CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 7: JL Lemma and subspace embedding

Outline

(1) Near orthogonal vectors and ϵ-Net
(2) Gaussian matrix properties
(3) Johnson-Lindenstrauss Lemma
(4) Subspace embedding

High-dimensional vectors

- Often we deal with data vectors that are high-dimensional.
- Dimensionality reduction: One popular approach is to embed these vectors on a low-dimensional space.
- What criteria should we use to compute this low-dimensional embedding? What properties of the data do we wish to preserve?

Near-orthogonal vectors

Given a d-dimensional space, what is the largest set of mutually orthogonal unit vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{t}$ we can have? I.e. with the inner products

$$
\left|\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}\right|=0 \quad \forall i, j
$$

Near-orthogonal vectors

Given a d-dimensional space, what is the largest set of mutually orthogonal unit vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{t}$ we can have? I.e. with the inner products

$$
\left|\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}\right|=0 \quad \forall i, j
$$

Answer: d

Given a d-dimensional space, what is the largest set of nearly orthogonal unit vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{t}$? I.e. with the inner products

$$
\left|\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}\right| \leq \epsilon \quad \forall i, j
$$

Suppose ϵ is a constant. E.g. $\epsilon=1 / 10$.

Near-orthogonal vectors

Given a d-dimensional space, what is the largest set of mutually orthogonal unit vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{t}$ we can have? I.e. with the inner products

$$
\left|\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}\right|=0 \quad \forall i, j
$$

Answer: d

Given a d-dimensional space, what is the largest set of nearly orthogonal unit vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{t}$? I.e. with the inner products

$$
\left|\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}\right| \leq \epsilon \quad \forall i, j
$$

Suppose ϵ is a constant. E.g. $\epsilon=1 / 10$.
Answer: $2^{\Theta(d)}$

Near-orthogonal vectors

Claim: There is an exponential number of nearly orthogonal unit vectors in d-dimensional space $\left(\sim 2^{d}\right)$.
Proof approach: One approach is to use Probabilistic Argument. For $t=2^{\Theta(d)}$, define a random process which generates random vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{t}$ that are unlikely to have large inner product

- Show that, with high probability, $\left|\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}\right| \leq \epsilon \quad \forall i, j$.
- Hence, there must exists some set of unit vectors with all pairwise inner-products bounded by ϵ.

Proof: Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{t}$ be normalized Radmacher vectors, i.e., have independent random entries, each set to $\pm 1 / \sqrt{d}$ with equal probability.

$$
\mathbb{E}\left[\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}\right]=?
$$

Let $S=\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}=\sum_{i=1}^{d} \mathrm{c}_{i}$, where c_{i} is random $\pm 1 / d$.
S is sum of i.i.d random variables. Lets use Hoeffding's inequality:

Hoeffding Inequality

Let $\mathrm{c}_{1}, \ldots, \mathrm{c}_{d}$ be independent random variables with each $\mathrm{c}_{i} \in\left[a_{i}, b_{i}\right]$. Let $\mathbb{E}\left[\mathrm{c}_{i}\right]=\mu_{i}$ and $\operatorname{Var}\left[\mathrm{c}_{i}\right]=\sigma_{i}^{2}$. Let $\mu=\sum_{i} \mu_{i}$ and $\sigma^{2}=\sum_{i} \sigma_{i}^{2}$. Then, for and $\alpha>0, S=\sum_{i} \mathrm{c}_{i}$ satisfies

$$
\operatorname{Pr}[|S-\mu| \geq \alpha] \leq 2 e^{-\frac{2 \alpha^{2}}{\sum_{i}\left(a_{i}-b_{i}\right)^{2}}}
$$

Hoeffding Inequality

Let $\mathrm{c}_{1}, \ldots, \mathrm{c}_{d}$ be independent random variables with each $\mathrm{c}_{i} \in\left[a_{i}, b_{i}\right]$. Let $\mathbb{E}\left[\mathrm{c}_{i}\right]=\mu_{i}$ and $\operatorname{Var}\left[\mathrm{c}_{i}\right]=\sigma_{i}^{2}$. Let $\mu=\sum_{i} \mu_{i}$ and $\sigma^{2}=\sum_{i} \sigma_{i}^{2}$. Then, for and $\alpha>0, S=\sum_{i} \mathrm{c}_{i}$ satisfies

$$
\operatorname{Pr}[|S-\mu| \geq \alpha] \leq 2 e^{-\frac{2 \alpha^{2}}{\sum_{i}\left(a_{i}-b_{i}\right)^{2}}}
$$

Here, $a_{i}=-1 / d, b_{i}=1 / d . \mu_{i}=$?

Hoeffding Inequality

Let $\mathrm{c}_{1}, \ldots, \mathrm{c}_{d}$ be independent random variables with each $\mathrm{c}_{i} \in\left[a_{i}, b_{i}\right]$. Let $\mathbb{E}\left[\mathrm{c}_{i}\right]=\mu_{i}$ and $\operatorname{Var}\left[\mathrm{c}_{i}\right]=\sigma_{i}^{2}$. Let $\mu=\sum_{i} \mu_{i}$ and $\sigma^{2}=\sum_{i} \sigma_{i}^{2}$. Then, for and $\alpha>0, S=\sum_{i} \mathrm{c}_{i}$ satisfies

$$
\operatorname{Pr}[|S-\mu| \geq \alpha] \leq 2 e^{-\frac{2 \alpha^{2}}{\sum_{i}\left(a_{i}-b_{i}\right)^{2}}}
$$

Here, $a_{i}=-1 / d, b_{i}=1 / d . \mu_{i}=$?

We have

$$
\operatorname{Pr}\left[\left|\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}\right| \geq \epsilon\right] \leq 2 e^{-\epsilon^{2} d / 2}
$$

For any pair i, j, we have $\operatorname{Pr}\left[\left|\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}\right|<\epsilon\right]>1-2 e^{-\epsilon^{2} d / 2}$. Taking union bound over all possible pairs, we get

$$
\operatorname{Pr}\left[\left|\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}\right|<\epsilon\right]>1-\binom{t}{2} 2 e^{-\epsilon^{2} d / 2}
$$

Near-orthogonal vectors

- Result: In d-dimensional space, there are $t=2^{\Theta\left(\epsilon^{2} d\right)}$ unit vectors with all pairwise inner products $\leq \epsilon$.
- Alternate point of view : Random vectors tend to be far apart (and roughly equidistant) in high-dimensions.
- Curse of dimensionality: If our data distribution is truly random, suppose we want to use say k-nearest neighbors to learn a function or classify points in \mathbb{R}^{d}, we typically need an exponential amount of data.
- Hope is that there exists low dimensional structure is our data.

Alternate approach: ϵ-Nets

Some definitions:

- Unit sphere: Let $\mathcal{S}_{p}^{d-1} \equiv\left\{\boldsymbol{x} \in \mathbb{R}^{d} \mid\|\boldsymbol{x}\|_{p}=1\right\}$.

We will omit p, when $p=2$, and d when in context.

- Semi-norms from sets: For symmetric matrix $\boldsymbol{W} \in \mathbb{R}^{d \times d}$ and non-empty $\mathcal{N} \subset \mathbb{R}^{d}$, let

$$
\|\boldsymbol{W}\|_{\mathcal{N}} \equiv \sup \left\{\left|\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}\right| /\|\boldsymbol{x}\|^{2} \mid \boldsymbol{x} \in \mathcal{N}, \boldsymbol{x} \neq 0\right\}
$$

so when $\mathcal{N} \subset \mathcal{S},\|\boldsymbol{W}\|_{\mathcal{N}} \equiv \sup _{\boldsymbol{x} \in \mathcal{N}}\left|\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}\right|$.

- Embedding of $\mathcal{N}:$ For $\mathcal{N} \subset \mathbb{R}^{d}, \boldsymbol{B} \in \mathbb{R}^{m \times d}$, and $\beta \in(0,1]$, $\left\|\boldsymbol{B}^{\top} \boldsymbol{B}-\boldsymbol{I}\right\|_{\mathcal{N}} \leq \beta \Longrightarrow \boldsymbol{B}$ is a β-embedding of \mathcal{N}.
- $\boldsymbol{B}^{\top} \boldsymbol{B}-\boldsymbol{I}$ is called the centered Grammian of \boldsymbol{B}.
- If $\left\|\boldsymbol{B}^{\top} \boldsymbol{B}-\boldsymbol{I}\right\|_{\mathcal{S}} \leq \beta$, then \boldsymbol{B} is a β-embedding of \mathbb{R}^{d}.
- $\mathcal{N}=\mathcal{N}(\epsilon)$ is an ϵ-net of set \mathcal{P} if it is both:
- ϵ-packing: all $p \in \mathcal{N}$ at least ϵ from \mathcal{N}

$$
d(p, \mathcal{N} \backslash\{p\}) \geq \epsilon \text { for } p \in \mathcal{N}
$$

- ϵ-covering: all $p \in \mathcal{P}$ at most ϵ from \mathcal{N}

$$
d(p, \mathcal{N}) \leq \epsilon \text { for } p \in \mathcal{P}
$$

PK points, $\mathrm{N}=400$, packing radius $=0.0924$

ϵ-Nets

Sphere covering number

The unit sphere \mathcal{S} in \mathbb{R}^{d} has an ϵ-net of size at most $(1+2 / \epsilon)^{d}$.
Proof is through a volume argument. Since the points in $\mathcal{N}(\epsilon)$ are ϵ-separated, the balls of radii $\epsilon / 2$ centered at the points in $\mathcal{N}(\epsilon)$ are disjoint. Also, all such balls lie in $(1+\epsilon / 2) B_{2}^{d}$ where B_{2}^{d} denotes the unit Euclidean ball centered at the origin. So, we have

$$
\operatorname{vol}\left(\frac{\epsilon}{2} B_{2}^{d}\right) \cdot|\mathcal{N}(\epsilon)| \leq \operatorname{vol}\left(\left(1+\frac{\epsilon}{2}\right) B_{2}^{d}\right)
$$

Since, $\operatorname{vol}\left(r B_{2}^{d}\right)=r^{d} \operatorname{vol}\left(B_{2}^{d}\right)$, we get

$$
|\mathcal{N}(\epsilon)| \leq\left(1+\frac{\epsilon}{2}\right)^{d} /\left(\frac{\epsilon}{2}\right)^{d}=\left(1+\frac{2}{\epsilon}\right)^{d}
$$

ϵ-Net bound

For \mathcal{N}_{ϵ} an ϵ-net of unit sphere \mathcal{S} in \mathbb{R}^{d} and $\epsilon<1$, if matrix \boldsymbol{W} is symmetric, then

$$
(1-2 \epsilon)\|\boldsymbol{W}\|_{2} \leq\|\boldsymbol{W}\|_{\mathcal{N}_{\epsilon}} \leq\|\boldsymbol{W}\|_{\mathcal{S}}=\|\boldsymbol{W}\|_{2}
$$

and so if \boldsymbol{B} is a β-embedding of \mathcal{N}_{ϵ}, then it is a $\beta /(1-2 \epsilon)$ - embedding of \mathcal{S}, and so of \mathbb{R}^{d}.

ϵ-Net bound

For \mathcal{N}_{ϵ} an ϵ-net of unit sphere \mathcal{S} in \mathbb{R}^{d} and $\epsilon<1$, if matrix \boldsymbol{W} is symmetric, then

$$
(1-2 \epsilon)\|\boldsymbol{W}\|_{2} \leq\|\boldsymbol{W}\|_{\mathcal{N}_{\epsilon}} \leq\|\boldsymbol{W}\|_{\mathcal{S}}=\|\boldsymbol{W}\|_{2}
$$

and so if \boldsymbol{B} is a β-embedding of \mathcal{N}_{ϵ}, then it is a $\beta /(1-2 \epsilon)$ - embedding of \mathcal{S}, and so of \mathbb{R}^{d}.

Proof: Let unit \boldsymbol{y} be such that $\left|\boldsymbol{y}^{\top} \boldsymbol{W} \boldsymbol{y}\right|=\|\boldsymbol{W}\|_{2}=\|\boldsymbol{W}\|_{\mathcal{S}}$.
Since \mathcal{N}_{ϵ} is an ϵ-net, there is \boldsymbol{z} with $\|\boldsymbol{z}\| \leq \epsilon$ and $(\boldsymbol{y}-\boldsymbol{z}) \in \mathcal{N}_{\epsilon}$.
Next,

$$
\begin{aligned}
\|\boldsymbol{W}\|_{2} & =\left|\boldsymbol{y}^{\top} \boldsymbol{W} \boldsymbol{y}\right|=\left|(\boldsymbol{y}-\boldsymbol{z})^{\top} \boldsymbol{W}(\boldsymbol{y}-\boldsymbol{z})+\boldsymbol{z}^{\top} \boldsymbol{W} \boldsymbol{y}+\boldsymbol{z}^{\top} \boldsymbol{W}(\boldsymbol{y}-\boldsymbol{z})\right| \\
& \leq\left|(\boldsymbol{y}-\boldsymbol{z})^{\top} \boldsymbol{W}(\boldsymbol{y}-\boldsymbol{z})\right|+\left|\boldsymbol{z}^{\top} \boldsymbol{W} \boldsymbol{y}\right|+\left|\boldsymbol{z}^{\top} \boldsymbol{W}(\boldsymbol{y}-\boldsymbol{z})\right| \\
& \leq\|\boldsymbol{W}\|_{\mathcal{N}_{\epsilon}}+\|\boldsymbol{z}\| \cdot\|\boldsymbol{W} \boldsymbol{y}\|+\|\boldsymbol{z}\| \cdot\|\boldsymbol{W}(\boldsymbol{y}-\boldsymbol{z})\| \\
& \leq\|\boldsymbol{W}\|_{\mathcal{N}_{\epsilon}}+2 \epsilon\|\boldsymbol{W}\|_{2} .
\end{aligned}
$$

Independent Gaussians

Recall the norm estimation random vectors.

- Gaussians are stable: Given $\boldsymbol{y} \in \mathbb{R}^{d}$, if $\boldsymbol{g} \in \mathbb{R}^{d}$ has entries i.i.d $\mathcal{N}(0,1)$, then

$$
\boldsymbol{g}^{\top} \boldsymbol{y} \sim \mathcal{N}\left(0,\|\boldsymbol{y}\|^{2}\right)
$$

- A sum of independent Gaussians is Gaussian, and a scalar multiple of a Gaussian is Gaussian.

Independent Gaussians

Recall the norm estimation random vectors.

- Gaussians are stable: Given $\boldsymbol{y} \in \mathbb{R}^{d}$, if $\boldsymbol{g} \in \mathbb{R}^{d}$ has entries i.i.d $\mathcal{N}(0,1)$, then

$$
\boldsymbol{g}^{\top} \boldsymbol{y} \sim \mathcal{N}\left(0,\|\boldsymbol{y}\|^{2}\right)
$$

- A sum of independent Gaussians is Gaussian, and a scalar multiple of a Gaussian is Gaussian.
- Vector embedding: Given a unit vector $\boldsymbol{y} \in \mathbb{R}^{d}, \epsilon \in(0,1]$. If $\boldsymbol{G} \in \mathbb{R}^{m \times d}$ has independent entries $g_{i j} \sim \mathcal{N}(0,1 / m)$, then

$$
\operatorname{Pr}\left\{\left|\|\boldsymbol{G} \boldsymbol{y}\|_{2}^{2}-1\right| \geq \epsilon\right\} \leq 2 \exp \left(-\epsilon^{2} m / 16\right)
$$

We know $\sqrt{m} \boldsymbol{G} \boldsymbol{y} \sim \mathcal{N}(0,1)$ and squared norm is a χ_{m}^{2} distribution. Using the standard bounds for concentration of a χ_{m}^{2}, we get the above.

- With high probability, $\boldsymbol{G} \epsilon$-embeds unit vectors $\boldsymbol{y} \in \mathbb{R}^{d}$. Also, for any fixed $\boldsymbol{y} \in \mathbb{R}^{d}$.

Gaussian width

- Gaussian width: Given $\mathcal{R} \subset \mathbb{R}^{d}$, the Gaussian width of \mathcal{R} is

$$
w(\mathcal{R}) \equiv \mathbb{E}_{\boldsymbol{g} \sim \mathcal{N}(0, \boldsymbol{I})}\left[\sup _{\boldsymbol{y}, \boldsymbol{x} \in \mathcal{R}} \boldsymbol{g}^{\top}(\boldsymbol{y}-\boldsymbol{x})\right] .
$$

- Alternatively, the Gaussian width of \mathcal{R} is

$$
w(\mathcal{R}) \equiv \mathbb{E}_{\boldsymbol{g} \sim \mathcal{N}(0, \boldsymbol{I})}\left[\sup _{\boldsymbol{y} \in \mathcal{R}} \boldsymbol{g}^{\top} \boldsymbol{y} /\|\boldsymbol{y}\|\right]
$$

- Gaussian widths:
- $w\left(\mathbb{R}^{d}\right) \leq \sqrt{d}$
- $w(\mathcal{L}) \leq \sqrt{k}$ for \mathcal{L} a k-dimensional subspace.
- $w(\mathcal{R}) \leq \sqrt{2 \log |\mathcal{R}|}$ for finte \mathcal{R}.

Gordon's theorem

Gordon's theorem [G88]

For given $\mathcal{R} \subset \mathbb{R}^{d}$, if $\boldsymbol{G} \in \mathbb{R}^{m \times d}$ has independent entries $g_{i j} \sim \mathcal{N}(0,1 / m)$, then

$$
\operatorname{Pr}\left\{\left\|\boldsymbol{G}^{\top} \boldsymbol{G}-\boldsymbol{I}\right\|_{\mathcal{R}} \geq 2 \beta+\beta^{2}\right\} \leq 2 \exp \left(-t^{2} / 2\right)
$$

where $\beta \equiv \frac{w(\mathcal{R})+1+t}{\sqrt{m}}$.

Euclidean dimensionality reduction

Johnson-Lindenstrauss, 1984

For any set of n data points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$ there exists a linear map $\Pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ where $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ such that for all i, j,

$$
(1-\epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2} \leq\left\|\Pi \boldsymbol{x}_{i}-\Pi \boldsymbol{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}
$$

Johnson-Lindenstrauss, 1984

For any set of n data points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$ there exists a linear map $\Pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ where $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ such that for all i, j,

$$
(1-\epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2} \leq\left\|\Pi \boldsymbol{x}_{i}-\Pi \boldsymbol{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}
$$

Proof:

- We show that for a Gaussian matrix $\boldsymbol{G} \in \mathbb{R}^{m \times d}$ has independent entries $g_{i j} \sim \mathcal{N}(0,1 / m)$, the result holds.
- Use the vector embedding result from before (squared norm $\left\|\boldsymbol{G}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)\right\|^{2}$ is χ_{m}^{2} distribution with mean $\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}$).
- Set the probability to $1 / n^{2}$. Since we have $<n^{2}$ possible pairs i, j, using union bound, we get the result.
- For vectors in finite $\mathcal{R} \subset \mathbb{R}^{d}$, we can use Gordon's theorem to prove similar result.

Original result used rows of a random orthogonal matrix. Random sign matrix, where rows are Radamacher vectors, is an example.

Oblivious subspace embedding

- For real $\boldsymbol{x}, \boldsymbol{y}$ and ϵ, by $\boldsymbol{x}=(1 \pm \epsilon) \boldsymbol{y}$ we mean that $|\boldsymbol{x}-\boldsymbol{y}| \leq \epsilon|\boldsymbol{y}|$.
- Embedding: A matrix $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ is an ϵ-embedding of set $\mathcal{P} \subset \mathbb{R}^{n}$ if, for all $\boldsymbol{y} \in \mathcal{P}$,

$$
\|\boldsymbol{S} \boldsymbol{y}\|_{2}=(1 \pm \epsilon)\|\boldsymbol{y}\|_{2}
$$

We will call \boldsymbol{S} a "sketching matrix".

Subspace embedding

For $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, a matrix $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ is a subspace ϵ-embedding for \boldsymbol{A} if \boldsymbol{S} is an ϵ-embedding for $\operatorname{span}(\boldsymbol{A})=\left\{\boldsymbol{A x} \mid \boldsymbol{x} \in \mathbb{R}^{d}\right\}$. I.e., for all $\boldsymbol{x} \in \mathbb{R}^{d}$,

$$
\|\boldsymbol{S} \boldsymbol{A} \boldsymbol{x}\|_{2}=(1 \pm \epsilon)\|\boldsymbol{A} \boldsymbol{x}\|_{2} .
$$

We will call $\boldsymbol{S} \boldsymbol{A}$ a "sketch".

Obliviousness

An Oblivious subspace embedding is:

- A probability distribution \mathcal{D} over matrices $\boldsymbol{S} \in \mathbb{R}^{m \times n}$, so that
- For any unknown but fixed matrix $\boldsymbol{A}, \boldsymbol{S}$ is a subspace ϵ-embedding for \boldsymbol{A} with high probability.

Advantages:

- Distribution \mathcal{D} does not depend on input data. Construct \boldsymbol{S} without knowing \boldsymbol{A}.
- Streaming: when entries of \boldsymbol{A} change, $\boldsymbol{S} \boldsymbol{A}$ is easy to update.
- Distributed: If each p processor has matrix $\boldsymbol{A}^{(p)}$ and $\boldsymbol{A}=\sum_{p} \boldsymbol{A}^{(p)}$, compute sketch at each processor.
- Analysis: If \boldsymbol{U} has $\operatorname{span}(\boldsymbol{U})=\operatorname{span}(\boldsymbol{A})$, then the embedding condition holds for $\operatorname{span}(\boldsymbol{A})$ iff it holds for $\operatorname{span}(\boldsymbol{U})$. So, we can assume \boldsymbol{A} is orthonormal.

Subspace embedding

Given $\epsilon, \delta>0, \boldsymbol{A} \in \mathbb{R}^{n \times d}$, and unit vector $\boldsymbol{y} \in \mathbb{R}^{n}$. There is $m=O\left(\frac{d \log (1 / \delta)}{\epsilon^{2}}\right)$ so that if $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ is randomly chosen from a fixed (oblivious to \boldsymbol{A}) distribution with the property that \boldsymbol{S} is an $\epsilon / 6$-embedding of \boldsymbol{y} (JL property) with failure probability $\delta^{\prime}=K_{1} \exp \left(-K_{2} \epsilon^{2} m\right)$, for some $K_{1}, K_{2}>0$, then
\boldsymbol{S} is a subspace ϵ-embedding for \boldsymbol{A} with failure probability δ.

Subspace embedding

Given $\epsilon, \delta>0, \boldsymbol{A} \in \mathbb{R}^{n \times d}$, and unit vector $\boldsymbol{y} \in \mathbb{R}^{n}$. There is $m=O\left(\frac{d \log (1 / \delta)}{\epsilon^{2}}\right)$ so that if $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ is randomly chosen from a fixed (oblivious to \boldsymbol{A}) distribution with the property that \boldsymbol{S} is an $\epsilon / 6$-embedding of \boldsymbol{y} (JL property) with failure probability $\delta^{\prime}=K_{1} \exp \left(-K_{2} \epsilon^{2} m\right)$, for some $K_{1}, K_{2}>0$, then
\boldsymbol{S} is a subspace ϵ-embedding for \boldsymbol{A} with failure probability δ.
Proof: We will use the ϵ-net argument with the ϵ-embedding (JL) property.

- Since \boldsymbol{S} is oblivious, assume \boldsymbol{A} has orthonormal columns.
- For some $\epsilon_{0}>0$ (to be determined), we pick an ϵ_{0}-net $\mathcal{N}_{\epsilon_{0}} \subset \mathcal{S}$.
- For $\boldsymbol{x} \in \mathcal{N}_{\epsilon_{0}}, \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} \in \operatorname{span}(\boldsymbol{A})$ is a unit vector.
- Let $\boldsymbol{W}:=\boldsymbol{A}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A}-\boldsymbol{I}$.
- Note that, for any $\beta \in(0,1],(1+\beta)^{2} \leq(1+3 \beta)$ and $(1-\beta)^{2} \geq(1-3 \beta)$.

So, we have $\left|\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}-1\right| \leq \epsilon / 2$. Also,

$$
\left|\|\boldsymbol{S} \boldsymbol{y}\|_{2}^{2}-1\right|=\left|\boldsymbol{y}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{y}-\boldsymbol{y}^{\top} \boldsymbol{y}\right|=\left|\boldsymbol{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}\right|=\left|\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}\right| \leq \epsilon / 2
$$

with failure probability δ^{\prime}.
Applying this to all vectors in $\mathcal{N}_{\epsilon_{0}}$, and union bound,

$$
\|\boldsymbol{W}\|_{\mathcal{N}_{\epsilon_{0}}} \leq \epsilon / 2 \text { with failure probability } \leq \delta^{\prime}\left|\mathcal{N}_{\epsilon_{0}}\right|
$$

Using the relation between $\|\boldsymbol{W}\|_{\mathcal{S}}$ and $\|\boldsymbol{W}\|_{\mathcal{N}_{\epsilon_{0}}}$ and the bound on net size $\left|\mathcal{N}_{\epsilon_{0}}\right|$,

$$
\|\boldsymbol{W}\|_{\mathcal{S}} \leq \epsilon / 2 /\left(1-\epsilon_{0}\right) \text { with failure probability } \leq \delta^{\prime}\left|\mathcal{N}_{\epsilon_{0}}\right| \leq\left(1+\frac{2}{\epsilon_{0}}\right)^{d} K_{1} \exp \left(-K_{2} \epsilon^{2} m\right)
$$

For fixed ϵ_{0}, there is $m=O\left(\frac{d \log (1 / \delta)}{\epsilon^{2}}\right)$, so that this is at most δ.
For $\epsilon_{0} \leq 1 / 2$, we have $\|\boldsymbol{W}\|_{\mathcal{S}} \leq \epsilon$.

Further Reading

- Woodruff, David P. "Sketching as a tool for numerical linear algebra." Foundations and Trends® in Theoretical Computer Science 10.1-2 (2014): 1-157.
- Martinsson, P. G., and Tropp, J. "Randomized numerical linear algebra: foundations and algorithms" . arXiv preprint arXiv:2002.01387 (2020).

Questions?

