CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 9: Countsketch; sketch and solve

Outline

(1) Countsketch
(2) Sketch and solve

Types of sketching matrices

Gaussian sketching matrix:

- Performs well. Small sketch size.
- $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ requires generating $m \cdot n$ random i.i.d entries.
- Computing $\boldsymbol{S} \boldsymbol{A}$ takes $O(m n d)$ time.

SHRT: Subsampled Randomized Hadamard Transform

- $\boldsymbol{S}=\boldsymbol{P} \boldsymbol{H} \boldsymbol{D} \in \mathbb{R}^{m \times n}$, fewer random bits.
- Faster to apply. $\boldsymbol{S} \boldsymbol{A}$ in $O(m n \log (d))$ time.
- Sketch size needed is larger.
- A should be dense.
- Issues with parallel and distributed computing.

Faster Embeddings: Countsketch

- Sparse Embeddings: Adaptation of CountSketch from streaming algorithms.
- \boldsymbol{S} is of the form:

$$
\left[\begin{array}{cccccc}
0 & -1 & 0 & 0 & \cdots & 0 \\
+1 & 0 & 0 & +1 & \cdots & 0 \\
0 & 0 & -1 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & \cdots & -1
\end{array}\right]
$$

- One random ± 1 per column.
- Row $\boldsymbol{A}_{i *}$ of \boldsymbol{A} contributes $\pm \boldsymbol{A}_{i *}$ to one of the rows of $\boldsymbol{S} \boldsymbol{A}$.

Sparse Embeddings

- Sparse sketching matrix: For $i \in[n]$, pick uniformly and independently: $h_{i} \in[m]$, $s_{i} \in\{-1,+1\}$, and define $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ as:

$$
\boldsymbol{S}_{h_{i}, i} \rightarrow s_{i} \text { for } i \in[n]
$$

and $\boldsymbol{S}_{j, i} \rightarrow 0$ otherwise.

- s is a sign (Radamacher) vector. The vector \boldsymbol{h} hashes to m "hash buckets". That is,

$$
\boldsymbol{S}_{j *}=\sum_{i: h_{i}=j} s_{i} \boldsymbol{e}_{i}^{\top},
$$

and so

$$
[\boldsymbol{S} \boldsymbol{A}]_{j *}=\sum_{i: h_{i}=j} s_{i} \boldsymbol{e}_{i}^{\top} \boldsymbol{A}=\sum_{i: h_{i}=j} s_{i} \boldsymbol{A}_{i *}
$$

- Fast sketching: Can compute $\boldsymbol{S} \boldsymbol{A}$ in $O(n n z(\boldsymbol{A}))$ time.
- If s is a sign (Radamacher) vector, then $\mathbb{E}\left[\left(s^{\top} \boldsymbol{y}\right)^{2}\right]=\|\boldsymbol{y}\|_{2}^{2}$.
- For $\boldsymbol{y}=\boldsymbol{A x}$, each row of \boldsymbol{S} :
(a) collects a subset of entries y_{i} 's; (b) applies the signs, and (c) adds
- $\mathbb{E}\left[\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}\right]=\|\boldsymbol{y}\|_{2}^{2}$.

Analysis of sparse embeddings

Variance of Countsketch

For $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $\boldsymbol{y} \in \mathbb{R}^{n}$ a unit vector,

$$
\operatorname{Var}\left[\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}\right] \leq \frac{3}{m} .
$$

Analysis of sparse embeddings

Variance of Countsketch

For $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $\boldsymbol{y} \in \mathbb{R}^{n}$ a unit vector,

$$
\operatorname{Var}\left[\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}\right] \leq \frac{3}{m} .
$$

Proof: Let $\boldsymbol{z}=\boldsymbol{S} \boldsymbol{y}$. We have $\mathbb{E}\left[\|\boldsymbol{z}\|_{2}^{2}\right]=$
$\operatorname{Var}\left[\|\boldsymbol{z}\|_{2}^{2}\right]=$

Analysis of sparse embeddings

Variance of Countsketch

For $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $\boldsymbol{y} \in \mathbb{R}^{n}$ a unit vector,

$$
\operatorname{Var}\left[\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}\right] \leq \frac{3}{m} .
$$

Proof: Let $\boldsymbol{z}=\boldsymbol{S} \boldsymbol{y}$. We have $\mathbb{E}\left[\|\boldsymbol{z}\|_{2}^{2}\right]=$
$\operatorname{Var}\left[\|\boldsymbol{z}\|_{2}^{2}\right]=$
$\mathbb{E}\left[\|\boldsymbol{z}\|_{2}^{4}\right]=$

Analysis of sparse embeddings

Variance of Countsketch

For $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $\boldsymbol{y} \in \mathbb{R}^{n}$ a unit vector,

$$
\operatorname{Var}\left[\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}\right] \leq \frac{3}{m} .
$$

Proof: Let $\boldsymbol{z}=\boldsymbol{S} \boldsymbol{y}$. We have $\mathbb{E}\left[\|\boldsymbol{z}\|_{2}^{2}\right]=$
$\operatorname{Var}\left[\|\boldsymbol{z}\|_{2}^{2}\right]=$
$\mathbb{E}\left[\|\boldsymbol{z}\|_{2}^{4}\right]=$
$\mathbb{E}_{s, h}\left[z_{j}^{4}\right]=$

Countsketch Embedding

Countsketch - subspace embedding

For $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ a countsketch matrix and $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, if $m=O\left(\frac{d^{2}}{\delta \epsilon^{2}}\right)$, then with probability at least $1-\delta$:

$$
\|\boldsymbol{S} \boldsymbol{A} \boldsymbol{x}\|_{2}=(1 \pm \epsilon)\|\boldsymbol{A} \boldsymbol{x}\|_{2} .
$$

Countsketch Embedding

Countsketch - subspace embedding

For $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ a countsketch matrix and $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, if $m=O\left(\frac{d^{2}}{\delta \epsilon^{2}}\right)$, then with probability at least $1-\delta$:

$$
\|\boldsymbol{S} \boldsymbol{A} \boldsymbol{x}\|_{2}=(1 \pm \epsilon)\|\boldsymbol{A} \boldsymbol{x}\|_{2} .
$$

We use the AMM and JL moment result.
We have $\operatorname{Var}\left[\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}\right] \leq \frac{K}{m}$.
If $\frac{K}{m} \leq \epsilon^{2} \delta$, we know S is ϵd-embedding with probability at least $1-\delta$.

Types of sketching matrices

Sketching matrix	Sketch size m	Cost to sketch $\boldsymbol{S} \boldsymbol{A}$
JL - i.i.d subGaussians	$m=O\left(\frac{d \log (1 / \delta)}{\epsilon^{2}}\right)$	$O(m n d)$
Fast JL -SRHT	$m=O\left(\frac{d \log (d \log (1 / \delta)}{\epsilon^{2}}\right)$	$O(m n \log (d))$
Countsketch	$m=O\left(\frac{d^{2}}{\delta \epsilon^{2}}\right)$	$O(n n z(\boldsymbol{A})$

We have other sparse embeddings where nnz per column is >1, e..g, OSNAPs, sparse graphs.
Can improve $m=O\left(\frac{d \log (d) \log (1 / \delta)}{\epsilon^{2}}\right)$ with $s=\Theta(\log (1 / \delta))$ nonzero entries per column.

Further Reading

Countsketch was first introduced by:

- Clarkson, Kenneth L., and David P. Woodruff. "Low-rank approximation and regression in input sparsity time." Journal of the ACM (JACM) 63.6 (2017): 1-45
Above analysis is from:
- Nelson, Jelani, and Huy L. Nguyen. "OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings." 2013 ieee 54th annual symposium on foundations of computer science. IEEE, 2013.

Sketch and solve - least squares regression

Least squares linear regression

Given a data matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ with n samples $\left\{\boldsymbol{a}_{i}\right\}_{i=1}^{n} \in \mathbb{R}^{d}$ of d-dimensional features, and a column vector $\boldsymbol{b} \in \mathbb{R}^{n}$ (targets):

- In the least-squares regression problem, assuming $d<n$, we solve:

$$
\boldsymbol{x}^{*}=\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2} .
$$

- A linear function and Euclidean- $\left(\ell_{2}\right)$ norm (squared) loss function.
- The observed targets, $b_{i}=\boldsymbol{a}^{\top} \boldsymbol{x}+\varepsilon_{i}$, for $i=1, \ldots, n$ and ε_{i} is noise..

Overdetermined problems

$$
\boldsymbol{x}^{*}=\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}
$$

- We are interested in over-constrained least-squares problems, $n \gg d$.
- Typically, there is no \boldsymbol{x}^{*} such that $\boldsymbol{A} \boldsymbol{x}^{*}=\boldsymbol{b}$.
- Want to find the "best: \boldsymbol{x}^{*} such that $\boldsymbol{A} \boldsymbol{x}^{*} \approx \boldsymbol{b}$.

Exact solution and ϵ-approximation

- The solution is given by the psuedo-inverse $\boldsymbol{x}^{*}=\boldsymbol{A}^{\dagger} \boldsymbol{b}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}$.
- In terms of SVD, we have $\boldsymbol{A}^{\dagger}=\boldsymbol{V} \Sigma^{-1} \boldsymbol{U}^{\top}$, and
- QR factorization, we have $\boldsymbol{A}^{\dagger}=\boldsymbol{R}^{-1} \boldsymbol{Q}^{\top}$.

Complexity is $O\left(n d^{2}\right)$, but constant factors differ.

Exact solution and ϵ-approximation

- The solution is given by the psuedo-inverse $\boldsymbol{x}^{*}=\boldsymbol{A}^{\dagger} \boldsymbol{b}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}$.
- In terms of SVD, we have $\boldsymbol{A}^{\dagger}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\top}$, and
- QR factorization, we have $\boldsymbol{A}^{\dagger}=\boldsymbol{R}^{-1} \boldsymbol{Q}^{\top}$.

Complexity is $O\left(n d^{2}\right)$, but constant factors differ.

e-approximation

For an error parameter ϵ, compute $\tilde{\boldsymbol{x}}$ such that

$$
\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b}\|_{2} \leq(1+\epsilon)\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}
$$

Sketch and solve

Use Sketching:

- Generate a sketching matrix $\boldsymbol{S} \in \mathbb{R}^{m \times n}$.
- Compute sketches $\boldsymbol{S A}$ and $\boldsymbol{S b}$.
- Solve:

$$
\tilde{\boldsymbol{x}}=\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{S} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{S} \boldsymbol{b}\|_{2}^{2}
$$

- Typically, $m=\operatorname{poly}(d / \epsilon)$.

Recall: subspace embedding

Subspace embedding

For $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, a matrix $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ is a subspace ϵ-embedding for \boldsymbol{A} if \boldsymbol{S} is an ϵ-embedding for $\operatorname{span}(\boldsymbol{A})=\left\{\boldsymbol{A x} \mid \boldsymbol{x} \in \mathbb{R}^{d}\right\}$. I.e., for all $\boldsymbol{x} \in \mathbb{R}^{d}$,

$$
\|\boldsymbol{S} \boldsymbol{A} \boldsymbol{x}\|_{2}=(1 \pm \epsilon)\|\boldsymbol{A} \boldsymbol{x}\|_{2} .
$$

Sketching matrix	Sketch size m	Cost to sketch $\boldsymbol{S} \boldsymbol{A}$
JL - i.i.d subGaussians	$m=O\left(\frac{d \log (1 / \delta)}{\epsilon^{2}}\right)$	$O(m n d)$
Fast JL -SRHT	$m=O\left(\frac{d \log (d \log (1 / \delta)}{\epsilon^{2}}\right)$	$O(m n \log (d))$
Countsketch	$m=O\left(\frac{d^{2}}{\delta \epsilon^{2}}\right)$	$O(n n z(\boldsymbol{A})$

Subspace embedding for sketch and solve

Sketch and solve

Suppose $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ is a subspace ϵ-embedding for $\operatorname{span}([\boldsymbol{A} b])$.
Let,

$$
\begin{aligned}
\boldsymbol{x}^{*} & =\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2} \\
\tilde{\boldsymbol{x}} & =\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{S}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})\|_{2},
\end{aligned}
$$

for $\epsilon \leq 1 / 3$, we have

$$
\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b}\|_{2} \leq(1+3 \epsilon)\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}
$$

Proof:

For $\boldsymbol{y}=\left[\begin{array}{c}\boldsymbol{x} \\ -1\end{array}\right], \boldsymbol{x} \in \mathbb{R}^{d}$,
$\|\boldsymbol{S}(\boldsymbol{A x}-\boldsymbol{b})\|_{2}=$

Proof:

For $\boldsymbol{y}=\left[\begin{array}{c}\boldsymbol{x} \\ -1\end{array}\right], \boldsymbol{x} \in \mathbb{R}^{d}$,
$\|\boldsymbol{S}(\boldsymbol{A x}-\boldsymbol{b})\|_{2}=$
$\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b}\|_{2} \leq$

Proof:

For $\boldsymbol{y}=\left[\begin{array}{c}\boldsymbol{x} \\ -1\end{array}\right], \boldsymbol{x} \in \mathbb{R}^{d}$,
$\|\boldsymbol{S}(\boldsymbol{A x}-\boldsymbol{b})\|_{2}=$
$\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b}\|_{2} \leq$
and so for $\epsilon \leq 1 / 3,\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b}\|_{2} \leq(1+3 \epsilon)\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}$.

Computational cost:

Matlab demo

