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1 Sketch and Solve

Recall that in the setting when we have a large number of samples compared to the number of
features a useful way to approximate the solution to the linear equation Ax = b is to first sketch
then solve.

The process involves 3 steps:

1. Generate a sketching matrix S ∈ Rm×n.

2. Compute Sketches SA and Sb.

3. Solve:
x̃ = min

x∈Rd
||SAx− Sb||22

for ϵ ≤ 1/3

If S is a subspace ϵ-embedding for span([Ab]) then we can show that

||Ax̃− b||2 ≤ (1 + 3ϵ)||Ax∗ − b||2

where

x∗ = min
x∈Rd

||Ax− b||2

x̃ = min
x∈Rd

||S(Ax− b)||2.

A similar result holds for other sketching matrices.

Proposition 1. If S is a Countsketch matrix with m = O(d2/ϵ) or SRHT with m = O(d log d/ϵ),
or Gaussian sketch with m = O(d/ϵ), then

||Ax̃− b||2 ≤ (1 + ϵ)||Ax∗ − b||2. (1)

Proof. Using Pythagorean theorem with an orthonormal basis U of A we can see that 1 is equivalent
to showing ||ỹ− y∗||22 is within O(ϵ) of ||Uy∗ − b||22.

In other words let Uỹ = Ax̃ and Uy∗ = Ax∗. Then by the Pythagorean theorem we get

||Ax̃− b||22 = ||Ax∗ − b||22 + ||Ax̃−Ax∗||22
=⇒ ||Ux̃− b||22 = ||Ux∗ − b||22 + ||Ux̃−Ux∗||22.
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Figure 1: The solution and the sketched solution with respect to the column space of A.

Since ||U(ỹ− y∗)||22 = ||ỹ− y∗||22 we need to show that ||ỹ− y∗||22 = O(ϵ)||Uy∗ − b||22.

Figure 1 shows the geometric idea of the argument.

Now recall that for a subspace embedding S we have

||UT ST SU− I||2 ≤
1
2

Then,

||ỹ− y∗||2 ≤ ||UT ST SU(ỹ− y∗)||2 + ||UT ST SU(ỹ− y∗)− (ỹ− y∗)||2
≤ ||UT ST SU(ỹ− y∗)||2 + ||UT ST SU− I||2||ỹ− y∗||2

≤ ||UT ST SU(ỹ− y∗)||2 + 1
2 ||ỹ− y∗||2

≤ 2||UT ST SU(ỹ− y∗)||2
≤ 2||UT ST S(Uy∗ − b)||2.

With high probability, we have that

||UT ST S(Uy∗ − b)||22 ≤
9ϵ

d2 ||U||
2
F ||Uy∗ − b||22

≤ 18ϵ||Uy∗ − b||22

which shows that ||ỹ− y∗||22 = O(ϵ)||Uy∗ − b||22 as desired.

■

2 Sampling for Least Squares

Recall leverage scores:

ℓi(A) := sup
x

(Ai∗x)2

||Ax||2 = ||Ui∗||2
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where U is an orthonormal basis for span(A.

We can use leverage scores to sample rows of A to approximate a least squares problem. The general
idea is to pick m rows of A with the probability of choosing the ith row is chosen to be pi = ℓi/d.

For a sampling matrix S chosen this way we get an ϵ-embedding.

Proposition 2. Let A ∈ Rn×d with r = rank(A), and S ∈ Rm×n be a sampling amtrix with
probabilities pi = ℓi/r, and Si∗ = ej/

√
mpj with Pr(j = i) = pi. If m = O(r log(r/δ)/ϵ2), then S is

ϵ-subspace embedding of span(A) with probability 1− δ.

To prove this proposition we will need the matrix Chernoff bound.

Theorem 1 (Matrix Chernoff). Let Xk for k ∈ [m] be i.i.d copies of a symmetric random variable
X ∈ Rr×r with γ, σ2 > 0, E[X] = 0, ||X||2 ≤ γ, and ||E[X2]||2 ≤ σ2. Then for ϵ > 0,

Pr(|| 1
m

∑
k

Xk||2 ≥ ϵ) ≤ sr exp(−mϵ2/(σ2 + γ2 + γϵ/3)).

Proof of Proposition 2. Let U ∈ Rn×r be orthonormal with span(U) = span(A). Let

Xk = mUT [Sk∗]T Sk∗U− I

so that
1
m

∑
k

Xk = UT ST SU− I, (2)

To show that we have an ϵ-embedding we need to bound the spectral norm of (2).

Let
X = 1

pj
[Uj∗]T Uj∗ − I with Pr(j = i) = pi = ℓi/r = ||Ui∗||22/r,

then we have the following:

• E[X] = 0:

E[X] = Ej [ 1
pj

UT
j∗Uj∗ − I]

= UT U− I

= 0

• ||X||2 ≤ r + 1:

||X||2 = || 1
pj

UT
j Uj − I||2

≤ maxj
1
pj
||UT

j Uj ||2 + ||I||2 by triangle inequality

Since pj = ℓj/r,||UT
j Uj ||2 = ℓj and ||I||2 = 1 we conclude that ||X||2 ≤ r + 1.
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• E[X2] ≤ (r − 1)I:

E[X2] = Ej [[ 1
pj

UT
j Uj − i]2]

= Ej [ 1
pj

UT
j UjUT

j Uj ]− 2Ej [ 1
pj

UT
j Uj ]I

= Ej [ 1
pj

UT
j UjUT

j Uj ]− I

≤ Ej [ ||Uj ||2

p2
j

UjUT
j ]− I

≤ Ej [||Uj ||2
1
pj

UT
j Uj ]− I

≤ Ej [||Uj ||2
r

ℓj
UT

j Uj ]− I

≤ rEj [UT
j Uj ]− I

= rI − I

Thus ||E[X2]||2 ≤ r − 1.

■

3 Preconditioning for Least Squares

When preconditioning for Least Squares we can use an Iterative Refinement method.

Recall that Iterative Refinement is the process of solving for x∗ = ||Ax − b||2 where in the jth

iteration we set
xj+1 = xj + AT r

where r = Axj − b.

To precondition Iterative refinement we replace A with AR−1 where R is the preconditioner.

We can use sketching to precondition Least Squares. We set our preconditioner R to be the “R” in
the QR decomposition of SA where S is a sketching matrix.

To show why this works take

x(j+1) ← x(j) + (RT )−1AT (b−AR−1x(j)).

Then we have

AR−1(x(j+1) − x∗) = AR−1(x(j) + (R)−T AT (b−AR−1x(j))− x∗)
= AR−1x(j) −AR−1R−T AT (b−AR−1x(j) − x∗)
= (AR−1 −AR−1R−T AT AR−1)(x(j) − x∗)
= (UΣVT −UΣ3VT )(x(j) − x∗) where AR−1 = UΣVT

= U(Σ−Σ3)VT (x(j) − x∗)
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Since AR−1 has singular values in [1− ϵ0, 1 + ϵ0] and the diagonal entries of Σ−Σ3 are at most
σi(1− (1− ϵ0)2) ≤ 3σiϵ0 for ϵ0 ≤ 1, we have

||AR−1(x(m+1) − x∗)|| ≤ 3ϵ0||AR−1(x(m) − x∗)||.

Let ϵ0 = 1/2 then O(log(1/ϵ)) iterations suffice to attain ϵ relative error.
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