm (Algorithm 2) is initialized with a normalized random Gaussian vector with $q = O\left(\frac{\log(d/\epsilon) + \log(1/\delta)}{\sqrt{\gamma}}\right)$, and u is the top eigenvector of $\mathbf{T}_q = \mathbf{Z}_q^\top \mathbf{A} \mathbf{Z}_q$, then the vector $w = \mathbf{Z}_q u$ satisfies

$$\|\boldsymbol{A} - \boldsymbol{A} \boldsymbol{w} \boldsymbol{w}^{\top}\|_{F}^{2} \leq (1+\epsilon) \|\boldsymbol{A} - \boldsymbol{A} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\top}\|_{F}^{2}$$

$$\tag{1}$$

with probability at least $1 - \delta$. Moreover, the algorithm takes time $O\left(\operatorname{nnz}\left(\boldsymbol{A}\right) \frac{\log(d/\epsilon) + \log(1/\delta)}{\sqrt{\gamma}}\right)^2$.

Proof. First, assuming Z_q has full rank, we claim that the amongst all vectors that span the Krylov subspace $K_q(A, z_1)$ (which is also the span of the columns of Z_q), the vector $w = Z_q u$ minimizes $\|A - Aww^{\top}\|_F^2$. Any vector in the span of Z_q is of the form $y = Z_q x$ for some $x \in \mathbb{R}^q$. Now,

$$\begin{aligned} \|\boldsymbol{A} - \boldsymbol{A}yy^{\top}\|_{F}^{2} &= \|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{Z}_{q}xx^{\top}\boldsymbol{Z}_{q}^{\top}\|_{F}^{2} \\ &= \operatorname{Tr}\left(\boldsymbol{A}^{\top}\boldsymbol{A} - \boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{Z}_{q}xx^{\top}\boldsymbol{Z}_{q}^{\top} - \boldsymbol{Z}_{q}xx^{\top}\boldsymbol{Z}_{q}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A} + \boldsymbol{Z}_{q}xx^{\top}\boldsymbol{Z}_{q}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{Z}_{q}xx^{\top}\boldsymbol{Z}_{q}^{\top}\right) \\ &= \operatorname{Tr}\left(\boldsymbol{A}^{\top}\boldsymbol{A} - 2x^{\top}\boldsymbol{Z}_{q}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{Z}_{q}x + \left(x^{\top}\boldsymbol{Z}_{q}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{Z}_{q}x\right)\left(x^{\top}\boldsymbol{Z}_{q}^{\top}\boldsymbol{Z}_{q}x\right)\right) \\ &= \operatorname{Tr}\left(\boldsymbol{A}^{\top}\boldsymbol{A}\right) - 2x^{\top}\boldsymbol{Z}_{q}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{Z}_{q}x + \left(x^{\top}\boldsymbol{Z}_{q}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{Z}_{q}x\right)\|x\|_{2}^{2}.\end{aligned}$$

¹Variants of the Lanczos algorithm work for non-symmetric matrices too, such as Arnoldi's iterations.

²The time taken to compute the top eigenvector u of T_q is $O(q^3)$ and can be made as small as $O(q \log q)$ via the Fast Multipole Method [1] for tridiagonal matrices.

The second equality used $\|\boldsymbol{X}\|_F^2 = \text{Tr}(\boldsymbol{X}^\top \boldsymbol{X})$, the third equality used the cyclic property of trace, and the fourth equality used $\boldsymbol{Z}_q^\top \boldsymbol{Z}_q = \boldsymbol{I}$. From this, it is clear that this problem admits a global minimum x, and this x satisfies

$$\nabla \left(\operatorname{Tr} \left(\boldsymbol{A}^{\top} \boldsymbol{A} \right) - 2x^{\top} \boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q} x + \left(x^{\top} \boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q} x \right) \| x \|_{2}^{2} \right) = 0$$

$$\Longrightarrow \left(2 - \| x \|_{2}^{2} \right) \boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q} x = \| \boldsymbol{A} \boldsymbol{Z}_{q} x \|_{2}^{2} x.$$
(2)

Left multiplying x^{\top} yields

$$2\left(1 - \|x\|_2^2\right) \|\mathbf{A}\mathbf{Z}_q x\|_2^2 = 0.$$

If $AZ_q x = 0$, then $\|A - Aww^{\top}\|_F^2 = \|A\|_F^2$. Otherwise, $\|x\|_2 = 1$. Plugging into equation (2),

$$\boldsymbol{Z}_{q}^{\top}\boldsymbol{A}^{\top}\boldsymbol{A}\boldsymbol{Z}_{q}\boldsymbol{x} = \|\boldsymbol{A}\boldsymbol{Z}_{q}\boldsymbol{x}\|_{2}^{2}\boldsymbol{x},$$

which means x is a (unit) eigenvector of $Z_q^{\top} A^{\top} A Z_q$ with a non-zero eigenvalue. Since Z_q is orthonormal, $y = Z_q x$ is also a unit vector, which means yy^{\top} is a rank-1 projection matrix. Therefore, the problem is equivalent to maximizing

$$\| \boldsymbol{A} y y^{ op} \|_F^2 = \| \boldsymbol{A} y \|_2^2 = \| \boldsymbol{A} \boldsymbol{Z}_q x \|_2^2$$

which is achieved when x is the top eigenvector of $Z_q^{\top} A^{\top} A Z_q$. Since Z_q is full rank and orthonormal, and A is symmetric, $Z_q^{\top} A^{\top} A Z_q = (Z_q^{\top} A Z_q)^2$ and $Z_q^{\top} A Z_q$ is symmetric. Therefore, x is also the top eigenvector of $Z_q^{\top} A Z_q = T_q$, i.e. x = u.

Next, we show that if $q = O\left(\frac{\log(d/\epsilon) + \log(1/\delta)}{\sqrt{\gamma}}\right)$, then there exists a unit vector y in the span of \mathbf{Z}_q such that $|\langle v_1, y \rangle| \ge 1 - \epsilon$.

With some work, it can be shown that Z_q is indeed an orthonormal basis of the Krylov subspace $K_q(A, z_1)$; for a full proof, see [8]. Therefore, for any polynomial p_q of degree at most q there exists an x such that $Z_q x = p_q(A)z_1$. Suppose we show that there is a good approximate top eigenvector in the Krylov subspace, that is, there is a polynomial p_q such that $p_q(A)z_1$ is an approximate top eigenvector of A. Then, from our previous claim about $w = Z_q u$, the vector w is also an approximate top eigenvector of A. Note crucially that we only need to show the existence of such a polynomial, do not need to explicitly compute it.

To this end, let $z_1 = \sum_{i=1}^d \mu_i v_i$, where v_1, v_2, \ldots, v_d are the eigenvectors of \boldsymbol{A} corresponding to eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_d \ge 0$. Then,

$$p_q(\boldsymbol{A})z_1 = \left(\sum_{i=1}^d p_q(\lambda_i) v_i v_i^{\top}\right) \left(\sum_{i=1}^d \mu_i v_i\right) = \sum_{i=1}^d \mu_i p_q(\lambda_i) v_i.$$

The goal is to find p_q such that $p_q(\lambda_1)$ is large, and $p_q(t)$ is small for any $0 \le t \le \lambda_2 \le (1 - \gamma)\lambda_1$. The following lemma (see Lemma 5 in [5]) on polynomial approximations is helpful:

Lemma 1. Let $\epsilon', \gamma \in (0, 1)$. Then, there exists a polynomial p of degree at most $O\left(\frac{1}{\sqrt{\gamma}}\log\frac{1}{\epsilon'}\right)$ such that p(1) = 1 and $|p(t)| \le \epsilon'$ for all $0 \le t \le 1 - \gamma$.

We will also require the following high probability bound on $|\mu_1|$:

Lemma 2. Let $g \sim \mathcal{N}(0, \mathbf{I}_{d \times d})$ and $\delta \in (0, 1)$. Then, with probability at least $1 - \delta$,

$$\left|\frac{\|g\|_2^2}{d} - 1\right| = O\left(\frac{\log(2/\delta)}{d} + \sqrt{\frac{\log(2/\delta)}{d}}\right).$$

Moreover, with probability at least $1 - \delta$, $|g_1| = \Omega(\delta)$.

For a proof of Lemma 2 and more concentration inequalities for (sub)-Gaussians, see [9]. Note that our assumption that $\delta = \exp(-O(d))$ implies $\frac{\log(2/\delta)}{d} = O(1)$, so for all sufficiently large $\delta = \exp(-O(d))$, $\|g\|_2 \leq 2\sqrt{d}$ with probability at least $1 - \frac{\delta}{2}$. Therefore, the values μ_i satisfies with probability at least $1 - \delta$,

$$|\mu_1| = |\langle z_1, v_1 \rangle| = \left| \frac{\langle g_1, v_1 \rangle}{\|g\|_2} \right| \ge C \frac{\delta}{\sqrt{d}}$$

for a sufficiently small universal constant C and $|\mu_i| \leq 1$ for $i \geq 2$. Here, we used the fact that $|g_1| = |\langle g, e_1 \rangle|$ and $|\langle g, v_1 \rangle|$ are identically distributed.

Let $\epsilon' \leq \frac{C\delta\sqrt{\epsilon}}{d}$ and $p_q(t) := \hat{p}_q\left(\frac{t}{\lambda_1}\right)$ where \hat{p}_q is the polynomial promised by Lemma 1. Then, $p_q(\lambda_1) = 1$ and $|p_q(\lambda_i)| \leq \epsilon'$ for all $2 \leq i \leq d$. Letting $\rho_i := \mu_i p_q(\lambda_i)$,

$$\frac{|\rho_i|}{|\rho_1|} = \frac{|\mu_i|\epsilon'}{|\mu_1|} \le \frac{\epsilon'\sqrt{d}}{C\delta} \le \sqrt{\frac{\epsilon}{d}}.$$

This implies that for $q = O\left(\frac{1}{\sqrt{\gamma}}\log\frac{1}{\epsilon'}\right) = O\left(\frac{\log(d/\epsilon) + \log(1/\delta)}{\sqrt{\gamma}}\right)$,

$$\frac{|\langle p_q(\mathbf{A})z_1, v_1 \rangle|^2}{\||p_q(\mathbf{A})z_1|\|_2^2} = \frac{\rho_1^2}{\rho_1^2 + \rho_2^2 + \dots + \rho_d^2} \ge \frac{\rho_1^2}{\rho_1^2 + (d-1)\frac{\epsilon}{d}\rho_1^2} \ge \frac{1}{1+\epsilon} \ge 1-\epsilon.$$

It follows that the polynomial $\frac{p_q(A)z_1}{\|p_q(A)z_1\|_2}$, and therefore the vector w, satisfies equation (1).

Figure 1: Comparison between t^q and p(t), where p is the (unscaled) polynomial guaranteed by 1.

Remark 2. Note the $\sqrt{\gamma}$ improvement in the the runtime of the Lanczos iteration over the Power iteration 1. The main step achieving this improvement is the polynomial p_q used in 1. The Power Method applies the same technique using the polynomial $f(t) = t^q$. However, the dependence of q on γ is worse:

$$(1-\gamma)^t \le \epsilon' \implies t = \Omega\left(\frac{1}{\gamma}\log\frac{1}{\epsilon'}\right).$$

It turns out that t^q can be approximated with a polynomial of degree roughly \sqrt{q} . See [4, 6, 2] for more details.

3.1 Block Krylov Methods

In the previous lecture, we saw the Block Power Method for computing the top k singular vectors of A. We can similarly extend the Lanczos algorithm to the *Block Lanczos Algorithm*, which leads to a similar quadratic improvement in the number of iterations the algorithm.

Algorithm 3: Block Lanczos Algorithm

Data: $A \in \mathbb{R}^{n \times d}, q \in \mathbb{N}, k \in \mathbb{N}$ 1 Choose a random Gaussian matrix $S \in \mathbb{R}^{d \times k}$ 2 $K \leftarrow [S, AS, \dots, A^{q-1}S]$ 3 $Z \leftarrow \operatorname{orth}(K)$, an orthogonal basis of K4 $T \leftarrow Z_q^\top A Z_q$ 5 $\tilde{U}_k \leftarrow \operatorname{top} k$ eigenvectors of T6 return $Z_q \tilde{U}_k$

Theorem 4 (Block Lanczos Algorithm). Let V_k be the top k eigenspace of $\mathbf{A} \in \mathbb{S}_{\geq \mathbf{0}}^{d \times d}$. Let $\epsilon, \delta \in (0, 1)$ with $\delta = e^{-O(d)}$. If the Block Lanczos's algorithm (Algorithm 3) is initialized with $q = O\left(\frac{\log(d/\epsilon) + \log(1/\delta)}{\sqrt{\epsilon}}\right)$, then the output $\mathbf{Z} := \mathbf{Z}_q \tilde{\mathbf{U}}_k$ satisfies

$$\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{Z}\boldsymbol{Z}^{\top}\|_{F}^{2} \leq (1+\epsilon)\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{V}_{k}\boldsymbol{V}_{k}^{\top}\|_{F}^{2}$$

$$\tag{3}$$

with probability at least $1 - \delta$. Moreover, the algorithm takes time $O\left(\operatorname{nnz}\left(\boldsymbol{A}\right) \frac{\log(d/\epsilon) + \log(1/\delta)}{\sqrt{\gamma}}k\right)$.

4 Linear System Solvers

We pick up from our motivation of Krylov subspaces to solve linear systems. Given a nonsingular matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ and a vector $b \in \mathbb{R}^d$, solve the system

$$\mathbf{A}x = b. \tag{4}$$

When the matrix A does not enjoy a particular structure, iterative methods are one of the most popular ways to finding an approximate solution. The idea is to solve for x via updates of the form

$$x_{\ell+1} \leftarrow x_\ell + \alpha r_\ell$$

for some scalar α and direction vectors r_{ℓ} which depend on the initial vector x_0 . One such Krylov subspace method is MINRES (Minimum Residual Method). The idea is to pick x_{ℓ} to be the vector in the (shifted) Krylov subspace $x_0 + \text{Span}\left(r_0, Ar_0, \ldots, A^{\ell-1}r_0\right)$ (where $r_0 = b - Ax_0$) which minimizes $\|b - Ax_{\ell}\|_2$:

$$x_{\ell} \leftarrow \operatorname*{arg\,min}_{x \in x_0 + \operatorname{Span}(r_0, Ar_0, \dots, A^{\ell-1}r_0)} \|b - Ax\|_2$$

This is equivalent [7, 3] to moving along the direction of steepest descent:

$$r_{\ell} \leftarrow b - \mathbf{A}x_{\ell}$$

$$\alpha \leftarrow \frac{\langle r_{\ell}, r_{\ell} \rangle}{\langle \mathbf{A}r_{l}, r_{l} \rangle}$$

$$x_{\ell+1} \leftarrow x_{\ell} + \alpha r_{\ell}$$

Here, we highlight the Lanczos method for solving linear systems for symmetric matrices (a similar method exists for non-symmetric matrices via Arnoldi's iterations), which can be viewed as a repeated projection onto the Krylov subspace $K_q(A, b - Ax_0)$ and equivalent to the steepest descent method for solving linear systems.

Algorithm 4: Lanczos Algorithm for Linear Systems

 $\begin{array}{c} \hline \mathbf{Data:} \ \mathbf{A} \in \mathbb{R}^{n \times d}, b \in \mathbb{R}^{d}, x_{0} \in \mathbb{R}^{d}, q \in \mathbb{N} \\ \mathbf{1} \ r_{0} \leftarrow b - \mathbf{A}x_{0}, \beta_{1} \leftarrow \|r_{0}\|, r_{0} \leftarrow r_{0}/\beta_{1} \\ \mathbf{2} \ \mathbf{for} \ \ell = 1, 2, \dots, q \ \mathbf{do} \\ \mathbf{3} \ \| \begin{array}{c} y_{\ell} \leftarrow \mathbf{A}z_{\ell} - \beta_{\ell}z_{\ell-1} \\ \mathbf{4} \\ \alpha_{\ell} \leftarrow \langle y_{\ell}, z_{\ell} \rangle \\ \mathbf{5} \\ y_{\ell} \leftarrow y_{\ell} - \alpha_{\ell}z_{\ell} \\ \mathbf{6} \\ \beta_{\ell+1} \leftarrow \|y_{\ell}\|_{2}. \ \text{If} \ \beta_{\ell+1} = 0 \ \text{then exit the loop.} \\ \mathbf{7} \ \| \begin{array}{c} z_{\ell+1} \leftarrow \frac{y_{\ell}}{\beta_{\ell+1}} \\ \mathbf{8} \ \mathbf{Z}_{q} \leftarrow [z_{1} \ z_{2} \ \dots \ z_{q}], \mathbf{T}_{q} \leftarrow \text{tridiag}(\beta_{j}, \alpha_{j}, \beta_{j+1}) \\ \mathbf{9} \ x_{q} \leftarrow x_{0} + \mathbf{Z}_{q}\mathbf{T}_{q}^{-1}(\beta_{1}e_{1}) \\ \mathbf{10} \ \mathbf{return} \ x_{q} \end{array}$

4.1 Conjugate Gradient Method

The conjugate gradient (CG) method is a popular variant of the Lanczos algorithm for linear system, when the matrix A is positive semidefinite. In exact arithmetic, the Lanczos algorithm and the conjugate gradient method are identical.

If the matrix A is well-conditioned with condition number κ , then the CG method guarantees:

$$||x^* - x_q||_{\mathbf{A}} \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^q ||x^* - x_0||_{\mathbf{A}}$$

Algorithm 5: Conjugate Gradient Method

 $\begin{array}{c|c} \hline \mathbf{Data:} \ \mathbf{A} \in \mathbb{S}_{\succeq \mathbf{0}}^{d \times d}, b \in \mathbb{R}^{d}, x_{0} \in \mathbb{R}^{d}, q \in \mathbb{N} \\ 1 \ r_{0} \leftarrow b - \mathbf{A}x_{0}, p_{0} \leftarrow r_{0} \\ 2 \ \textbf{while the algorithm has not converged, do} \\ 3 \ \ & \alpha_{\ell} = \langle r_{\ell}, r_{\ell} \rangle / \langle \mathbf{A}p_{\ell}, p_{\ell} \rangle \\ 4 \ \ & x_{\ell+1} \leftarrow x_{\ell} + \alpha_{\ell}p_{\ell} \\ 5 \ & r_{\ell+1} \leftarrow r_{\ell} - \alpha_{\ell}\mathbf{A}p_{\ell} \\ 6 \ & \beta_{\ell} \leftarrow \langle r_{\ell+1}, r_{\ell+1} \rangle / \langle r_{\ell}, r_{\ell} \rangle \\ 7 \ & p_{\ell+1} \leftarrow r_{\ell+1} + \beta_{\ell}p_{\ell} \end{array}$

References

- Ed S Coakley and Vladimir Rokhlin. A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices. *Applied and Computational Harmonic Analysis*, 34(3):379–414, 2013.
- [2] Petros Drineas, Ilse CF Ipsen, Eugenia-Maria Kontopoulou, and Malik Magdon-Ismail. Structural convergence results for approximation of dominant subspaces from block krylov spaces. SIAM Journal on Matrix Analysis and Applications, 39(2):567–586, 2018.
- [3] Carl T Kelley. Iterative methods for optimization. SIAM, 1999.
- [4] John C Mason and David C Handscomb. Chebyshev polynomials. Chapman and Hall/CRC, 2002.
- [5] Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster approximate singular value decomposition. Advances in neural information processing systems, 28, 2015.
- [6] Christopher Musco. Singular value decomposition and krylov subspace methods. https://www.chrismusco.com/amlds2023/notes/lecture11.html.
- [7] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.
- [8] Lloyd N Trefethen and David Bau. Numerical linear algebra. SIAM, 2022.
- [9] Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.