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Sketching and Iterative Methods

Overview of Sketching Methods

Sketching methods are crucial for processing data that is too large to fit in memory, especially in
streaming settings. These methods enable the creation of low-rank approximations of matrices
efficiently.

Sketch Size:

• Dense matrices: For a rank-k approximation, the Gaussian method requires O(k) space.

• SRFT/SRHT: For the same, these methods need O(k log(k/ϵ)) space, with ϵ being the precision
parameter.

• Sparse matrices: CountSketch method requires O(k2) space.

Overview of Iterative Methods

Iterative methods, known for their improved numerical results, require multiple passes over the
data. They are pivotal across numerous fields such as system solvers, optimization, control systems,
PDE solvers, scientific computing, NLP, and various industries including oil refineries, automotive
modeling, electronics, and major tech firms like Google and Twitter.

Computing the partial SVD to obtain the top k singular vectors/values.

• Subspace iteration or block power method.

• Krylov subspace method.

Subspace iteration methods

Power Method

• Let us start with k = 1 (finding the top singular vector/value).

• Given a matrix A ∈ Rn×d, with SVD A = UΣVT , find a vector z ≈ v1.
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Power Method Algorithm

1. Choose a random vector z0. E.g., z0 ∼ N (0, 1).

2. z0 = z0/∥z0∥2

3. For l = 1, . . . , q

• zl = AT (Azl−1)
• zl = zl/∥zl∥2

4. Return zq

Runtime = O(nnz(A) · q) = O(nnz(A) · log d
γ )

Convergence

Theorem 1 (Power Method Convergence). Let γ = σ1−σ2
σ1

be the parameter capturing the gap
between the first and second largest singular values. If the Power Method is initialized with a random
Gaussian vector with A ∈ Rn×d, then, with high probability, after q = O

(
log(1/ϵ)

γ

)
steps, we have:

∥v1 − zq∥2 ≤ ϵ.

Total runtime:
O(nnz(A)q) = O

(
nnz(A) · log(1/ϵ)

γ

)
.

Above also implies,
∥AT zq∥2

F ≥ (1 − ϵ2)∥AT v1∥2
F .

Proof

Let us write z0 =
∑d

i=1 µivi in terms of the right singular vector basis. If µ = [µ1, . . . , µd], we have
µ = V T g

∥g∥2
for random Gaussian g. Since V is orthogonal, we have ∥µ∥2 = 1.

With high probability,
1

poly(d) ≤ |µi| ≤ 1 for i = 1, . . . , d.

Note that µ is Gaussian. We can show that poly(d) ≈ d3 with high probability.

After q steps, we have zq = c(AT A)qz0 for some scaling c. If we write zq =
∑d

i=1 ρivi, we have
ρi = cµ2q

i µi.

Since AT A = V Σ2V T , if the gap parameter is γ = σ1−σ2
σ1

, we can show that, for all j ≥ 2:

σj

σ1
≤ (1 − γ).
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For all j ≥ 2,
|ρj |
|ρ1|

≤ (1 − γ)2q |µj |
|µ1|

≤ (1 − γ)2qpoly(d).

For any 0 < x ≤ 1, we can show that (1 − x)q ≤ e−q.

Proof:
The Taylor series expansion of log(1 − x) around 0 is given by:

log(1 − x) = −
∞∑

n=1

xn

n
.

For 0 < x ≤ 1, this series converges, and we have:

log(1 − x) ≤ −x.

Taking exponentials on both sides, we get:

1 − x ≤ e−x.

Raising both sides to the power of q, we obtain:

(1 − x)q ≤ e−qx.

Hence proved.

If we set q = log(poly(d)/ε)
γ = O

(
log(d/ε)

γ

)
and then we get |ρj |

|ρ1| ≤
√

ε
d .

Since zq is a unit vector, we have
∑

i ρ2
i = 1, and |ρ1| ≤ 1, hence ρ2

1 ≥ 1−d(
√

ε/d)2 =⇒ |ρ1| ≥ 1−ε.

Therefore,
∥v1 − zq∥2 = 2 − 2⟨v1, zq⟩ ≤ 2ε.

Analysis without Gap

Theorem 2 (Gapless Power Method Convergence). If Power Method is initialized with a random
Gaussian vector, then, with high probability, after q = O

(
log(d/ε)

ε

)
steps, we obtain a zq satisfying:

∥A − AzqzT
q ∥2

F ≤ (1 + ε)∥A − Av1vT
1 ∥2

F .

Gap γ might be too small. Then, we do not care to find v1. Say σ1 = σ2, then v2 is as good as v1.

Proof:

We know that ∥A − AzqzT
q ∥2

F = ∥A∥2
F − ∥AzqzT

q ∥2
F . So, to prove the above, we need to show

∥Azq∥2
2 ≥ (1 − ε)2σ2

1.

We have,

∥Azq∥2
2 = zT

q AT Azq =
d∑

i=1
ρ2

i σ2
i ,
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where ρi = vT
i zq. For q = O

(
log(d/ε)

ε

)
, from our previous analysis we have ρ1 ≥ (1 − ε). Hence,

∥Azq∥2
2 ≥

d∑
i=1

ρ2
i σ2

i ≥ ρ2
1σ2

1 ≥ (1 − ε)2σ2
1.

Subspace Iteration

For larger k ≥ 1 (finding the top-k singular vectors/values):

• Block Power Method aka Simultaneous Iteration aka Subspace Iteration aka Orthogonal
Iteration.

Block Power Method

1. Choose S ∈ Rd×k a random Gaussian matrix.

2. Z0 = orth(S)

3. For l = 1, . . . , q

• Zl = AT (AZl−1)
• Zl = orth(Zl)

4. Return Zq

Total runtime: O(nnz(A)kq).

Equivalent to sketching with input (AT A)q.

With q = O
(

log(d/ε)
ε

)
, we obtain a nearly optimal low-rank approximation:

∥A − AZqZT
q ∥2

F ≤ (1 + ε)∥A − AVkV T
k ∥2

F .

For q = O
(

log(nd)
ε

)
, we have:

∥A − AZqZT
q ∥2 ≤ (1 + ε)∥A − Ak∥2.
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