
CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin
Spring 2024

UT Austin CSE 392 Feb, 2024 1 / 24



Lecture 7: JL Lemma and subspace embedding
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High-dimensional vectors

Often we deal with data vectors that are high-dimensional.

Dimensionality reduction: One popular approach is to embed these vectors on a
low-dimensional space.

What criteria should we use to compute this low-dimensional embedding? What
properties of the data do we wish to preserve?
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Near-orthogonal vectors

Given a d-dimensional space, what is the largest set of mutually orthogonal unit vectors
x1, . . . ,xt we can have? I.e. with the inner products

|x>i xj | = 0 ∀i, j

Answer: d

Given a d-dimensional space, what is the largest set of nearly orthogonal unit vectors
x1, . . . ,xt? I.e. with the inner products

|x>i xj | ≤ ε ∀i, j

Suppose ε is a constant. E.g. ε = 1/10.
Answer: 2Θ(d)
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Near-orthogonal vectors

Claim: There is an exponential number of nearly orthogonal unit vectors in
d-dimensional space (∼ 2d).
Proof approach: One approach is to use Probabilistic Argument. For t = 2Θ(d), define a
random process which generates random vectors x1, . . . ,xt that are unlikely to have large
inner product

Show that, with high probability, |x>i xj | ≤ ε ∀i, j.
Hence, there must exists some set of unit vectors with all pairwise inner-products
bounded by ε.
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Proof: Let x1, . . . ,xt be normalized Radmacher vectors, i.e., have independent random
entries, each set to ±1/

√
d with equal probability.

E[x>i xj ] =?

Let S = x>i xj =
∑d

i=1 ci, where ci is random ±1/d.
S is sum of i.i.d random variables. Lets use Hoeffding’s inequality:

Hoeffding Inequality

Let c1, . . . , cd be independent random variables with each ci ∈ [ai, bi]. Let E[ci] = µi and
Var[ci] = σ2

i . Let µ =
∑

i µi and σ2 =
∑

i σ
2
i . Then, for and α > 0, S =

∑
i ci satisfies

Pr[|S − µ| ≥ α] ≤ 2e
− 2α2∑

i(ai−bi)2 .
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i . Then, for and α > 0, S =

∑
i ci satisfies

Pr[|S − µ| ≥ α] ≤ 2e
− 2α2∑

i(ai−bi)2 .

Here, ai = −1/d, bi = 1/d. µi =?

We have
Pr[|x>i xj | ≥ ε] ≤ 2e−ε

2d/2

For any pair i, j, we have Pr[|x>i xj | < ε] > 1− 2e−ε
2d/2. Taking union bound over all

possible pairs, we get

Pr[|x>i xj | < ε] > 1−
(
t

2

)
2e−ε

2d/2
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Near-orthogonal vectors

Result: In d-dimensional space, there are t = 2Θ(ε2d)unit vectors with all pairwise
inner products ≤ ε.
Alternate point of view : Random vectors tend to be far apart (and roughly
equidistant) in high-dimensions.

Curse of dimensionality: If our data distribution is truly random, suppose we
want to use say k-nearest neighbors to learn a function or classify points in Rd, we
typically need an exponential amount of data.

Hope is that there exists low dimensional structure is our data.
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Alternate approach: ε-Nets

Some definitions:

Unit sphere: Let Sd−1
p ≡ {x ∈ Rd | ‖x‖p = 1}.

We will omit p, when p = 2, and d when in context.

Semi-norms from sets: For symmetric matrix W ∈ Rd×d and non-empty N ⊂ Rd,
let

‖W ‖N ≡ sup{|x>Wx|/‖x‖2 | x ∈ N ,x 6= 0}

so when N ⊂ S, ‖W ‖N ≡ supx∈N |x>Wx|.
Embedding of N : For N ⊂ Rd,B ∈ Rm×d, and β ∈ (0, 1],
‖B>B − I‖N ≤ β =⇒ B is a β-embedding of N .

B>B − I is called the centered Grammian of B.

If ‖B>B − I‖S ≤ β, then B is a β-embedding of Rd.
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ε-Nets

N = N (ε) is an ε-net of set P if it is both:
I ε-packing: all p ∈ N at least ε from N

d(p,N \ {p}) ≥ ε for p ∈ N

I ε-covering: all p ∈ P at most ε from N

d(p,N ) ≤ ε for p ∈ P
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ε-Nets

Sphere covering number

The unit sphere S in Rd has an ε-net of size at most (1 + 2/ε)d.

Proof is through a volume argument. Since the points in N (ε) are ε-separated, the balls of
radii ε/2 centered at the points in N (ε) are disjoint. Also, all such balls lie in (1 + ε/2)Bd

2

where Bd
2 denotes the unit Euclidean ball centered at the origin. So, we have

vol(
ε

2
Bd

2) · |N (ε)| ≤ vol((1 +
ε

2
)Bd

2)

Since, vol(rBd
2) = rdvol(Bd

2), we get

|N (ε)| ≤ (1 +
ε

2
)d/(

ε

2
)d = (1 +

2

ε
)d.
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ε-Net bound

For Nε an ε-net of unit sphere S in Rd and ε < 1, if matrix W is symmetric, then

(1− 2ε)‖W ‖2 ≤ ‖W ‖Nε ≤ ‖W ‖S = ‖W ‖2

and so if B is a β-embedding of Nε, then
it is a β/(1− 2ε)- embedding of S, and so of Rd.

Proof: Let unit y be such that |y>Wy| = ‖W ‖2 = ‖W ‖S .
Since Nε is an ε-net, there is z with ‖z‖ ≤ ε and (y − z) ∈ Nε.
Next,

‖W ‖2 = |y>Wy| = |(y − z)>W (y − z) + z>Wy + z>W (y − z)|
≤ |(y − z)>W (y − z)|+ |z>Wy|+ |z>W (y − z)|
≤ ‖W ‖Nε

+ ‖z‖ · ‖Wy‖+ ‖z‖ · ‖W (y − z)‖
≤ ‖W ‖Nε

+ 2ε‖W ‖2.
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Independent Gaussians

Recall the norm estimation random vectors.

Gaussians are stable: Given y ∈ Rd, if g ∈ Rd has entries i.i.d N (0, 1), then

g>y ∼ N (0, ‖y‖2)

A sum of independent Gaussians is Gaussian, and a scalar multiple of a Gaussian is
Gaussian.

Vector embedding: Given a unit vector y ∈ Rd, ε ∈ (0, 1]. If G ∈ Rm×d has
independent entries gij ∼ N (0, 1/m), then

Pr{|‖Gy‖22 − 1| ≥ ε} ≤ 2 exp(−ε2m/16).

We know
√
mGy ∼ N (0, 1) and squared norm is a χ2

m distribution. Using the standard

bounds for concentration of a χ2
m, we get the above.

With high probability, G ε-embeds unit vectors y ∈ Rd. Also, for any fixed y ∈ Rd.
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Gaussian width

Gaussian width: Given R ⊂ Rd, the Gaussian width of R is

w(R) ≡ Eg∼N (0,I)[ sup
y,x∈R

g>(y − x)].

Alternatively, the Gaussian width of R is

w(R) ≡ Eg∼N (0,I)[sup
y∈R

g>y/‖y‖].

Gaussian widths:
I w(Rd) ≤

√
d

I w(L) ≤
√
k for L a k-dimensional subspace.

I w(R) ≤
√

2 log |R| for finte R.
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Gordon’s theorem

Gordon’s theorem [G88]

For given R ⊂ Rd, if G ∈ Rm×d has independent entries gij ∼ N (0, 1/m), then

Pr{‖G>G− I‖R ≥ 2β + β2} ≤ 2 exp(−t2/2),

where β ≡ w(R)+1+t√
m

.
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Euclidean dimensionality reduction

Johnson-Lindenstrauss, 1984

For any set of n data points x1, . . . ,xn ∈ Rd there exists a linear map Π : Rd → Rm where
m = O( logn

ε2
) such that for all i, j,

(1− ε)‖xi − xj‖2 ≤ ‖Πxi −Πxj‖2 ≤ (1 + ε)‖xi − xj‖2

z = Π

x
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Johnson-Lindenstrauss, 1984

For any set of n data points x1, . . . ,xn ∈ Rd there exists a linear map Π : Rd → Rm where
m = O( logn

ε2
) such that for all i, j,

(1− ε)‖xi − xj‖2 ≤ ‖Πxi −Πxj‖2 ≤ (1 + ε)‖xi − xj‖2

Proof:

We show that for a Gaussian matrix G ∈ Rm×d has independent entries gij ∼ N (0, 1/m), the
result holds.

Use the vector embedding result from before (squared norm ‖G(xi − xj)‖2 is χ2
m distribution

with mean ‖xi − xj‖2).

Set the probability to 1/n2. Since we have < n2 possible pairs i, j, using union bound, we get
the result.

For vectors in finite R ⊂ Rd, we can use Gordon’s theorem to prove similar result.

Original result used rows of a random orthogonal matrix. Random sign matrix, where rows are
Radamacher vectors, is an example.
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Oblivious subspace embedding

For real x,y and ε, by x = (1± ε)y we mean that |x− y| ≤ ε|y|.
Embedding: A matrix S ∈ Rm×n is an ε-embedding of set P ⊂ Rn if, for all y ∈ P,

‖Sy‖2 = (1± ε)‖y‖2.

We will call S a “sketching matrix”.

Subspace embedding

For A ∈ Rn×d, a matrix S ∈ Rm×n is a subspace ε-embedding for A if S is an
ε-embedding for span(A) = {Ax | x ∈ Rd}. I.e., for all x ∈ Rd,

‖SAx‖2 = (1± ε)‖Ax‖2.

We will call SA a “sketch”.
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Obliviousness

An Oblivious subspace embedding is:

A probability distribution D over matrices S ∈ Rm×n, so that

For any unknown but fixed matrix A, S is a subspace ε-embedding for A with high
probability.

Advantages:

Distribution D does not depend on input data. Construct S without knowing A.

Streaming: when entries of A change, SA is easy to update.

Distributed: If each p processor has matrix A(p) and A =
∑

pA
(p), compute sketch at

each processor.

Analysis: If U has span(U) = span(A), then the embedding condition holds for
span(A) iff it holds for span(U). So, we can assume A is orthonormal.
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Subspace embedding

Given ε, δ > 0, A ∈ Rn×d, and unit vector y ∈ Rn. There is m = O(d log(1/δ)
ε2

) so that if
S ∈ Rm×n is randomly chosen from a fixed (oblivious to A) distribution with the property
that S is an ε/6-embedding of y (JL property) with failure probability
δ′ = K1 exp(−K2ε

2m), for some K1,K2 > 0, then
S is a subspace ε-embedding for A with failure probability δ.

Proof: We will use the ε-net argument with the ε-embedding (JL) property.

Since S is oblivious, assume A has orthonormal columns.

For some ε0 > 0 (to be determined), we pick an ε0-net Nε0 ⊂ S.

For x ∈ Nε0 ,y = Ax ∈ span(A) is a unit vector.

Let W := A>S>SA− I.

Note that, for any β ∈ (0, 1], (1 + β)2 ≤ (1 + 3β) and (1− β)2 ≥ (1− 3β).

UT Austin CSE 392 Feb, 2024 21 / 24



Subspace embedding

Given ε, δ > 0, A ∈ Rn×d, and unit vector y ∈ Rn. There is m = O(d log(1/δ)
ε2

) so that if
S ∈ Rm×n is randomly chosen from a fixed (oblivious to A) distribution with the property
that S is an ε/6-embedding of y (JL property) with failure probability
δ′ = K1 exp(−K2ε

2m), for some K1,K2 > 0, then
S is a subspace ε-embedding for A with failure probability δ.

Proof: We will use the ε-net argument with the ε-embedding (JL) property.

Since S is oblivious, assume A has orthonormal columns.

For some ε0 > 0 (to be determined), we pick an ε0-net Nε0 ⊂ S.

For x ∈ Nε0 ,y = Ax ∈ span(A) is a unit vector.

Let W := A>S>SA− I.

Note that, for any β ∈ (0, 1], (1 + β)2 ≤ (1 + 3β) and (1− β)2 ≥ (1− 3β).

UT Austin CSE 392 Feb, 2024 21 / 24



So, we have |‖Sy‖22 − 1| ≤ ε/2. Also,

|‖Sy‖22 − 1| = |y>S>Sy − y>y| = |x>A>S>SAx− x>A>Ax| = |x>Wx| ≤ ε/2

with failure probability δ′.
Applying this to all vectors in Nε0 , and union bound,

‖W ‖Nε0 ≤ ε/2 with failure probability ≤ δ′|Nε0 |

Using the relation between ‖W ‖S and ‖W ‖Nε0 and the bound on net size |Nε0 |,

‖W ‖S ≤ ε/2/(1− ε0) with failure probability ≤ δ′|Nε0 | ≤ (1 +
2

ε0
)dK1 exp(−K2ε

2m).

For fixed ε0, there is m = O(d log(1/δ)
ε2

), so that this is at most δ.
For ε0 ≤ 1/2, we have ‖W ‖S ≤ ε.
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Further Reading

Woodruff, David P. “Sketching as a tool for numerical linear algebra.” Foundations and
Trends® in Theoretical Computer Science 10.1–2 (2014): 1-157.

Martinsson, P. G., and Tropp, J. “Randomized numerical linear algebra: foundations and
algorithms”. arXiv preprint arXiv:2002.01387 (2020).
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Questions?
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