CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 8: Sketching, types of sketching matrices

Outline

(1) Gaussian sketching
(2) AMM and JL moment
(3) SRHT

Recall: Embeddings

Embedding

A matrix $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ is an ϵ-embedding of set $\mathcal{P} \subset \mathbb{R}^{n}$ if, for all $\boldsymbol{y} \in \mathcal{P}$,

$$
\|\boldsymbol{S} \boldsymbol{y}\|_{2}=(1 \pm \epsilon)\|\boldsymbol{y}\|_{2}
$$

We will call \boldsymbol{S} a "sketching matrix".

Gaussian sketching matrix

Vector embedding also known as Distributional JL Lemma.

Distributional JL

Let $\boldsymbol{S} \in \mathbb{R}^{m \times d}$ have independent entries $s_{i j} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$. If $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any vector $\boldsymbol{y} \in \mathbb{R}^{d}, \epsilon \in(0,1]$, with probability $(1-\delta)$:

$$
\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}=(1 \pm \epsilon)\|\boldsymbol{y}\|_{2}^{2} .
$$

Gaussian sketching matrix

Vector embedding also known as Distributional JL Lemma.

Distributional JL

Let $\boldsymbol{S} \in \mathbb{R}^{m \times d}$ have independent entries $s_{i j} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$. If $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any vector $\boldsymbol{y} \in \mathbb{R}^{d}, \epsilon \in(0,1]$, with probability $(1-\delta)$:

$$
\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}=(1 \pm \epsilon)\|\boldsymbol{y}\|_{2}^{2}
$$

Proof: We know that $\mathbb{E}\left[\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}\right]=\|\boldsymbol{y}\|_{2}^{2}$. We have

$$
\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(\left\langle\boldsymbol{s}_{i}, \boldsymbol{y}\right\rangle\right)^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(\mathcal{N}\left(0,\|\boldsymbol{y}\|_{2}^{2}\right)\right)^{2}
$$

Chi-squared random variable with m degrees of freedom.

Chi-squared random variable

Let z be a Chi-squared random variable with m degrees of freedom

$$
\operatorname{Pr}\{|\mathrm{z}-\mathbb{E}[\mathrm{z}]| \geq \epsilon \mathbb{E}[\mathrm{z}]\} \leq 2 \exp \left(-\epsilon^{2} m / 8\right)
$$

We have $\mathbb{E}[z]=\mathbb{E}\left[\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}\right]=\|\boldsymbol{y}\|_{2}^{2}$.
So, setting $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, we obtain the result.

Gaussian - JL property

JL Lemma

Let $\boldsymbol{S} \in \mathbb{R}^{m \times d}$ have independent entries $s_{i j} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$. If $m=O\left(\frac{\log (n)}{\epsilon^{2}}\right)$, then for any set of n data points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$, with probability at least $9 / 10$:

$$
(1-\epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2} \leq\left\|\boldsymbol{S} \boldsymbol{x}_{i}-\boldsymbol{S} \boldsymbol{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}
$$

Gaussian - JL property

JL Lemma

Let $\boldsymbol{S} \in \mathbb{R}^{m \times d}$ have independent entries $s_{i j} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$. If $m=O\left(\frac{\log (n)}{\epsilon^{2}}\right)$, then for any set of n data points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$, with probability at least $9 / 10$:

$$
(1-\epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2} \leq\left\|\boldsymbol{S} \boldsymbol{x}_{i}-\boldsymbol{S} \boldsymbol{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}
$$

Proof: Fix $i, j \in[d]$, let $\boldsymbol{y}=\boldsymbol{x}_{i}-\boldsymbol{x}_{j}$. By the Distributional JL Lemma, with probability $1-\delta$:

$$
\left\|\boldsymbol{S}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)\right\|_{2}^{2}=(1 \pm \epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}^{2}
$$

Set $\delta=1 / n^{2}$. Since there are $<n^{2}$ total i, j pairs, by a union bound we have that with probability $9 / 10$, the above will hold for all i, j, for:

$$
m=O\left(\frac{\log (n)}{\epsilon^{2}}\right)
$$

Gaussian - Subspace embedding

Subspace embedding

Let $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ have independent entries $s_{i j} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$. If $m=O\left(\frac{d \log (1 / \delta)}{\epsilon^{2}}\right)$, then for a given $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, with probability at least $1-\delta$:

$$
\|\boldsymbol{S} \boldsymbol{A} \boldsymbol{x}\|_{2}=(1 \pm \epsilon)\|\boldsymbol{A} \boldsymbol{x}\|_{2} .
$$

Embedding a d-dimensional subspace $\mathcal{U} \equiv \operatorname{span}(\boldsymbol{A})=\operatorname{span}(\boldsymbol{U}) \subset \mathbb{R}^{n}$.

$$
\|\boldsymbol{S U} \boldsymbol{x}\|_{2}=(1 \pm \epsilon)\|\boldsymbol{x}\|_{2} \quad \text { or } \quad\left\|\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U}-\boldsymbol{I}\right\|_{2} \leq \epsilon
$$

Recall the ϵ-Net argument.

We know $|\mathcal{N}(\epsilon)| \leq\left(1+\frac{2}{\epsilon}\right)^{d}$.
If \boldsymbol{S} is distributional JL with failure probability δ^{\prime}, taking union of the ϵ-net size, we get the result, with

$$
m=O\left(\frac{d \log (1 / \delta)}{\epsilon^{2}}\right)
$$

AMM to embedding

Given $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ with $n \geq d, \operatorname{rank}(\boldsymbol{A})=r ; \boldsymbol{B} \in \mathbb{R}^{d^{\prime} \times n} ; \epsilon, \delta>0$. Let \boldsymbol{S} be chosen (with oblivious distribution) such that, with probability at least $1-\delta$:

$$
\left\|\boldsymbol{B} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{B} \boldsymbol{A}\right\|_{F} \leq \epsilon\|\boldsymbol{A}\|_{F}\|\boldsymbol{B}\|_{F}
$$

Then, \boldsymbol{S} is an $\epsilon * r$-embedding of $\operatorname{span}(\boldsymbol{A})$.

AMM to embedding

Given $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ with $n \geq d, \operatorname{rank}(\boldsymbol{A})=r ; \boldsymbol{B} \in \mathbb{R}^{d^{\prime} \times n} ; \epsilon, \delta>0$. Let \boldsymbol{S} be chosen (with oblivious distribution) such that, with probability at least $1-\delta$:

$$
\left\|\boldsymbol{B} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{B} \boldsymbol{A}\right\|_{F} \leq \epsilon\|\boldsymbol{A}\|_{F}\|\boldsymbol{B}\|_{F}
$$

Then, \boldsymbol{S} is an $\epsilon * r$-embedding of $\operatorname{span}(\boldsymbol{A})$.
Set $\boldsymbol{B}=\boldsymbol{A}^{\top}$, and since \boldsymbol{S} is oblivious, let us assume \boldsymbol{A} is orthonormal. Then,

$$
\left\|\boldsymbol{A}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{I}\right\|_{2} \leq\left\|\boldsymbol{A}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{I}\right\|_{F} \leq \epsilon\|\boldsymbol{A}\|_{F}^{2}=\epsilon r .
$$

JL moment property

JL moment
A distribution on $\boldsymbol{S} \in \mathbb{R}^{m \times d}$, has the (ϵ, δ, ℓ)-JL moment property if for all $\boldsymbol{y} \in \mathbb{R}^{d}$ with $\|\boldsymbol{y}\|_{2}=1$,

$$
\mathbb{E}_{\boldsymbol{S}}\left[\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}-\left.1\right|^{\ell}\right] \leq \epsilon^{\ell} \cdot \delta .
$$

JL moment property

JL moment

A distribution on $\boldsymbol{S} \in \mathbb{R}^{m \times d}$, has the (ϵ, δ, ℓ)-JL moment property if for all $\boldsymbol{y} \in \mathbb{R}^{d}$ with $\|\boldsymbol{y}\|_{2}=1$,

$$
\mathbb{E}_{\boldsymbol{S}}\left[\left|\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}-1\right|^{\ell}\right] \leq \epsilon^{\ell} \cdot \delta .
$$

For $\ell=2$, and if $\mathbb{E}\left[\|\boldsymbol{S} \boldsymbol{y}\|_{2}\right]=1$ we have

$$
\operatorname{Var}\left(\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}\right) \leq \epsilon^{2} \delta \quad \text { or } \quad s d\left(\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}\right) \leq \epsilon \sqrt{\delta} .
$$

JL moment and AMM

Given $\boldsymbol{A} \in \mathbb{R}^{n \times d} ; \boldsymbol{B} \in \mathbb{R}^{d^{\prime} \times n} ; \epsilon, \delta>0$. Let \boldsymbol{S} satisfy the (ϵ, δ, ℓ)-JL moment property for $\ell \geq 2$, then with probability at least $1-\delta$:

$$
\left\|\boldsymbol{B} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{B} \boldsymbol{A}\right\|_{F} \leq 3 \epsilon\|\boldsymbol{A}\|_{F}\|\boldsymbol{B}\|_{F}
$$

JL moment and AMM

Given $\boldsymbol{A} \in \mathbb{R}^{n \times d} ; \boldsymbol{B} \in \mathbb{R}^{d^{\prime} \times n} ; \epsilon, \delta>0$. Let \boldsymbol{S} satisfy the (ϵ, δ, ℓ)-JL moment property for $\ell \geq 2$, then with probability at least $1-\delta$:

$$
\left\|\boldsymbol{B} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{B} \boldsymbol{A}\right\|_{F} \leq 3 \epsilon\|\boldsymbol{A}\|_{F}\|\boldsymbol{B}\|_{F}
$$

Proof: We follow proof of Theorem 2.8 in Dr. Woodruff's monograph.
For $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have
$\frac{\langle\boldsymbol{S} \boldsymbol{x}, \boldsymbol{S} \boldsymbol{y}\rangle}{\|\boldsymbol{x}\|_{2}\|\boldsymbol{y}\|_{2}}=$

JL moment and AMM

Given $\boldsymbol{A} \in \mathbb{R}^{n \times d} ; \boldsymbol{B} \in \mathbb{R}^{d^{\prime} \times n} ; \epsilon, \delta>0$. Let \boldsymbol{S} satisfy the (ϵ, δ, ℓ)-JL moment property for $\ell \geq 2$, then with probability at least $1-\delta$:

$$
\left\|\boldsymbol{B} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{B} \boldsymbol{A}\right\|_{F} \leq 3 \epsilon\|\boldsymbol{A}\|_{F}\|\boldsymbol{B}\|_{F} .
$$

Proof: We follow proof of Theorem 2.8 in Dr. Woodruff's monograph.
For $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have
$\frac{\langle\boldsymbol{S} \boldsymbol{x}, \boldsymbol{S} \boldsymbol{y}\rangle}{\|\boldsymbol{x}\|_{2}\|\boldsymbol{y}\|_{2}}=$
Minkowski's inequality : $\left\|\|\mathrm{x}+\mathrm{y}\|_{p} \leq\right\| \mathrm{x}\left\|_{p}+\right\| \mathrm{y} \|_{p}$.

For unit vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have
$\|\| \boldsymbol{S} \boldsymbol{x}, \boldsymbol{S} \boldsymbol{y}\rangle-\langle\boldsymbol{x}, \boldsymbol{y}\rangle \|_{\ell}=$

For unit vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have
$\|\langle\boldsymbol{S} \boldsymbol{x}, \boldsymbol{S} \boldsymbol{y}\rangle-\langle\boldsymbol{x}, \boldsymbol{y}\rangle\|_{\ell}=$

Define a random variable

$$
X_{i j}=\frac{1}{\left\|\boldsymbol{B}_{i *}\right\|_{2}\left\|\boldsymbol{A}_{* j}\right\|_{2}}\left(\left\langle\boldsymbol{S} \boldsymbol{B}_{i *}, \boldsymbol{S}_{* * j}\right\rangle-\left\langle\boldsymbol{B}_{i *}, \boldsymbol{A}_{* j}\right\rangle\right)
$$

Then,
$\left\|\left\|\boldsymbol{B} \boldsymbol{S}^{\top} \boldsymbol{S A}-\boldsymbol{B} \boldsymbol{A}\right\|_{F}^{2}\right\|_{\ell / 2}=$

For unit vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have
$\|\langle\boldsymbol{S} \boldsymbol{x}, \boldsymbol{S} \boldsymbol{y}\rangle-\langle\boldsymbol{x}, \boldsymbol{y}\rangle\|_{\ell}=$
Define a random variable

$$
X_{i j}=\frac{1}{\left\|\boldsymbol{B}_{i *}\right\|_{2}\left\|\boldsymbol{A}_{* j}\right\|_{2}}\left(\left\langle\boldsymbol{S} \boldsymbol{B}_{i *}, \boldsymbol{S} \boldsymbol{A}_{* j}\right\rangle-\left\langle\boldsymbol{B}_{i *}, \boldsymbol{A}_{* j}\right\rangle\right)
$$

Then,
$\left\|\left\|\left\|\boldsymbol{B} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{B} \boldsymbol{A}\right\|_{F}^{2}\right\|_{\ell / 2}=\right.$
Using

$$
\mathbb{E}\left\|\boldsymbol{B} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{B} \boldsymbol{A}\right\|_{F}^{\ell}=\| \| \boldsymbol{B} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{B} \boldsymbol{A}\left\|_{F}^{2}\right\|_{\ell / 2}^{\ell / 2},
$$

amd Markov's inequality we get the result.

Gaussian sketch and AMM

Given $\boldsymbol{A} \in \mathbb{R}^{n \times d} ; \boldsymbol{B} \in \mathbb{R}^{d^{\prime} \times n} ; \epsilon, \delta>0$.
Let $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ have independent entries $s_{i j} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$ and $m=O\left(\epsilon^{-2} \delta^{-1}\right)$, then with probability at least $1-\delta$:

$$
\left\|\boldsymbol{B} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{B} \boldsymbol{A}\right\|_{F} \leq \epsilon\|\boldsymbol{A}\|_{F}\|\boldsymbol{B}\|_{F} .
$$

Gaussian sketch and AMM

Given $\boldsymbol{A} \in \mathbb{R}^{n \times d} ; \boldsymbol{B} \in \mathbb{R}^{d^{\prime} \times n} ; \epsilon, \delta>0$.
Let $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ have independent entries $s_{i j} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$ and $m=O\left(\epsilon^{-2} \delta^{-1}\right)$, then with probability at least $1-\delta$:

$$
\left\|\boldsymbol{B} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{B} \boldsymbol{A}\right\|_{F} \leq \epsilon\|\boldsymbol{A}\|_{F}\|\boldsymbol{B}\|_{F}
$$

For Gaussian sketch, with $\ell=2$, JL moment is

$$
\operatorname{Var}\left(\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}\right) \leq 2 / m
$$

Since $\operatorname{Var}\left(\frac{1}{m} \chi_{m}^{2}\right)=\frac{1}{m^{2}} \operatorname{Var}\left(\chi_{m}^{2}\right)=2 m / m^{2}=2 / m$.
We set $2 / m \leq \epsilon^{2} \delta / 6$.

Gaussian sketch and AMM

Given $\boldsymbol{A} \in \mathbb{R}^{n \times d} ; \boldsymbol{B} \in \mathbb{R}^{d^{\prime} \times n} ; \epsilon, \delta>0$.
Let $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ have independent entries $s_{i j} \sim \frac{1}{\sqrt{m}} \mathcal{N}(0,1)$ and $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then with probability at least $1-\delta$:

$$
\left\|\boldsymbol{B} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{B} \boldsymbol{A}\right\|_{F} \leq \epsilon\|\boldsymbol{A}\|_{F}\|\boldsymbol{B}\|_{F}
$$

Consider $\ell=\Theta(\log (1 / \delta))$. Then, the ℓ-th central moment of χ_{m}^{2} is of the form $2^{\ell}\left(c_{1} m^{\ell / 2}+c_{2}\right)$. So, if we choose $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, we have:

$$
\frac{2^{\ell}}{m^{\ell / 2}}=\epsilon^{\ell} 2^{\ell / 2}(2 / \ell)^{\ell / 2} \leq \epsilon^{\ell} \delta
$$

Two approaches

We have seen two approaches to go from vector embeddings to subspace embeddings. Let $\|\boldsymbol{U}\|_{F}^{2}=d, \operatorname{rank}(\boldsymbol{A})$.

- Using ϵ-nets:

$$
\begin{aligned}
& \operatorname{Pr}\left[\left\|\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U}-\boldsymbol{I}\right\|_{\mathcal{N}_{\epsilon}} \geq \epsilon\right] \leq C^{d} e^{-m \epsilon^{2}} \\
\Rightarrow & \operatorname{Pr}\left[\left\|\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U}-\boldsymbol{I}\right\|_{2} \geq 2 \epsilon\right] \leq C^{d} e^{-m \epsilon^{2}}
\end{aligned}
$$

- using JL moment:

$$
\begin{aligned}
&\left\|\frac{1}{d}\right\| \boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U}-\boldsymbol{I}\left\|_{2}\right\|_{\ell} \leq \epsilon^{\ell} \delta \\
& \Longrightarrow \operatorname{Pr}\left[\frac{1}{d}\left\|\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U}-\boldsymbol{I}\right\|_{2} \geq \epsilon\right] \leq \delta
\end{aligned}
$$

SHRT: Subsampled Randomized Hadamard Transform

Original JL:

- \boldsymbol{S} is picked to be random matrix (orthogonal columns), i.i.d entries.
- Computing $\boldsymbol{S} \boldsymbol{A}$ takes $O(m n d)$ time.

Faster scheme: pick a random orthogonal matrix, but:

- fewer random bits.
- faster to apply.

Fast JL: Using Subsampled Randomized Hadamard Transform (SRHT)

SRHT

The SRHT is a matrix $\boldsymbol{P H D}$, where

- $\boldsymbol{D} \in \mathbb{R}^{n \times n}$ is diagonal matrix with i.i.d ± 1 on diagonal
- $\boldsymbol{H} \in \mathbb{R}^{n \times n}$ is a Hadamard matrix
- $\boldsymbol{P} \in \mathbb{R}^{m \times n}$ uniformly samples the rows of $\boldsymbol{H D}$.

$$
\underbrace{\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & \cdots & 1
\end{array}\right]}_{\boldsymbol{P}} \underbrace{\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & -1 & 1 & \cdots & -1 \\
1 & 1 & -1 & \cdots & -1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & -1 & -1 & \cdots & 1
\end{array}\right]}_{\sqrt{n} \boldsymbol{H}} \underbrace{\left[\begin{array}{ccccc}
\pm 1 & 0 & 0 & \cdots & 0 \\
0 & \pm 1 & 0 & \cdots & 0 \\
0 & 0 & \pm 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \pm 1
\end{array}\right]}_{\boldsymbol{D}}
$$

Hadamard matrices

Hadamard matrices have recursive structure.

- Let $\boldsymbol{H}_{0} \in \mathbb{R}^{1 \times 1}$ be [1].
- Let $\boldsymbol{H}_{i+1}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}\boldsymbol{H}_{i} & \boldsymbol{H}_{i} \\ \boldsymbol{H}_{i} & -\boldsymbol{H}_{i}\end{array}\right]$ for $i \geq 0$.

So,

$$
\boldsymbol{H}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \boldsymbol{H}_{2}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

In general, \boldsymbol{H}_{k} is $2^{k} \times 2^{k}$ matrix with ± 1 entries scaled by $1 / 2^{k / 2}$.

Hadamard properties

- Hadamard matrices are orthogonal.

$$
\boldsymbol{H}_{i}^{\top} \boldsymbol{H}_{i}=\boldsymbol{H}_{i}^{2}=\boldsymbol{I} .
$$

- For any $\boldsymbol{x} \in \mathbb{R}^{n}, n=2^{k}$, we have $\|\boldsymbol{H} \boldsymbol{x}\|_{2}=\|\boldsymbol{x}\|_{2}$, also $\|\boldsymbol{H} \boldsymbol{D} \boldsymbol{x}\|_{2}=\|\boldsymbol{x}\|_{2}$.
- Matvecs $\boldsymbol{H} \boldsymbol{x}$ can be computed in $O(n \log n)$ time for $\boldsymbol{x} \in \mathbb{R}^{n}, n=2^{k}$.

Suppose $\boldsymbol{x}=\left[\begin{array}{l}\boldsymbol{x}_{1} \\ \boldsymbol{x}_{2}\end{array}\right] \in \mathbb{R}^{2^{k}}$, where $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathbb{R}^{2^{k-1}}$.
Then, $\boldsymbol{H}_{i+1} \boldsymbol{x}=\left[\begin{array}{c}\boldsymbol{H}_{i} \boldsymbol{x}_{1}+\boldsymbol{H}_{i} \boldsymbol{x}_{2} \\ \boldsymbol{H}_{i} \boldsymbol{x}_{1}-\boldsymbol{H}_{i} \boldsymbol{x}_{2}\end{array}\right]$.
So, we can compute $\boldsymbol{H}_{i+1} \boldsymbol{x}$ in linear time from $\boldsymbol{H}_{i} \boldsymbol{x}_{1}, \boldsymbol{H}_{i} \boldsymbol{x}_{2}$.

Randomized Hadamard analysis

SHRT mixing lemma

Let \boldsymbol{H} be an $(n \times n)$ Hadamard matrix and \boldsymbol{D} a random ± 1 diagonal matrix. Let $\boldsymbol{z}=\boldsymbol{H} \boldsymbol{D} \boldsymbol{x}$ for $\boldsymbol{x} \in \mathbb{R}^{n}$. With probability $1-\delta$, for all i simultaneously,

$$
z_{i}^{2} \leq \frac{c \log (n / \delta)}{n}\|\boldsymbol{z}\|_{2}^{2}
$$

for some fixed constant c.
The vector is very close to uniform with high probability.

$$
\|\boldsymbol{z}\|_{2}^{2}=\|\boldsymbol{H} \boldsymbol{D} \boldsymbol{x}\|_{2}^{2}=\|\boldsymbol{x}\|_{2}^{2} .
$$

Randomized Hadamard analysis

z_{i} is a random variable with mean 0 and variance $\|\boldsymbol{x}\|_{2}^{2} / n$, which is a sum of independent random variables.
Can apply Bernstein type concentration inequality to prove the bound:

Rademacher Concentration

Let r_{1}, \ldots, r_{n} be Rademacher random variables (i.e. uniform ± 1 's). Then for any vector $\boldsymbol{a} \in \mathbb{R}^{n}$,

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} r_{i} a_{i} \geq t\|\boldsymbol{a}\|_{2}\right] \leq e^{-t^{2} / 2}
$$

$z_{i}=\boldsymbol{h}_{i}^{\top} \boldsymbol{D} \boldsymbol{x}$ and let $\boldsymbol{h}_{i}^{\top} \boldsymbol{D}=\frac{1}{\sqrt{n}}\left[r_{1}, r_{2}, \ldots, r_{n}\right]$, where r_{i} 's are random ± 1 's.
$t=\sqrt{\log (n / \delta)}$ and apply union bounds over all n entries.

Fast JL

The Fast JL Lemma

Let $\boldsymbol{S}=\boldsymbol{P} \boldsymbol{H} \boldsymbol{D} \in \mathbb{R}^{m \times n}$ be a subsampled randomized Hadamard transform with $m=O\left(\frac{\log (n / \delta) \log (1 / \delta)}{\epsilon^{2}}\right)$. Then for any fixed $\boldsymbol{x} \in \mathbb{R}^{n}$. With probability $1-\delta$,

$$
\|\boldsymbol{S} \boldsymbol{x}\|_{2}^{2}=(1 \pm \epsilon)\|\boldsymbol{x}\|_{2}^{2}
$$

Proof: Apply Hoeffding's inequality for the sum of m entries.

SRHT embeddings

SRHT - subspace embedding

For $\boldsymbol{S}=\boldsymbol{P} \boldsymbol{H} \boldsymbol{D} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, if $m=O\left(\frac{d \log (n / \delta) \log (1 / \delta)}{\epsilon^{2}}\right)$, then with probability at least $1-\delta$:

$$
\|\boldsymbol{S} \boldsymbol{A} \boldsymbol{x}\|_{2}=(1 \pm \epsilon)\|\boldsymbol{A} \boldsymbol{x}\|_{2} .
$$

We can compute the sketch $\boldsymbol{S} \boldsymbol{A}$ in $O(m n \log (d))$ time.

Further Reading:

- Woodruff, David P. "Sketching as a tool for numerical linear algebra." Foundations and Trends $($ ® in Theoretical Computer Science 10.1-2 (2014): 1-157.
- Kane, Daniel M., and Jelani Nelson. "Sparser Johnson-Lindenstrauss transforms." Journal of the ACM (JACM) 61.1 (2014): 1-23.
- Tropp, Joel A. "Improved analysis of the subsampled randomized Hadamard transform." Advances in Adaptive Data Analysis 3.01n02 (2011): 115-126.

Questions?

