Lecture 10 - February 19, 2024
Instructor: Shashanka Ubaru

1 Sketch and Solve

Recall that in the setting when we have a large number of samples compared to the number of features a useful way to approximate the solution to the linear equation $\mathbf{A x}=\mathbf{b}$ is to first sketch then solve.

The process involves 3 steps:

1. Generate a sketching matrix $\mathbf{S} \in \mathbb{R}^{m \times n}$.
2. Compute Sketches SA and Sb.
3. Solve:

$$
\tilde{\mathbf{x}}=\min _{\mathbf{x} \in \mathbb{R}^{d}}\|\mathbf{S A x}-\mathbf{S b}\|_{2}^{2}
$$

for $\epsilon \leq 1 / 3$
If S is a subspace ϵ-embedding for $\operatorname{span}([\mathbf{A b}])$ then we can show that

$$
\|\mathbf{A} \tilde{\mathbf{x}}-\mathbf{b}\|_{2} \leq(1+3 \epsilon)\left\|\mathbf{A} \mathbf{x}^{*}-\mathbf{b}\right\|_{2}
$$

where

$$
\begin{aligned}
\mathbf{x}^{*} & =\min _{\mathbf{x} \in \mathbb{R}^{d}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2} \\
\tilde{\mathbf{x}} & =\min _{\mathbf{x} \in \mathbb{R}^{d}}\|\mathbf{S}(\mathbf{A} \mathbf{x}-\mathbf{b})\|_{2} .
\end{aligned}
$$

A similar result holds for other sketching matrices.
Proposition 1. If S is a Countsketch matrix with $m=O\left(d^{2} / \epsilon\right)$ or SRHT with $m=O(d \log d / \epsilon)$, or Gaussian sketch with $m=O(d / \epsilon)$, then

$$
\begin{equation*}
\|\mathbf{A} \tilde{\mathbf{x}}-\mathbf{b}\|_{2} \leq(1+\epsilon)\left\|\mathbf{A} \mathbf{x}^{*}-\mathbf{b}\right\|_{2} . \tag{1}
\end{equation*}
$$

Proof. Using Pythagorean theorem with an orthonormal basis \mathbf{U} of \mathbf{A} we can see that 1 is equivalent to showing $\left\|\tilde{\mathbf{y}}-\mathbf{y}^{*}\right\|_{2}^{2}$ is within $O(\epsilon)$ of $\left\|\mathbf{U y}^{*}-\mathbf{b}\right\|_{2}^{2}$.
In other words let $\mathbf{U} \tilde{\mathbf{y}}=\mathbf{A} \tilde{\mathbf{x}}$ and $\mathbf{U} \mathbf{y}^{*}=\mathbf{A x} \mathbf{x}^{*}$. Then by the Pythagorean theorem we get

$$
\begin{aligned}
\|\mathbf{A} \tilde{\mathbf{x}}-\mathbf{b}\|_{2}^{2} & =\left\|\mathbf{A} \mathbf{x}^{*}-b\right\|_{2}^{2}+\left\|\mathbf{A} \tilde{\mathbf{x}}-\mathbf{A} \mathbf{x}^{*}\right\|_{2}^{2} \\
\Longrightarrow\|\mathbf{U} \tilde{\mathbf{x}}-\mathbf{b}\|_{2}^{2} & =\left\|\mathbf{U x}^{*}-b\right\|_{2}^{2}+\left\|\mathbf{U} \tilde{\mathbf{x}}-\mathbf{U x}^{*}\right\|_{2}^{2}
\end{aligned}
$$

Figure 1: The solution and the sketched solution with respect to the column space of A.

Since $\left\|\mathbf{U}\left(\tilde{\mathbf{y}}-\mathbf{y}^{*}\right)\right\|_{2}^{2}=\left\|\tilde{\mathbf{y}}-\mathbf{y}^{*}\right\|_{2}^{2}$ we need to show that $\left\|\tilde{\mathbf{y}}-\mathbf{y}^{*}\right\|_{2}^{2}=O(\epsilon)\left\|\mathbf{U y}^{*}-\mathbf{b}\right\|_{2}^{2}$.
Figure 1 shows the geometric idea of the argument.
Now recall that for a subspace embedding \mathbf{S} we have

$$
\left\|\mathbf{U}^{T} \mathbf{S}^{T} \mathbf{S U}-I\right\|_{2} \leq \frac{1}{2}
$$

Then,

$$
\begin{aligned}
\left\|\tilde{\mathbf{y}}-\mathbf{y}^{*}\right\|_{2} & \leq\left\|\mathbf{U}^{T} \mathbf{S}^{T} \mathbf{S U}\left(\tilde{\mathbf{y}}-\mathbf{y}^{*}\right)\right\|_{2}+\left\|\mathbf{U}^{T} \mathbf{S}^{T} \mathbf{S U}\left(\tilde{\mathbf{y}}-\mathbf{y}^{*}\right)-\left(\tilde{\mathbf{y}}-\mathbf{y}^{*}\right)\right\|_{2} \\
& \leq\left\|\mathbf{U}^{T} \mathbf{S}^{T} \mathbf{S U}\left(\tilde{\mathbf{y}}-\mathbf{y}^{*}\right)\right\|_{2}+\left\|\mathbf{U}^{T} \mathbf{S}^{T} \mathbf{S} \mathbf{U}-I\right\|_{2}\left\|\tilde{\mathbf{y}}-\mathbf{y}^{*}\right\|_{2} \\
& \leq\left\|\mathbf{U}^{T} \mathbf{S}^{T} \mathbf{S} \mathbf{U}\left(\tilde{\mathbf{y}}-\mathbf{y}^{*}\right)\right\|_{2}+\frac{1}{2}\left\|\tilde{\mathbf{y}}-\mathbf{y}^{*}\right\|_{2} \\
& \leq 2\left\|\mathbf{U}^{T} \mathbf{S}^{T} \mathbf{S U}\left(\tilde{\mathbf{y}}-\mathbf{y}^{*}\right)\right\|_{2} \\
& \leq 2\left\|\mathbf{U}^{T} \mathbf{S}^{T} \mathbf{S}\left(\mathbf{U} \mathbf{y}^{*}-\mathbf{b}\right)\right\|_{2} .
\end{aligned}
$$

With high probability, we have that

$$
\begin{aligned}
\left\|\mathbf{U}^{T} \mathbf{S}^{T} \mathbf{S}\left(\mathbf{U} \mathbf{y}^{*}-\mathbf{b}\right)\right\|_{2}^{2} & \leq \frac{9 \epsilon}{d^{2}}\|\mathbf{U}\|_{F}^{2}\left\|\mathbf{U} \mathbf{y}^{*}-\mathbf{b}\right\|_{2}^{2} \\
& \leq 18 \epsilon\left\|\mathbf{U y}^{*}-\mathbf{b}\right\|_{2}^{2}
\end{aligned}
$$

which shows that $\left\|\tilde{\mathbf{y}}-\mathbf{y}^{*}\right\|_{2}^{2}=O(\epsilon)\left\|\mathbf{U} \mathbf{y}^{*}-\mathbf{b}\right\|_{2}^{2}$ as desired.

2 Sampling for Least Squares

Recall leverage scores:

$$
\ell_{i}(\mathbf{A}):=\sup _{\mathbf{x}} \frac{\left(\mathbf{A}_{i *} \mathbf{x}\right)^{2}}{\|\mathbf{A} \mathbf{x}\|^{2}}=\left\|\mathbf{U}_{i *}\right\|^{2}
$$

where \mathbf{U} is an orthonormal basis for $\operatorname{span}(\mathbf{A}$.
We can use leverage scores to sample rows of \mathbf{A} to approximate a least squares problem. The general idea is to pick m rows of \mathbf{A} with the probability of choosing the $i^{\text {th }}$ row is chosen to be $p_{i}=\ell_{i} / d$.

For a sampling matrix \mathbf{S} chosen this way we get an ϵ-embedding.
Proposition 2. Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ with $r=\operatorname{rank}(\mathbf{A})$, and $\mathbf{S} \in \mathbb{R}^{m \times n}$ be a sampling amtrix with probabilities $p_{i}=\ell_{i} / r$, and $\mathbf{S}_{i *}=\mathbf{e}_{j} / \sqrt{m p_{j}}$ with $\operatorname{Pr}(j=i)=p_{i}$. If $m=O\left(r \log (r / \delta) / \epsilon^{2}\right)$, then \mathbf{S} is ϵ-subspace embedding of $\operatorname{span}(\mathbf{A})$ with probability $1-\delta$.

To prove this proposition we will need the matrix Chernoff bound.
Theorem 1 (Matrix Chernoff). Let \mathbf{X}_{k} for $k \in[m]$ be i.i.d copies of a symmetric random variable $\mathbf{X} \in \mathbb{R}^{r \times r}$ with $\gamma, \sigma^{2}>0, \mathbb{E}[\mathbf{X}]=0,\|\mathbf{X}\|_{2} \leq \gamma$, and $\left\|\mathbb{E}\left[\mathbf{X}^{2}\right]\right\|_{2} \leq \sigma^{2}$. Then for $\epsilon>0$,

$$
\operatorname{Pr}\left(\left\|\frac{1}{m} \sum_{k} \mathbf{X}_{k}\right\|_{2} \geq \epsilon\right) \leq s r \exp \left(-m \epsilon^{2} /\left(\sigma^{2}+\gamma^{2}+\gamma \epsilon / 3\right)\right) .
$$

Proof of Proposition 2. Let $\mathbf{U} \in \mathbb{R}^{n \times r}$ be orthonormal with $\operatorname{span}(\mathbf{U})=\operatorname{span}(\mathbf{A})$. Let

$$
\mathbf{X}_{k}=m \mathbf{U}^{T}\left[\mathbf{S}_{k *}\right]^{T} \mathbf{S}_{k *} \mathbf{U}-I
$$

so that

$$
\begin{equation*}
\frac{1}{m} \sum_{k} \mathbf{X}_{k}=\mathbf{U}^{T} \mathbf{S}^{T} \mathbf{S} \mathbf{U}-I \tag{2}
\end{equation*}
$$

To show that we have an ϵ-embedding we need to bound the spectral norm of (2).
Let

$$
\mathbf{X}=\frac{1}{p_{j}}\left[\mathbf{U}_{j *}\right]^{T} \mathbf{U}_{j *}-I \text { with } \operatorname{Pr}(j=i)=p_{i}=\ell_{i} / r=\left\|\mathbf{U}_{i *}\right\|_{2}^{2} / r
$$

then we have the following:

- $\mathbb{E}[\mathbf{X}]=0$:

$$
\begin{aligned}
\mathbb{E}[\mathbf{X}] & =\mathbb{E}_{j}\left[\frac{1}{p_{j}} \mathbf{U}_{j *}^{T} \mathbf{U}_{j *}-I\right] \\
& =\mathbf{U}^{T} \mathbf{U}-I \\
& =0
\end{aligned}
$$

- $\|\mathbf{X}\|_{2} \leq r+1$:

$$
\begin{aligned}
\|\mathbf{X}\|_{2} & =\left\|\frac{1}{p_{j}} \mathbf{U}_{j}^{T} \mathbf{U}_{j}-I\right\|_{2} \\
& \leq \max _{j} \frac{1}{p_{j}}\left\|\mathbf{U}_{j}^{T} \mathbf{U}_{j}\right\|_{2}+\|I\|_{2} \text { by triangle inequality }
\end{aligned}
$$

Since $p_{j}=\ell_{j} / r,\left\|\mathbf{U}_{j}^{T} \mathbf{U}_{j}\right\|_{2}=\ell_{j}$ and $\|I\|_{2}=1$ we conclude that $\|\mathbf{X}\|_{2} \leq r+1$.

- $\mathbb{E}\left[\mathbf{X}^{2}\right] \leq(r-1) I$:

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{X}^{2}\right] & =\mathbb{E}_{j}\left[\left[\frac{1}{p_{j}} \mathbf{U}_{j}^{T} \mathbf{U}_{j}-i\right]^{2}\right] \\
& =\mathbb{E}_{j}\left[\frac{1}{p_{j}} \mathbf{U}_{j}^{T} \mathbf{U}_{j} \mathbf{U}_{j}^{T} \mathbf{U}_{j}\right]-2 \mathbb{E}_{j}\left[\frac{1}{p_{j}} \mathbf{U}_{j}^{T} \mathbf{U}_{j}\right] I \\
& =\mathbb{E}_{j}\left[\frac{1}{p_{j}} \mathbf{U}_{j}^{T} \mathbf{U}_{j} \mathbf{U}_{j}^{T} \mathbf{U}_{j}\right]-I \\
& \leq \mathbb{E}_{j}\left[\frac{\left\|\mathbf{U}_{j}\right\|^{2}}{p_{j}^{2}} \mathbf{U}_{j} \mathbf{U}_{j}^{T}\right]-I \\
& \leq \mathbb{E}_{j}\left[\left\|\mathbf{U}_{j}\right\|^{2} \frac{1}{p_{j}} \mathbf{U}_{j}^{T} \mathbf{U}_{j}\right]-I \\
& \leq \mathbb{E}_{j}\left[\left\|\mid \mathbf{U}_{j}\right\|^{2} \frac{r}{\ell_{j}} \mathbf{U}_{j}^{T} \mathbf{U}_{j}\right]-I \\
& \leq r \mathbb{E}_{j}\left[\mathbf{U}_{j}^{T} \mathbf{U}_{j}\right]-I \\
& =r I-I
\end{aligned}
$$

Thus $\left\|\mathbb{E}\left[\mathbf{X}^{2}\right]\right\|_{2} \leq r-1$.

3 Preconditioning for Least Squares

When preconditioning for Least Squares we can use an Iterative Refinement method.
Recall that Iterative Refinement is the process of solving for $x^{*}=\|\mathbf{A x}-\mathbf{b}\|_{2}$ where in the $j^{\text {th }}$ iteration we set

$$
\mathbf{x}^{j+1}=\mathbf{x}^{j}+\mathbf{A}^{T} \mathbf{r}
$$

where $\mathbf{r}=\mathbf{A} \mathbf{x}^{j}-\mathbf{b}$.
To precondition Iterative refinement we replace \mathbf{A} with $\mathbf{A R}{ }^{-1}$ where \mathbf{R} is the preconditioner.
We can use sketching to precondition Least Squares. We set our preconditioner \mathbf{R} to be the " R " in the QR decomposition of $\mathbf{S A}$ where \mathbf{S} is a sketching matrix.

To show why this works take

$$
\mathbf{x}^{(j+1)} \leftarrow \mathbf{x}^{(j)}+\left(\mathbf{R}^{T}\right)^{-1} \mathbf{A}^{T}\left(\mathbf{b}-\mathbf{A} \mathbf{R}^{-1} \mathbf{x}^{(j)}\right)
$$

Then we have

$$
\begin{aligned}
\mathbf{A} \mathbf{R}^{-1}\left(\mathbf{x}^{(j+1)}-\mathbf{x}^{*}\right) & =\mathbf{A} \mathbf{R}^{-1}\left(\mathbf{x}^{(j)}+(\mathbf{R})^{-T} \mathbf{A}^{T}\left(\mathbf{b}-\mathbf{A} \mathbf{R}^{-1} \mathbf{x}^{(j)}\right)-\mathbf{x}^{*}\right) \\
& =\mathbf{A} \mathbf{R}^{-1} \mathbf{x}^{(j)}-\mathbf{A} \mathbf{R}^{-1} \mathbf{R}^{-T} \mathbf{A}^{T}\left(\mathbf{b}-\mathbf{A} \mathbf{R}^{-1} \mathbf{x}^{(j)}-\mathbf{x}^{*}\right) \\
& =\left(\mathbf{A} \mathbf{R}^{-1}-\mathbf{A} \mathbf{R}^{-1} \mathbf{R}^{-T} \mathbf{A}^{T} \mathbf{A} \mathbf{R}^{-1}\right)\left(\mathbf{x}^{(j)}-\mathbf{x}^{*}\right) \\
& =\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}-\mathbf{U} \mathbf{\Sigma}^{3} \mathbf{V}^{T}\right)\left(\mathbf{x}^{(j)}-\mathbf{x}^{*}\right) \text { where } \mathbf{A} \mathbf{R}^{-1}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \\
& =\mathbf{U}\left(\boldsymbol{\Sigma}-\boldsymbol{\Sigma}^{3}\right) \mathbf{V}^{T}\left(\mathbf{x}^{(j)}-\mathbf{x}^{*}\right)
\end{aligned}
$$

Since $\mathbf{A R}^{-1}$ has singular values in $\left[1-\epsilon_{0}, 1+\epsilon_{0}\right]$ and the diagonal entries of $\boldsymbol{\Sigma}-\boldsymbol{\Sigma}^{3}$ are at most $\sigma_{i}\left(1-\left(1-\epsilon_{0}\right)^{2}\right) \leq 3 \sigma_{i} \epsilon_{0}$ for $\epsilon_{0} \leq 1$, we have

$$
\left\|\mathbf{A} \mathbf{R}^{-1}\left(\mathbf{x}^{(m+1)}-\mathbf{x}^{*}\right)\right\| \leq 3 \epsilon_{0}\left\|\mathbf{A} \mathbf{R}^{-1}\left(\mathbf{x}^{(m)}-\mathbf{x}^{*}\right)\right\|
$$

Let $\epsilon_{0}=1 / 2$ then $O(\log (1 / \epsilon))$ iterations suffice to attain ϵ relative error.

