Lecture 11 - February 21, 2024
Instructor: Shashanka Ubaru

1 Randomized SVD by Sampling

The LinearTimeSVD algorithm is a nice way to compute the SVD efficiently. Specifically it requires only one pass over the matrix A making it useful in streaming contexts. The following result holds for any probability distribution on the sampling.
Proposition 1. Given $\mathbf{A} \in \mathbb{R}^{n \times d}$ and \mathbf{H}_{k} is computed from the LinearTimeSVD algorithm, then

$$
\left\|\mathbf{A}-\mathbf{H}_{k} \mathbf{H}_{k}^{T} \mathbf{A}\right\|_{F}^{2} \leq\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2}+2 \sqrt{k}\left\|\mathbf{A} \mathbf{A}^{T}-\mathbf{C} \mathbf{C}^{T}\right\|_{F}
$$

and

$$
\left\|\mathbf{A}-\mathbf{H}_{k} \mathbf{H}_{k}^{T} \mathbf{A}\right\|_{2}^{2} \leq\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2}^{2}+2\left\|\mathbf{A} \mathbf{A}^{T}-\mathbf{C C}^{T}\right\|_{2}
$$

Proof. Begin by noticing that

$$
\begin{aligned}
\left\|\mathbf{A}-\mathbf{H}_{k} \mathbf{H}_{k}^{T} \mathbf{A}\right\|_{F}^{2} & =\operatorname{Tr}\left[\left(\mathbf{A}-\mathbf{H}_{k} \mathbf{H}_{k}^{T} \mathbf{A}\right)^{T}\left(\mathbf{A}-\mathbf{H}_{k} \mathbf{H}_{k}^{T} \mathbf{A}\right)\right] \\
& =\operatorname{Tr}\left(\mathbf{A}^{T} \mathbf{A}-2 \mathbf{A}^{T} \mathbf{H}_{k} \mathbf{H}_{k}^{T} \mathbf{A}+\mathbf{A}^{T} \mathbf{H}_{k} \mathbf{H}_{k}^{T} \mathbf{H}_{k} \mathbf{H}_{k}^{T} \mathbf{A}\right) \\
& =\operatorname{Tr}\left(\mathbf{A}^{T} \mathbf{A}-\mathbf{A}^{T} \mathbf{H}_{k} \mathbf{H}_{k}^{T} \mathbf{A}\right) \\
& =\|\mathbf{A}\|_{F}^{2}-\left\|\mathbf{A}^{T} \mathbf{H}_{k}\right\|_{F}^{2} .
\end{aligned}
$$

Then we have the following relations between $\left\|\mathbf{A}^{T} \mathbf{H}_{k}\right\|_{F}^{2}$ and $\sum_{t=1}^{k} \sigma_{t}^{2}(\mathbf{C})$:

$$
\begin{aligned}
\left|\left|\left|\mathbf{A}^{T} \mathbf{H}_{k} \|_{F}^{2}-\sum_{t=1}^{k} \sigma_{t}^{2}(\mathbf{C})\right|\right.\right. & =\left|\sum_{t=1}^{k}\left(\left\|\mathbf{A}^{T} \mathbf{H}_{k}\right\|_{2}^{2}-\sigma_{t}^{2}(\mathbf{C})\right)\right| \\
& \leq \sqrt{k}\left(\sum_{t=1}^{k}\left(\left\|\mathbf{A}^{T} \mathbf{H}_{t}\right\|_{2}^{2}-\sigma_{t}^{2}(\mathbf{C})\right)^{2}\right)^{1 / 2} \\
& =\sqrt{k}\left(\sum_{t=1}^{k}\left(\left\|\mathbf{A}^{T} \mathbf{H}_{t}\right\|_{2}^{2}-\left\|\mathbf{C}^{T} \mathbf{H}_{t}\right\|_{2}^{2}\right)^{2}\right)^{1 / 2} \\
& =\sqrt{k}\left(\sum_{t=1}^{k}\left(\mathbf{H}^{T}\left(\mathbf{A} \mathbf{A}^{T}-\mathbf{C} \mathbf{C}^{T}\right) \mathbf{H}\right)^{2}\right)^{1 / 2} \\
& \leq \sqrt{k}\left(\left\|\mathbf{A} \mathbf{A}^{T}-\mathbf{C C}^{T}\right\|_{F}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\sum_{t=1}^{k}\left(\sigma_{t}^{2}(\mathbf{C})-\sigma_{t}^{2}(\mathbf{A})\right)\right| & \leq \sqrt{k}\left(\sum_{t=1}^{k}\left(\sigma_{t}^{2}(\mathbf{C})-\sigma_{t}^{2}(\mathbf{A})\right)^{2}\right)^{1 / 2} \\
& =\sqrt{k}\left(\left\|\mathbf{A A}^{T}-\mathbf{C C}^{T}\right\|_{F}\right)
\end{aligned}
$$

where the last equality follows by a similar argument as above. Combining we get

$$
\left|\left\|\mathbf{A}^{T} \mathbf{H}_{k}\right\|_{F}^{2}-\sum_{t=1}^{k} \sigma_{t}^{2}(\mathbf{A})\right| \leq 2 \sqrt{k}\left(\left\|\mathbf{A} \mathbf{A}^{T}-\mathbf{C C}^{T}\right\|_{F}\right)
$$

2 Randomized SVD by Sketching

Proposition 2. Given $\mathbf{A} \in \mathbb{R}^{n \times d}$, let $\mathbf{S} \in \mathbb{R}^{m \times n}$ be a sketching matrix such that if it is a Countsketch matrix with $m=O\left(k^{2} / \epsilon\right)$ or SRHT with $m=O(k \log k / \epsilon)$ or Gaussian sketch with $m=O(k / \epsilon)$, then

$$
\left\|\mathbf{A}-\hat{\mathbf{A}}_{k}\right\|_{F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F},
$$

where $\hat{\mathbf{A}}_{k}$ is a rank- k approximation in row-space of $\mathbf{S A}$.

Proof. Let \mathbf{U}_{k} be the top k left singular vectors of \mathbf{A}. Consider:

$$
\left\|\mathbf{U}_{k}\left(\mathbf{S U}_{k}\right)^{\dagger} \mathbf{S A}-\mathbf{A}\right\|_{F}^{2}
$$

We want to show that this is $(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2}$.
Remark that $\mathbf{A}-\mathbf{A}_{k}$ is orthogonal to \mathbf{U}_{k}. Take

$$
\begin{aligned}
\left\|\mathbf{U}_{k}\left(\mathbf{S S}_{k}\right)^{\dagger} \mathbf{S A}-A\right\|_{F}^{2} & =\left\|\mathbf{U}_{k}\left(\mathbf{S U}_{k}\right)^{\dagger} \mathbf{S} \mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2}+\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2} \\
& =\left\|\mathbf{U}_{k}\left(\mathbf{S U}_{k}\right)^{\dagger} \mathbf{S A}-\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}+\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2} \\
& =\left\|\left(\mathbf{S U}_{k}\right)^{\dagger} \mathbf{S A}-\boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}+\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2}
\end{aligned}
$$

So it suffices to show that $\left\|\left(\mathbf{S U}_{k}\right)^{\dagger} \mathbf{S A}-\boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}$ is $O(\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2}$. Let $A=\mathbf{U}_{k} \sigma_{k} \mathbf{V}_{k}^{T}+$ $\mathbf{U}_{n-k} \boldsymbol{\Sigma}_{r-k} \mathbf{V}_{d-k}^{T}$. Then

$$
\begin{aligned}
\left\|\left(\mathbf{S U}_{k}\right)^{\dagger} \mathbf{S A}-\boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2} & =\left\|\left(\mathbf{S U}_{k}\right)^{\dagger} \mathbf{S U}_{k} \sigma_{k} \mathbf{V}_{k}^{T}+\left(\mathbf{S U}_{k}\right)^{\dagger} \mathbf{S U}_{n-k} \boldsymbol{\Sigma}_{r-k} \mathbf{V}_{d-k}^{T}-\boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2} \\
& =\left\|I \sigma_{k} \mathbf{V}_{k}^{T}+\left(\mathbf{S U}_{k}\right)^{\dagger} \mathbf{S U}_{n-k} \boldsymbol{\Sigma}_{r-k} \mathbf{V}_{d-k}^{T}-\boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2} \\
& =\left\|\left(\mathbf{S U}_{k}\right)^{\dagger} \mathbf{S U}_{n-k} \boldsymbol{\Sigma}_{r-k} \mathbf{V}_{d-k}^{T}\right\|_{F}^{2}
\end{aligned}
$$

and $\left\|\left(\mathbf{S U}_{k}\right)^{\dagger} \mathbf{S U}_{n-k} \boldsymbol{\Sigma}_{r-k} \mathbf{V}_{d-k}^{T}\right\|_{F}^{2}$ can be shown to be $O(\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2}$ using the fact that $\left(\mathbf{S U}_{k}\right)^{\dagger}$ and $\left(\mathbf{S U}_{k}\right)^{T}$ have the same row space and applying the AMM property.

