1 Recap

In the last lecture, we introduced iterative methods, which predate sketching-based methods, for low rank approximation of a matrix. Recall the Power Method for computing the top singular vector of a matrix:

```
Algorithm 1: Power Method
Data: \(\boldsymbol{A} \in \mathbb{R}^{n \times d}, q \in \mathbb{N}\)
\(z_{0} \sim \mathcal{N}\left(0, \boldsymbol{I}_{d \times d}\right)\)
\(z_{0} \leftarrow \frac{z_{0}}{\left\|z_{0}\right\|_{2}}\)
for \(\ell=1,2, \ldots, q\) do
    \(z_{\ell} \leftarrow \boldsymbol{A}^{\top}\left(\boldsymbol{A} z_{\ell-1}\right)\)
    \(z_{\ell} \leftarrow \frac{z_{\ell}}{\left\|z_{\ell}\right\|_{2}}\)
return \(z_{q}\)
```

The following theorems record the guarantee of the power method in the gapped and gapless cases.
Theorem 1 (Power Method, Gapped). Let $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ be a matrix with singular values $\sigma_{1} \geq$ $\sigma_{2} \geq \ldots \sigma_{\min (n, d)}$ and top singular vector v_{1}, and let $\gamma:=\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}}$. Then, for any $\epsilon, \delta \in(0,1)$ with $\delta=\exp (-O(d))$, the Power Method (Algorithm 1) with $q=O\left(\frac{\log (d / \epsilon)+\log (1 / \delta)}{\gamma}\right)$ satisfies

$$
\left\|v_{1}-z_{q}\right\|_{2} \leq \epsilon
$$

with probability at least $1-\delta$. Moreover, the algorithm runs in time $O\left(\operatorname{nnz}(\boldsymbol{A}) \frac{\log (d / \epsilon)+\log (1 / \delta)}{\gamma}\right)$.
Theorem 2 (Power Method, Gapless). Let $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ be a matrix with singular values $\sigma_{1} \geq$ $\sigma_{2} \geq \ldots \sigma_{\min (n, d)}$ and top singular vector v_{1}, and let $\gamma:=\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}}$. Then, for any $\epsilon, \delta \in(0,1)$ with $\delta=\exp (-O(d))$, the Power Method (Algorithm 1) with $q=O\left(\frac{\log (d / \epsilon)+\log (1 / \delta)}{\epsilon}\right)$ satisfies

$$
\left\|\boldsymbol{A}-\boldsymbol{A} z_{q} z_{q}^{\top}\right\|_{F}^{2} \leq(1+\epsilon)\left\|\boldsymbol{A}-\boldsymbol{A} v_{1} v_{1}^{\top}\right\|_{F}^{2}
$$

with probability at least $1-\delta$. Moreover, the algorithm runs in time $O\left(\operatorname{nnz}(\boldsymbol{A}) \frac{\log (d / \epsilon)+\log (1 / \delta)}{\epsilon}\right)$.
Note that either of these guarantees implies

$$
\left\|\boldsymbol{A} z_{q}\right\|_{2}^{2} \geq(1-\epsilon)^{2} \sigma_{1}^{2} .
$$

In the gapped case, we can closely align the vector z_{q} with the top singular vector v_{1}, while in the gapless case the flexibility of the power method extends to aligning z_{q} with the eigenspace of right eigenvectors with sufficiently large singular values. Finally, we saw a natural extension of the Power Method, called the Block Power Method, for computing the top k singular vectors of \boldsymbol{A}.

2 Krylov Subspaces

To motivate the definition of Krylov subspaces, consider a linear regression problem of the form

$$
\min _{x \in \mathbb{R}^{d}} F(x):=\frac{1}{2}\|\boldsymbol{C} x-b\|_{2}^{2}=\min _{x \in \mathbb{R}^{d}}\left(\frac{1}{2} x^{\top} \boldsymbol{A} x-x^{\top} v+\frac{1}{2}\|b\|_{2}^{2}\right),
$$

where $\boldsymbol{C} \in \mathbb{R}^{n \times d}, b \in \mathbb{R}^{n}, \boldsymbol{A}=\boldsymbol{C}^{\top} \boldsymbol{C}$, and $v=\boldsymbol{A}^{\top} b$. This is a convex optimization problem, because

$$
\nabla^{2} F(x)=\boldsymbol{C}^{\top} \boldsymbol{C} \succeq \mathbf{0}
$$

A natural approach is to use a descent algorithm. the gradient is given by $\nabla F(x)=\boldsymbol{A} x-v$, so we initialize the gradient descent method with x_{0} equal to a multiple of v, then after q descent steps the point x_{q} is in the span of the vectors $v, \boldsymbol{A} v, \ldots, \boldsymbol{A}^{q} v$. We call

$$
\boldsymbol{K}_{q}(\boldsymbol{A}, v):=\operatorname{Span}\left(v, \boldsymbol{A} v, \ldots, \boldsymbol{A}^{q} v\right)
$$

the Krylov subspace of dimension q generated by (\boldsymbol{A}, v). We will also use the notation \boldsymbol{K}_{q} for the Krylov subspace in case the matrix \boldsymbol{A} and the vector v is clear from the context. An equivalent definition is

$$
\boldsymbol{K}_{q}(\boldsymbol{A}, v):=\{p(\boldsymbol{A}) v \mid p \text { is a polynomial of degree at most } q\} .
$$

Suppose \boldsymbol{A} has full rank. Then, the optimal solution to the linear regression problem is $x=\boldsymbol{A}^{-1} v$. Krylov subspace methods try to avoid the $O\left(n d^{\omega-1}+d^{\omega}\right)$ cost of matrix multiplication ($\boldsymbol{A}=\boldsymbol{C}^{\top} \boldsymbol{C}$) and matrix inversion by approximating \boldsymbol{A}^{-1} using polynomials in \boldsymbol{A}.

Remark 1. The definition of \boldsymbol{K}_{q} immediately implies that $\boldsymbol{K}_{q^{\prime}} \subseteq \boldsymbol{K}_{q}$ for $q^{\prime} \leq q$. Moreover, $\boldsymbol{K}_{q} \subseteq \mathbb{R}_{d}$, which has dimension d. This implies the existence of an index q_{1} such that

$$
\boldsymbol{K}_{0} \subsetneq \boldsymbol{K}_{1} \subsetneq \cdots \subsetneq \boldsymbol{K}_{q_{1}}=\boldsymbol{K}_{q_{1}+1} .
$$

It can be shown that $\boldsymbol{K}_{q_{1}}=\boldsymbol{K}_{q}$ for all $q \geq q_{1}$. Consider the minimal polynomial p of degree $1 \leq r \leq d$ such that $p(\boldsymbol{A})=\mathbf{0}$. Then, \boldsymbol{A}^{r} is expressible as a linear combination of the matrices $\boldsymbol{I}, \boldsymbol{A}, \ldots, \boldsymbol{A}^{r-1}$., which implies that $\boldsymbol{K}_{r}=\boldsymbol{K}_{r-1}$. Therefore, $q_{1} \leq r-1$. A partial converse is also true: there exists a vector z_{1} such that q_{1} achieves the value $r-1$.

3 Lanczos Algorithm

Reconsider the problem of finding the top eigenvector of a symmetric matrix \boldsymbol{A}. The Krylov iteration methods introduced for linear regression apply more generally via a strategy known as Lanczos algorithm or Lanczos iteration. The Lanczos algorithm takes a symmetric matrix \boldsymbol{A} and finds a matrix \boldsymbol{Z}_{q} which is an orthonormal basis of a certain Krylov subspace $\boldsymbol{K}\left(\boldsymbol{A}, z_{1}\right)$, and such that $\boldsymbol{T}_{q}:=\boldsymbol{Z}_{q}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q}$ is a tridiagonal matrix. While the eigenvectors and eigenvalues are not apparent from the tridiagonal form, computing \boldsymbol{T}_{q} is already a significant step towards it.

```
Algorithm 2: Lanczos Algorithm
Data: \(\boldsymbol{A} \in \mathbb{R}^{n \times d}, q \in \mathbb{N}\)
\(z_{0} \leftarrow \mathbf{0}, \beta_{1} \leftarrow 0\)
Choose a starting vector \(z_{1} \in \mathbb{R}^{d}\) with unit norm.
\(z_{0} \sim \mathcal{N}\left(0, \boldsymbol{I}_{d \times d}\right)\)
for \(\ell=1,2, \ldots, q-1\) do
    \(y_{\ell} \leftarrow \boldsymbol{A} z_{\ell}-\beta_{\ell} z_{\ell-1}\)
    \(\alpha_{\ell} \leftarrow\left\langle y_{\ell}, z_{\ell}\right\rangle\)
    \(y_{\ell} \leftarrow y_{\ell}-\alpha_{\ell} z_{\ell}\)
    \(\beta_{\ell+1} \leftarrow\left\|y_{\ell}\right\|_{2}\). If \(\beta_{\ell+1}=0\) then exit the loop.
    \(z_{\ell+1} \leftarrow \frac{y_{\ell}}{\beta_{\ell+1}}\)
\(Z_{q} \leftarrow\left[\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{q}\end{array}\right]\)
return \(Z_{q}\)
```

The matrix $\boldsymbol{T}_{q}=\boldsymbol{Z}_{q}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q}$ is called the Rayleigh Ritz-projection and is given by

$$
\boldsymbol{T}_{q}=\left[\begin{array}{cccccc}
\alpha_{1} & \beta_{2} & & & & \\
\beta_{2} & \alpha_{2} & \beta_{3} & & & \\
& \beta_{3} & \alpha_{3} & \beta_{4} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \cdot \\
& & & & \beta_{q} & \alpha_{q}
\end{array}\right]
$$

If u is a top eigenvector estimate of \boldsymbol{T}_{q}, then $\boldsymbol{Z}_{q} u$ is the estimate of the eigenvector of \boldsymbol{A}.
Theorem 3 (Lanczos Algorithm, Gapped). Let $\gamma:=\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}}$ be the gap between the largest eigenvalue, λ_{1}, and the second largest eigenvalue, λ_{2}, of $\boldsymbol{A} \in \mathbb{S}_{\succeq \mathbf{0}}^{d \times d}$, and let v_{1} be the top eigenvector of \boldsymbol{A}^{1}. Let $\epsilon, \delta \in(0,1)$ with $\delta=\exp (-O(d))$. If the Lanczos's algorithm (Algorithm 2) is initialized with a normalized random Gaussian vector with $q=O\left(\frac{\log (d / \epsilon)+\log (1 / \delta)}{\sqrt{\gamma}}\right)$, and u is the top eigenvector of $\boldsymbol{T}_{q}=\boldsymbol{Z}_{q}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q}$, then the vector $w=\boldsymbol{Z}_{q} u$ satisfies

$$
\begin{equation*}
\left\|\boldsymbol{A}-\boldsymbol{A} w w^{\top}\right\|_{F}^{2} \leq(1+\epsilon)\left\|\boldsymbol{A}-\boldsymbol{A} v_{1} v_{1}^{\top}\right\|_{F}^{2} \tag{1}
\end{equation*}
$$

with probability at least $1-\delta$. Moreover, the algorithm takes time $O\left(\operatorname{nnz}(\boldsymbol{A}) \frac{\log (d / \epsilon)+\log (1 / \delta)}{\sqrt{\gamma}}\right)^{2}$.
Proof. First, assuming \boldsymbol{Z}_{q} has full rank, we claim that the amongst all vectors that span the Krylov subspace $\boldsymbol{K}_{q}\left(\boldsymbol{A}, z_{1}\right)$ (which is also the span of the columns of \boldsymbol{Z}_{q}), the vector $w=\boldsymbol{Z}_{q} u$ minimizes $\left\|\boldsymbol{A}-\boldsymbol{A} w w^{\top}\right\|_{F}^{2}$. Any vector in the span of \boldsymbol{Z}_{q} is of the form $y=\boldsymbol{Z}_{q} x$ for some $x \in \mathbb{R}^{q}$. Now,

$$
\begin{aligned}
\left\|\boldsymbol{A}-\boldsymbol{A} y y^{\top}\right\|_{F}^{2} & =\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{Z}_{q} x x^{\top} \boldsymbol{Z}_{q}^{\top}\right\|_{F}^{2} \\
& =\operatorname{Tr}\left(\boldsymbol{A}^{\top} \boldsymbol{A}-\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q} x x^{\top} \boldsymbol{Z}_{q}^{\top}-\boldsymbol{Z}_{q} x x^{\top} \boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A}+\boldsymbol{Z}_{q} x x^{\top} \boldsymbol{Z}_{q} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q} x x^{\top} \boldsymbol{Z}_{q}^{\top}\right) \\
& =\operatorname{Tr}\left(\boldsymbol{A}^{\top} \boldsymbol{A}-2 x^{\top} \boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q} x+\left(x^{\top} \boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q} x\right)\left(x^{\top} \boldsymbol{Z}_{q}^{\top} \boldsymbol{Z}_{q} x\right)\right) \\
& =\operatorname{Tr}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)-2 x^{\top} \boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q} x+\left(x^{\top} \boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q} x\right)\|x\|_{2}^{2} .
\end{aligned}
$$

[^0]The second equality used $\|\boldsymbol{X}\|_{F}^{2}=\operatorname{Tr}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)$, the third equality used the cyclic property of trace, and the fourth equality used $\boldsymbol{Z}_{q}^{\top} \boldsymbol{Z}_{q}=\boldsymbol{I}$. From this, it is clear that this problem admits a global minimum x, and this x satisfies

$$
\begin{align*}
& \nabla\left(\operatorname{Tr}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)-2 x^{\top} \boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q} x+\left(x^{\top} \boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q} x\right)\|x\|_{2}^{2}\right)=0 \\
\Longrightarrow & \left(2-\|x\|_{2}^{2}\right) \boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q} x=\left\|\boldsymbol{A} \boldsymbol{Z}_{q} x\right\|_{2}^{2} x . \tag{2}
\end{align*}
$$

Left multiplying x^{\top} yields

$$
2\left(1-\|x\|_{2}^{2}\right)\left\|\boldsymbol{A} \boldsymbol{Z}_{q} x\right\|_{2}^{2}=0
$$

If $\boldsymbol{A} \boldsymbol{Z}_{q} x=0$, then $\left\|\boldsymbol{A}-\boldsymbol{A} w w^{\top}\right\|_{F}^{2}=\|\boldsymbol{A}\|_{F}^{2}$. Otherwise, $\|x\|_{2}=1$. Plugging into equation (2),

$$
\boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q} x=\left\|\boldsymbol{A} \boldsymbol{Z}_{q} x\right\|_{2}^{2} x
$$

which means x is a (unit) eigenvector of $\boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q}$ with a non-zero eigenvalue. Since \boldsymbol{Z}_{q} is orthonormal, $y=\boldsymbol{Z}_{q} x$ is also a unit vector, which means $y y^{\top}$ is a rank-1 projection matrix. Therefore, the problem is equivalent to maximizing

$$
\left\|\boldsymbol{A} y y^{\top}\right\|_{F}^{2}=\|\boldsymbol{A} y\|_{2}^{2}=\left\|\boldsymbol{A} \boldsymbol{Z}_{q} x\right\|_{2}^{2}
$$

which is achieved when x is the top eigenvector of $\boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q}$. Since \boldsymbol{Z}_{q} is full rank and orthonormal, and \boldsymbol{A} is symmetric, $\boldsymbol{Z}_{q}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q}=\left(\boldsymbol{Z}_{q}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q}\right)^{2}$ and $\boldsymbol{Z}_{q}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q}$ is symmetric. Therefore, x is also the top eigenvector of $\boldsymbol{Z}_{q}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q}=\boldsymbol{T}_{q}$, i.e. $x=u$.
Next, we show that if $q=O\left(\frac{\log (d / \epsilon)+\log (1 / \delta)}{\sqrt{\gamma}}\right)$, then there exists a unit vector y in the span of \boldsymbol{Z}_{q} such that $\left|\left\langle v_{1}, y\right\rangle\right| \geq 1-\epsilon$.

With some work, it can be shown that \boldsymbol{Z}_{q} is indeed an orthonormal basis of the Krylov subspace $\boldsymbol{K}_{q}\left(\boldsymbol{A}, z_{1}\right)$; for a full proof, see [8]. Therefore, for any polynomial p_{q} of degree at most q there exists an x such that $\boldsymbol{Z}_{q} x=p_{q}(\boldsymbol{A}) z_{1}$. Suppose we show that there is a good approximate top eigenvector in the Krylov subspace, that is, there is a polynomial p_{q} such that $p_{q}(\boldsymbol{A}) z_{1}$ is an approximate top eigenvector of \boldsymbol{A}. Then, from our previous claim about $w=\boldsymbol{Z}_{q} u$, the vector w is also an approximate top eigenvector of \boldsymbol{A}. Note crucially that we only need to show the existence of such a polynomial, do not need to explicitly compute it.
To this end, let $z_{1}=\sum_{i=1}^{d} \mu_{i} v_{i}$, where $v_{1}, v_{2}, \ldots, v_{d}$ are the eigenvectors of \boldsymbol{A} corresponding to eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d} \geq 0$. Then,

$$
p_{q}(\boldsymbol{A}) z_{1}=\left(\sum_{i=1}^{d} p_{q}\left(\lambda_{i}\right) v_{i} v_{i}^{\top}\right)\left(\sum_{i=1}^{d} \mu_{i} v_{i}\right)=\sum_{i=1}^{d} \mu_{i} p_{q}\left(\lambda_{i}\right) v_{i} .
$$

The goal is to find p_{q} such that $p_{q}\left(\lambda_{1}\right)$ is large, and $p_{q}(t)$ is small for any $0 \leq t \leq \lambda_{2} \leq(1-\gamma) \lambda_{1}$. The following lemma (see Lemma 5 in [5]) on polynomial approximations is helpful:
Lemma 1. Let $\epsilon^{\prime}, \gamma \in(0,1)$. Then, there exists a polynomial p of degree at most $O\left(\frac{1}{\sqrt{\gamma}} \log \frac{1}{\epsilon^{\prime}}\right)$ such that $p(1)=1$ and $|p(t)| \leq \epsilon^{\prime}$ for all $0 \leq t \leq 1-\gamma$.

We will also require the following high probability bound on $\left|\mu_{1}\right|$:
Lemma 2. Let $g \sim \mathcal{N}\left(0, \boldsymbol{I}_{d \times d}\right)$ and $\delta \in(0,1)$. Then, with probability at least $1-\delta$,

$$
\left|\frac{\|g\|_{2}^{2}}{d}-1\right|=O\left(\frac{\log (2 / \delta)}{d}+\sqrt{\frac{\log (2 / \delta)}{d}}\right) .
$$

Moreover, with probability at least $1-\delta,\left|g_{1}\right|=\Omega(\delta)$.
For a proof of Lemma 2 and more concentration inequalities for (sub)-Gaussians, see [9]. Note that our assumption that $\delta=\exp (-O(d))$ implies $\frac{\log (2 / \delta)}{d}=O(1)$, so for all sufficiently large $\delta=\exp (-O(d)),\|g\|_{2} \leq 2 \sqrt{d}$ with probability at least $1-\frac{\delta}{2}$. Therefore, the values μ_{i} satisfies with probability at least $1-\delta$,

$$
\left|\mu_{1}\right|=\left|\left\langle z_{1}, v_{1}\right\rangle\right|=\left|\frac{\left\langle g_{1}, v_{1}\right\rangle}{\|g\|_{2}}\right| \geq C \frac{\delta}{\sqrt{d}}
$$

for a sufficiently small universal constant C and $\left|\mu_{i}\right| \leq 1$ for $i \geq 2$. Here, we used the fact that $\left|g_{1}\right|=\left|\left\langle g, e_{1}\right\rangle\right|$ and $\left|\left\langle g, v_{1}\right\rangle\right|$ are identically distributed.
Let $\epsilon^{\prime} \leq \frac{C \delta \sqrt{\epsilon}}{d}$ and $p_{q}(t):=\hat{p}_{q}\left(\frac{t}{\lambda_{1}}\right)$ where \hat{p}_{q} is the polynomial promised by Lemma 1. Then, $p_{q}\left(\lambda_{1}\right)=1$ and $\left|p_{q}\left(\lambda_{i}\right)\right| \leq \epsilon^{\prime}$ for all $2 \leq i \leq d$. Letting $\rho_{i}:=\mu_{i} p_{q}\left(\lambda_{i}\right)$,

$$
\frac{\left|\rho_{i}\right|}{\left|\rho_{1}\right|}=\frac{\left|\mu_{i}\right| \epsilon^{\prime}}{\left|\mu_{1}\right|} \leq \frac{\epsilon^{\prime} \sqrt{d}}{C \delta} \leq \sqrt{\frac{\epsilon}{d}} .
$$

This implies that for $q=O\left(\frac{1}{\sqrt{\gamma}} \log \frac{1}{\epsilon^{\prime}}\right)=O\left(\frac{\log (d / \epsilon)+\log (1 / \delta)}{\sqrt{\gamma}}\right)$,

$$
\frac{\left|\left\langle p_{q}(\boldsymbol{A}) z_{1}, v_{1}\right\rangle\right|^{2}}{\left\|\left|p_{q}(\boldsymbol{A}) z_{1}\right|\right\|_{2}^{2}}=\frac{\rho_{1}^{2}}{\rho_{1}^{2}+\rho_{2}^{2}+\cdots+\rho_{d}^{2}} \geq \frac{\rho_{1}^{2}}{\rho_{1}^{2}+(d-1) \frac{\epsilon}{d} \rho_{1}^{2}} \geq \frac{1}{1+\epsilon} \geq 1-\epsilon .
$$

It follows that the polynomial $\frac{p_{q}(\boldsymbol{A}) z_{1}}{\left\|q_{q}(\boldsymbol{A}) z_{1}\right\|_{2}}$, and therefore the vector w, satisfies equation (1).

Figure 1: Comparison between t^{q} and $p(t)$, where p is the (unscaled) polynomial guaranteed by 1.

Remark 2. Note the $\sqrt{\gamma}$ improvement in the the runtime of the Lanczos iteration over the Power iteration 1. The main step achieving this improvement is the polynomial p_{q} used in 1. The Power Method applies the same technique using the polynomial $f(t)=t^{q}$. However, the dependence of q on γ is worse:

$$
(1-\gamma)^{t} \leq \epsilon^{\prime} \Longrightarrow t=\Omega\left(\frac{1}{\gamma} \log \frac{1}{\epsilon^{\prime}}\right)
$$

It turns out that t^{q} can be approximated with a polynomial of degree roughly \sqrt{q}. See $[4,6,2]$ for more details.

3.1 Block Krylov Methods

In the previous lecture, we saw the Block Power Method for computing the top k singular vectors of \boldsymbol{A}. We can similarly extend the Lanczos algorithm to the Block Lanczos Algorithm, which leads to a similar quadratic improvement in the number of iterations the algorithm.

```
Algorithm 3: Block Lanczos Algorithm
Data: \(\boldsymbol{A} \in \mathbb{R}^{n \times d}, q \in \mathbb{N}, k \in \mathbb{N}\)
Choose a random Gaussian matrix \(\boldsymbol{S} \in \mathbb{R}^{d \times k}\)
\(\boldsymbol{K} \leftarrow\left[\boldsymbol{S}, \boldsymbol{A} \boldsymbol{S}, \ldots, \boldsymbol{A}^{q-1} \boldsymbol{S}\right]\)
\(\boldsymbol{Z} \leftarrow \operatorname{orth}(\boldsymbol{K})\), an orthogonal basis of \(\boldsymbol{K}\)
\(\boldsymbol{T} \boldsymbol{T} \leftarrow \boldsymbol{Z}_{q}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q}\)
\({ }_{5} \tilde{\boldsymbol{U}}_{k} \leftarrow\) top \(k\) eigenvectors of \(\boldsymbol{T}\)
6 return \(Z_{q} \tilde{U}_{k}\)
```

Theorem 4 (Block Lanczos Algorithm). Let \boldsymbol{V}_{k} be the top k eigenspace of $\boldsymbol{A} \in \mathbb{S}_{\succeq \mathbf{0}}^{d \times d}$. Let $\epsilon, \delta \in(0,1)$ with $\delta=e^{-O(d)}$. If the Block Lanczos's algorithm (Algorithm 3) is initialized with $q=O\left(\frac{\log (d / \epsilon)+\log (1 / \delta)}{\sqrt{\epsilon}}\right)$, then the output $\boldsymbol{Z}:=\boldsymbol{Z}_{q} \tilde{\boldsymbol{U}}_{k}$ satisfies

$$
\begin{equation*}
\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{Z} \boldsymbol{Z}^{\top}\right\|_{F}^{2} \leq(1+\epsilon)\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{V}_{k} \boldsymbol{V}_{k}^{\top}\right\|_{F}^{2} \tag{3}
\end{equation*}
$$

with probability at least $1-\delta$. Moreover, the algorithm takes time $O\left(\mathrm{nnz}(\boldsymbol{A}) \frac{\log (d / \epsilon)+\log (1 / \delta)}{\sqrt{\gamma}} k\right)$.

4 Linear System Solvers

We pick up from our motivation of Krylov subspaces to solve linear systems. Given a nonsingular matrix $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ and a vector $b \in \mathbb{R}^{d}$, solve the system

$$
\begin{equation*}
\boldsymbol{A} x=b . \tag{4}
\end{equation*}
$$

When the matrix \boldsymbol{A} does not enjoy a particular structure, iterative methods are one of the most popular ways to finding an approximate solution. The idea is to solve for x via updates of the form

$$
x_{\ell+1} \leftarrow x_{\ell}+\alpha r_{\ell}
$$

for some scalar α and direction vectors r_{ℓ} which depend on the initial vector x_{0}. One such Krylov subspace method is MINRES (Minimum Residual Method). The idea is to pick x_{ℓ} to be the vector in the (shifted) Krylov subspace $x_{0}+\operatorname{Span}\left(r_{0}, \boldsymbol{A} r_{0}, \ldots, \boldsymbol{A}^{\ell-1} r_{0}\right)$ (where $r_{0}=b-\boldsymbol{A} x_{0}$) which minimizes $\left\|b-\boldsymbol{A} x_{\ell}\right\|_{2}$:

$$
x_{\ell} \leftarrow \underset{x \in x_{0}+\operatorname{Span}\left(r_{0}, \boldsymbol{A} r_{0}, \ldots, \boldsymbol{A}^{\ell-1} r_{0}\right)}{\arg \min }\|b-\boldsymbol{A} x\|_{2}
$$

This is equivalent [7, 3] to moving along the direction of steepest descent:

$$
\begin{aligned}
r_{\ell} & \leftarrow b-\boldsymbol{A} x_{\ell} \\
\alpha & \leftarrow \frac{\left\langle r_{\ell}, r_{\ell}\right\rangle}{\left\langle\boldsymbol{A} r_{l}, r_{l}\right\rangle} \\
x_{\ell+1} & \leftarrow x_{\ell}+\alpha r_{\ell}
\end{aligned}
$$

Here, we highlight the Lanczos method for solving linear systems for symmetric matrices (a similar method exists for non-symmetric matrices via Arnoldi's iterations), which can be viewed as a repeated projection onto the Krylov subspace $\boldsymbol{K}_{q}\left(\boldsymbol{A}, b-\boldsymbol{A} x_{0}\right)$ and equivalent to the steepest descent method for solving linear systems.

```
Algorithm 4: Lanczos Algorithm for Linear Systems
Data: \(\boldsymbol{A} \in \mathbb{R}^{n \times d}, b \in \mathbb{R}^{d}, x_{0} \in \mathbb{R}^{d}, q \in \mathbb{N}\)
\(r_{0} \leftarrow b-\boldsymbol{A} x_{0}, \beta_{1} \leftarrow\left\|r_{0}\right\|, r_{0} \leftarrow r_{0} / \beta_{1}\)
for \(\ell=1,2, \ldots, q\) do
    \(y_{\ell} \leftarrow \boldsymbol{A} z_{\ell}-\beta_{\ell} z_{\ell-1}\)
    \(\alpha_{\ell} \leftarrow\left\langle y_{\ell}, z_{\ell}\right\rangle\)
    \(y_{\ell} \leftarrow y_{\ell}-\alpha_{\ell} z_{\ell}\)
    \(\beta_{\ell+1} \leftarrow\left\|y_{\ell}\right\|_{2}\). If \(\beta_{\ell+1}=0\) then exit the loop.
    \(z_{\ell+1} \leftarrow \frac{y_{\ell}}{\beta_{\ell+1}}\)
\(\boldsymbol{\mathcal { B }} \boldsymbol{Z}_{q} \leftarrow\left[z_{1} z_{2} \ldots z_{q}\right], \boldsymbol{T}_{q} \leftarrow \operatorname{tridiag}\left(\beta_{j}, \alpha_{j}, \beta_{j+1}\right)\)
\(x_{q} \leftarrow x_{0}+\boldsymbol{Z}_{q} \boldsymbol{T}_{q}^{-1}\left(\beta_{1} e_{1}\right)\)
return \(x_{q}\)
```


4.1 Conjugate Gradient Method

The conjugate gradient (CG) method is a popular variant of the Lanczos algorithm for linear systerm, when the matrix \boldsymbol{A} is positive semidefinite. In exact arithmetic, the Lanczos algorithm and the conjugate gradient method are identical.

If the matrix \boldsymbol{A} is well-conditioned with condition number κ, then the CG method guarantees:

$$
\left\|x^{*}-x_{q}\right\|_{\boldsymbol{A}} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{q}\left\|x^{*}-x_{0}\right\|_{\boldsymbol{A}}
$$

```
Algorithm 5: Conjugate Gradient Method
Data: \(\boldsymbol{A} \in \mathbb{S}_{\succeq \mathbf{0}}^{d \times d}, b \in \mathbb{R}^{d}, x_{0} \in \mathbb{R}^{d}, q \in \mathbb{N}\)
\(r_{0} \leftarrow b-\boldsymbol{A} x_{0}, p_{0} \leftarrow r_{0}\)
while the algorithm has not converged, do
    \(\alpha_{\ell}=\left\langle r_{\ell}, r_{\ell}\right\rangle /\left\langle\boldsymbol{A} p_{\ell}, p_{\ell}\right\rangle\)
    \(x_{\ell+1} \leftarrow x_{\ell}+\alpha_{\ell} p_{\ell}\)
    \(r_{\ell+1} \leftarrow r_{\ell}-\alpha_{\ell} \boldsymbol{A} p_{\ell}\)
    \(\beta_{\ell} \leftarrow\left\langle r_{\ell+1}, r_{\ell+1}\right\rangle /\left\langle r_{\ell}, r_{\ell}\right\rangle\)
    \(p_{\ell+1} \leftarrow r_{\ell+1}+\beta_{\ell} p_{\ell}\)
```


References

[1] Ed S Coakley and Vladimir Rokhlin. A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices. Applied and Computational Harmonic Analysis, 34(3):379-414, 2013.
[2] Petros Drineas, Ilse CF Ipsen, Eugenia-Maria Kontopoulou, and Malik Magdon-Ismail. Structural convergence results for approximation of dominant subspaces from block krylov spaces. SIAM Journal on Matrix Analysis and Applications, 39(2):567-586, 2018.
[3] Carl T Kelley. Iterative methods for optimization. SIAM, 1999.
[4] John C Mason and David C Handscomb. Chebyshev polynomials. Chapman and Hall/CRC, 2002.
[5] Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster approximate singular value decomposition. Advances in neural information processing systems, 28, 2015.
[6] Christopher Musco. Singular value decomposition and krylov subspace methods. https: //www.chrismusco.com/amlds2023/notes/lecture11.html.
[7] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.
[8] Lloyd N Trefethen and David Bau. Numerical linear algebra. SIAM, 2022.
[9] Roman Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47. Cambridge university press, 2018.

[^0]: ${ }^{1}$ Variants of the Lanczos algorithm work for non-symmetric matrices too, such as Arnoldi's iterations.
 ${ }^{2}$ The time taken to compute the top eigenvector u of \boldsymbol{T}_{q} is $O\left(q^{3}\right)$ and can be made as small as $O(q \log q)$ via the Fast Multipole Method [1] for tridiagonal matrices.

