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1 Randomized SVD by Sampling

The LinearTimeSVD algorithm is a nice way to compute the SVD efficiently. Specifically it requires
only one pass over the matrix A making it useful in streaming contexts. The following result holds
for any probability distribution on the sampling.

Proposition 1. Given A ∈ Rn×d and Hk is computed from the LinearTimeSVD algorithm, then
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where the last equality follows by a similar argument as above. Combining we get∣∣∣∣∣||AT Hk||2F −
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■

2 Randomized SVD by Sketching

Proposition 2. Given A ∈ Rn×d, let S ∈ Rm×n be a sketching matrix such that if it is a Countsketch
matrix with m = O(k2/ϵ) or SRHT with m = O(k log k/ϵ) or Gaussian sketch with m = O(k/ϵ),
then

||A − Âk||F ≤ (1 + ϵ)||A − Ak||F ,

where Âk is a rank-k approximation in row-space of SA.

Proof. Let Uk be the top k left singular vectors of A. Consider:

||Uk(SUk)†SA − A||2F .

We want to show that this is (1 + ϵ)||A − Ak||2F .

Remark that A − Ak is orthogonal to Uk. Take
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and (SUk)T have the same row space and applying the AMM property. ■
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