
CSE 392: Matrix and Tensor Algorithms for Data Spring 2024

Lecture 13 — 02/28/2024
Instructor: Shashanka Ubaru Scribe: Shourya Pandey

1 Recap

In the last lecture, we introduced iterative methods, which predate sketching-based methods, for low
rank approximation of a matrix. Recall the Power Method for computing the top singular vector of
a matrix:

Algorithm 1: Power Method
Data: A ∈ Rn×d, q ∈ N

1 z0 ∼ N (0, Id×d)
2 z0 ← z0

∥z0∥2

3 for ℓ = 1, 2, . . . , q do
4 zℓ ← A⊤ (Azℓ−1)
5 zℓ ← zℓ

∥zℓ∥2

6 return zq

The following theorems record the guarantee of the power method in the gapped and gapless cases.
Theorem 1 (Power Method, Gapped). Let A ∈ Rn×d be a matrix with singular values σ1 ≥
σ2 ≥ . . . σmin(n,d) and top singular vector v1, and let γ := σ1−σ2

σ1
. Then, for any ϵ, δ ∈ (0, 1) with

δ = exp(−O(d)), the Power Method (Algorithm 1) with q = O
(

log(d/ϵ)+log(1/δ)
γ

)
satisfies

∥v1 − zq∥2 ≤ ϵ

with probability at least 1− δ. Moreover, the algorithm runs in time O
(
nnz (A) log(d/ϵ)+log(1/δ)

γ

)
.

Theorem 2 (Power Method, Gapless). Let A ∈ Rn×d be a matrix with singular values σ1 ≥
σ2 ≥ . . . σmin(n,d) and top singular vector v1, and let γ := σ1−σ2

σ1
. Then, for any ϵ, δ ∈ (0, 1) with

δ = exp(−O(d)), the Power Method (Algorithm 1) with q = O
(

log(d/ϵ)+log(1/δ)
ϵ

)
satisfies

∥A−Azqz⊤
q ∥2F ≤ (1 + ϵ)∥A−Av1v⊤

1 ∥2F

with probability at least 1− δ. Moreover, the algorithm runs in time O
(
nnz (A) log(d/ϵ)+log(1/δ)

ϵ

)
.

Note that either of these guarantees implies

∥Azq∥22 ≥ (1− ϵ)2σ2
1.

In the gapped case, we can closely align the vector zq with the top singular vector v1, while in the
gapless case the flexibility of the power method extends to aligning zq with the eigenspace of right
eigenvectors with sufficiently large singular values. Finally, we saw a natural extension of the Power
Method, called the Block Power Method, for computing the top k singular vectors of A.
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2 Krylov Subspaces

To motivate the definition of Krylov subspaces, consider a linear regression problem of the form

min
x∈Rd

F (x) := 1
2∥Cx− b∥22 = min

x∈Rd

(1
2x⊤Ax− x⊤v + 1

2∥b∥
2
2

)
,

where C ∈ Rn×d, b ∈ Rn, A = C⊤C, and v = A⊤b. This is a convex optimization problem, because

∇2F (x) = C⊤C ⪰ 0.

A natural approach is to use a descent algorithm. the gradient is given by ∇F (x) = Ax− v, so we
initialize the gradient descent method with x0 equal to a multiple of v, then after q descent steps
the point xq is in the span of the vectors v, Av, . . . , Aqv. We call

Kq(A, v) := Span (v, Av, . . . , Aqv)

the Krylov subspace of dimension q generated by (A, v). We will also use the notation Kq for the
Krylov subspace in case the matrix A and the vector v is clear from the context. An equivalent
definition is

Kq(A, v) := {p(A)v | p is a polynomial of degree at most q} .

Suppose A has full rank. Then, the optimal solution to the linear regression problem is x = A−1v.
Krylov subspace methods try to avoid the O(ndω−1 + dω) cost of matrix multiplication (A = C⊤C)
and matrix inversion by approximating A−1 using polynomials in A.

Remark 1. The definition of Kq immediately implies that Kq′ ⊆ Kq for q′ ≤ q. Moreover,
Kq ⊆ Rd, which has dimension d. This implies the existence of an index q1 such that

K0 ⊊ K1 ⊊ · · · ⊊ Kq1 = Kq1+1.

It can be shown that Kq1 = Kq for all q ≥ q1. Consider the minimal polynomial p of degree
1 ≤ r ≤ d such that p(A) = 0. Then, Ar is expressible as a linear combination of the matrices
I, A, . . . , Ar−1., which implies that Kr = Kr−1. Therefore, q1 ≤ r − 1. A partial converse is also
true: there exists a vector z1 such that q1 achieves the value r − 1.

3 Lanczos Algorithm

Reconsider the problem of finding the top eigenvector of a symmetric matrix A. The Krylov iteration
methods introduced for linear regression apply more generally via a strategy known as Lanczos
algorithm or Lanczos iteration. The Lanczos algorithm takes a symmetric matrix A and finds a
matrix Zq which is an orthonormal basis of a certain Krylov subspace K (A, z1), and such that
T q := Z⊤

q AZq is a tridiagonal matrix. While the eigenvectors and eigenvalues are not apparent
from the tridiagonal form, computing T q is already a significant step towards it.
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Algorithm 2: Lanczos Algorithm
Data: A ∈ Rn×d, q ∈ N

1 z0 ← 0, β1 ← 0
2 Choose a starting vector z1 ∈ Rd with unit norm.
3 z0 ∼ N (0, Id×d)
4 for ℓ = 1, 2, . . . , q − 1 do
5 yℓ ← Azℓ − βℓzℓ−1
6 αℓ ← ⟨yℓ, zℓ⟩
7 yℓ ← yℓ − αℓzℓ

8 βℓ+1 ← ∥yℓ∥2. If βℓ+1 = 0 then exit the loop.
9 zℓ+1 ← yℓ

βℓ+1

10 Zq ← [z1 z2 . . . zq]
11 return Zq

The matrix T q = Z⊤
q AZq is called the Rayleigh Ritz-projection and is given by

T q =



α1 β2
β2 α2 β3

β3 α3 β4
· · ·

· · ·
βq αq


If u is a top eigenvector estimate of T q, then Zqu is the estimate of the eigenvector of A.
Theorem 3 (Lanczos Algorithm, Gapped). Let γ := λ1−λ2

λ1
be the gap between the largest eigenvalue,

λ1, and the second largest eigenvalue, λ2, of A ∈ Sd×d
⪰0 , and let v1 be the top eigenvector of A 1.

Let ϵ, δ ∈ (0, 1) with δ = exp(−O(d)). If the Lanczos’s algorithm (Algorithm 2) is initialized with a
normalized random Gaussian vector with q = O

(
log(d/ϵ)+log(1/δ)√

γ

)
, and u is the top eigenvector of

T q = Z⊤
q AZq, then the vector w = Zqu satisfies

∥A−Aww⊤∥2F ≤ (1 + ϵ)∥A−Av1v⊤
1 ∥2F (1)

with probability at least 1− δ. Moreover, the algorithm takes time O
(
nnz (A) log(d/ϵ)+log(1/δ)√

γ

)
2.

Proof. First, assuming Zq has full rank, we claim that the amongst all vectors that span the Krylov
subspace Kq (A, z1) (which is also the span of the columns of Zq), the vector w = Zqu minimizes
∥A−Aww⊤∥2F . Any vector in the span of Zq is of the form y = Zqx for some x ∈ Rq. Now,

∥A−Ayy⊤∥2F = ∥A−AZqxx⊤Z⊤
q ∥2F

= Tr
(
A⊤A−A⊤AZqxx⊤Z⊤

q −Zqxx⊤Z⊤
q A⊤A + Zqxx⊤ZqA⊤AZqxx⊤Z⊤

q

)
= Tr

(
A⊤A− 2x⊤Z⊤

q A⊤AZqx +
(
x⊤Z⊤

q A⊤AZqx
) (

x⊤Z⊤
q Zqx

))
= Tr

(
A⊤A

)
− 2x⊤Z⊤

q A⊤AZqx +
(
x⊤Z⊤

q A⊤AZqx
)
∥x∥22.

1Variants of the Lanczos algorithm work for non-symmetric matrices too, such as Arnoldi’s iterations.
2The time taken to compute the top eigenvector u of T q is O(q3) and can be made as small as O(q log q) via the

Fast Multipole Method [1] for tridiagonal matrices.
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The second equality used ∥X∥2F = Tr
(
X⊤X

)
, the third equality used the cyclic property of trace,

and the fourth equality used Z⊤
q Zq = I. From this, it is clear that this problem admits a global

minimum x, and this x satisfies

∇
(
Tr
(
A⊤A

)
− 2x⊤Z⊤

q A⊤AZqx +
(
x⊤Z⊤

q A⊤AZqx
)
∥x∥22

)
= 0

=⇒
(
2− ∥x∥22

)
Z⊤

q A⊤AZqx = ∥AZqx∥22x. (2)

Left multiplying x⊤ yields

2
(
1− ∥x∥22

)
∥AZqx∥22 = 0.

If AZqx = 0, then ∥A−Aww⊤∥2F = ∥A∥2F . Otherwise, ∥x∥2 = 1. Plugging into equation (2),

Z⊤
q A⊤AZqx = ∥AZqx∥22x,

which means x is a (unit) eigenvector of Z⊤
q A⊤AZq with a non-zero eigenvalue. Since Zq is

orthonormal, y = Zqx is also a unit vector, which means yy⊤ is a rank-1 projection matrix.
Therefore, the problem is equivalent to maximizing

∥Ayy⊤∥2F = ∥Ay∥22 = ∥AZqx∥22,

which is achieved when x is the top eigenvector of Z⊤
q A⊤AZq. Since Zq is full rank and orthonormal,

and A is symmetric, Z⊤
q A⊤AZq =

(
Z⊤

q AZq

)2
and Z⊤

q AZq is symmetric. Therefore, x is also the
top eigenvector of Z⊤

q AZq = T q, i.e. x = u.

Next, we show that if q = O
(

log(d/ϵ)+log(1/δ)√
γ

)
, then there exists a unit vector y in the span of Zq

such that | ⟨v1, y⟩ | ≥ 1− ϵ.

With some work, it can be shown that Zq is indeed an orthonormal basis of the Krylov subspace
Kq (A, z1); for a full proof, see [8]. Therefore, for any polynomial pq of degree at most q there exists
an x such that Zqx = pq(A)z1. Suppose we show that there is a good approximate top eigenvector
in the Krylov subspace, that is, there is a polynomial pq such that pq(A)z1 is an approximate
top eigenvector of A. Then, from our previous claim about w = Zqu, the vector w is also an
approximate top eigenvector of A. Note crucially that we only need to show the existence of such a
polynomial, do not need to explicitly compute it.

To this end, let z1 =
∑d

i=1 µivi, where v1, v2, . . . , vd are the eigenvectors of A corresponding to
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. Then,

pq(A)z1 =
(

d∑
i=1

pq (λi) viv
⊤
i

)(
d∑

i=1
µivi

)
=

d∑
i=1

µipq (λi) vi.

The goal is to find pq such that pq(λ1) is large, and pq(t) is small for any 0 ≤ t ≤ λ2 ≤ (1− γ)λ1.
The following lemma (see Lemma 5 in [5]) on polynomial approximations is helpful:

Lemma 1. Let ϵ′, γ ∈ (0, 1). Then, there exists a polynomial p of degree at most O
(

1√
γ log 1

ϵ′

)
such

that p(1) = 1 and |p(t)| ≤ ϵ′ for all 0 ≤ t ≤ 1− γ.
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We will also require the following high probability bound on |µ1|:

Lemma 2. Let g ∼ N (0, Id×d) and δ ∈ (0, 1). Then, with probability at least 1− δ,∣∣∣∣∣∥g∥22d
− 1

∣∣∣∣∣ = O

 log(2/δ)
d

+

√
log(2/δ)

d

 .

Moreover, with probability at least 1− δ, |g1| = Ω (δ).

For a proof of Lemma 2 and more concentration inequalities for (sub)-Gaussians, see [9]. Note
that our assumption that δ = exp(−O(d)) implies log(2/δ)

d = O(1), so for all sufficiently large
δ = exp(−O(d)), ∥g∥2 ≤ 2

√
d with probability at least 1− δ

2 . Therefore, the values µi satisfies with
probability at least 1− δ,

|µ1| = |⟨z1, v1⟩| =
∣∣∣∣⟨g1, v1⟩
∥g∥2

∣∣∣∣ ≥ C
δ√
d

for a sufficiently small universal constant C and |µi| ≤ 1 for i ≥ 2. Here, we used the fact that
|g1| = | ⟨g, e1⟩ | and | ⟨g, v1⟩ | are identically distributed.

Let ϵ′ ≤ Cδ
√

ϵ
d and pq(t) := p̂q

(
t

λ1

)
where p̂q is the polynomial promised by Lemma 1. Then,

pq(λ1) = 1 and |pq(λi)| ≤ ϵ′ for all 2 ≤ i ≤ d. Letting ρi := µipq (λi),

|ρi|
|ρ1|

= |µi|ϵ′

|µ1|
≤ ϵ′√d

Cδ
≤
√

ϵ

d
.

This implies that for q = O
(

1√
γ log 1

ϵ′

)
= O

(
log(d/ϵ)+log(1/δ)√

γ

)
,

| ⟨pq(A)z1, v1⟩ |2

∥|pq(A)z1|∥22
= ρ2

1
ρ2

1 + ρ2
2 + · · ·+ ρ2

d

≥ ρ2
1

ρ2
1 + (d− 1) ϵ

dρ2
1
≥ 1

1 + ϵ
≥ 1− ϵ.

It follows that the polynomial pq(A)z1
∥pq(A)z1∥2

, and therefore the vector w, satisfies equation (1). ■

Figure 1: Comparison between tq and p(t), where p is the (unscaled) polynomial guaranteed by 1.
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Remark 2. Note the √γ improvement in the the runtime of the Lanczos iteration over the Power
iteration 1. The main step achieving this improvement is the polynomial pq used in 1. The Power
Method applies the same technique using the polynomial f(t) = tq. However, the dependence of q
on γ is worse:

(1− γ)t ≤ ϵ′ =⇒ t = Ω
(1

γ
log 1

ϵ′

)
.

It turns out that tq can be approximated with a polynomial of degree roughly √q. See [4, 6, 2] for
more details.

3.1 Block Krylov Methods

In the previous lecture, we saw the Block Power Method for computing the top k singular vectors
of A. We can similarly extend the Lanczos algorithm to the Block Lanczos Algorithm, which leads
to a similar quadratic improvement in the number of iterations the algorithm.

Algorithm 3: Block Lanczos Algorithm
Data: A ∈ Rn×d, q ∈ N, k ∈ N

1 Choose a random Gaussian matrix S ∈ Rd×k

2 K ← [S, AS, . . . , Aq−1S]
3 Z ← orth (K), an orthogonal basis of K

4 T ← Z⊤
q AZq

5 Ũk ← top k eigenvectors of T

6 return ZqŨk

Theorem 4 (Block Lanczos Algorithm). Let V k be the top k eigenspace of A ∈ Sd×d
⪰0 . Let

ϵ, δ ∈ (0, 1) with δ = e−O(d). If the Block Lanczos’s algorithm (Algorithm 3) is initialized with
q = O

(
log(d/ϵ)+log(1/δ)√

ϵ

)
, then the output Z := ZqŨk satisfies

∥A−AZZ⊤∥2F ≤ (1 + ϵ)∥A−AV kV ⊤
k ∥2F (3)

with probability at least 1− δ. Moreover, the algorithm takes time O
(
nnz (A) log(d/ϵ)+log(1/δ)√

γ k
)
.

4 Linear System Solvers

We pick up from our motivation of Krylov subspaces to solve linear systems. Given a nonsingular
matrix A ∈ Rd×d and a vector b ∈ Rd, solve the system

Ax = b. (4)

When the matrix A does not enjoy a particular structure, iterative methods are one of the most
popular ways to finding an approximate solution. The idea is to solve for x via updates of the form

xℓ+1 ← xℓ + αrℓ
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for some scalar α and direction vectors rℓ which depend on the initial vector x0. One such Krylov
subspace method is MINRES (Minimum Residual Method). The idea is to pick xℓ to be the vector
in the (shifted) Krylov subspace x0 + Span

(
r0, Ar0, . . . , Aℓ−1r0

)
(where r0 = b − Ax0) which

minimizes ∥b−Axℓ∥2:

xℓ ← arg min
x∈x0+Span(r0,Ar0,...,Aℓ−1r0)

∥b−Ax∥2

This is equivalent [7, 3] to moving along the direction of steepest descent:

rℓ ← b−Axℓ

α← ⟨rℓ, rℓ⟩
⟨Arl, rl⟩

xℓ+1 ← xℓ + αrℓ

Here, we highlight the Lanczos method for solving linear systems for symmetric matrices (a similar
method exists for non-symmetric matrices via Arnoldi’s iterations), which can be viewed as a
repeated projection onto the Krylov subspace Kq(A, b−Ax0) and equivalent to the steepest descent
method for solving linear systems.

Algorithm 4: Lanczos Algorithm for Linear Systems
Data: A ∈ Rn×d, b ∈ Rd, x0 ∈ Rd, q ∈ N

1 r0 ← b−Ax0, β1 ← ∥r0∥, r0 ← r0/β1
2 for ℓ = 1, 2, . . . , q do
3 yℓ ← Azℓ − βℓzℓ−1
4 αℓ ← ⟨yℓ, zℓ⟩
5 yℓ ← yℓ − αℓzℓ

6 βℓ+1 ← ∥yℓ∥2. If βℓ+1 = 0 then exit the loop.
7 zℓ+1 ← yℓ

βℓ+1

8 Zq ← [z1 z2 . . . zq], T q ← tridiag(βj , αj , βj+1)
9 xq ← x0 + ZqT −1

q (β1e1)
10 return xq

4.1 Conjugate Gradient Method

The conjugate gradient (CG) method is a popular variant of the Lanczos algorithm for linear
systerm, when the matrix A is positive semidefinite. In exact arithmetic, the Lanczos algorithm
and the conjugate gradient method are identical.

If the matrix A is well-conditioned with condition number κ, then the CG method guarantees:

∥x∗ − xq∥A ≤ 2
(√

κ− 1√
κ + 1

)q

∥x∗ − x0∥A
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Algorithm 5: Conjugate Gradient Method
Data: A ∈ Sd×d

⪰0 , b ∈ Rd, x0 ∈ Rd, q ∈ N
1 r0 ← b−Ax0, p0 ← r0
2 while the algorithm has not converged, do
3 αℓ = ⟨rℓ, rℓ⟩ / ⟨Apℓ, pℓ⟩
4 xℓ+1 ← xℓ + αℓpℓ

5 rℓ+1 ← rℓ − αℓApℓ

6 βℓ ← ⟨rℓ+1, rℓ+1⟩ / ⟨rℓ, rℓ⟩
7 pℓ+1 ← rℓ+1 + βℓpℓ
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