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High-dimensional vectors

o Often we deal with data vectors that are high-dimensional.

e Dimensionality reduction: One popular approach is to embed these vectors on a
low-dimensional space.

e What criteria should we use to compute this low-dimensional embedding? What
properties of the data do we wish to preserve?

L
e
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Near-orthogonal vectors

Given a d-dimensional space, what is the largest set of mutually orthogonal unit vectors
x1,...,x; we can have? Le. with the inner products

|z x| =0 Vi,j
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Near-orthogonal vectors

Given a d-dimensional space, what is the largest set of mutually orthogonal unit vectors
x1,...,x; we can have? Le. with the inner products

|z x| =0 Vi,j

Answer: d

Given a d-dimensional space, what is the largest set of nearly orthogonal unit vectors
x1,...,x:? Le. with the inner products

|z x| <e Vi,j

Suppose € is a constant. E.g. ¢ = 1/10.
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Near-orthogonal vectors

Given a d-dimensional space, what is the largest set of mutually orthogonal unit vectors
x1,...,x; we can have? Le. with the inner products

|z x| =0 Vi,j
Answer: d
Given a d-dimensional space, what is the largest set of nearly orthogonal unit vectors
x1,...,x:? Le. with the inner products

|a:Zch]] <e Vij

Suppose € is a constant. E.g. ¢ = 1/10.
Answer: 290
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Near-orthogonal vectors

Claim: There is an exponential number of nearly orthogonal unit vectors in

d-dimensional space (~ 2%).
Proof approach: One approach is to use Probabilistic Arqgument. For t = 204 define a

random process which generates random vectors @, ..., x; that are unlikely to have large

inner product
o Show that, with high probability, |z, x;| < e Vi, j.
e Hence, there must exists some set of unit vectors with all pairwise inner-products

bounded by e.
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Proof: Let x1,...,x; be normalized Radmacher vectors, i.e., have independent random
entries, each set to £1/ Vd with equal probability.

Elx] x;] =7

Let S =z/x; = Zle ci, where ¢; is random +1/d.

S is sum of i.i.d random variables. Lets use Hoeffding’s inequality:

Hoeffding Inequality

Let cy,...,cq be independent random variables with each ¢; € [a;, b;]. Let E[c;] = p; and
Var[c;] = 02. Let u =Y, u; and 0? = >, 02. Then, for and o > 0,5 = Y, ¢; satisfies

2

22
Pr[|S — pu| > o] < 2e Tilai-t?,
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Hoeftding Inequality
Let cy,...,cq be independent random variables with each ¢; € [a;, b;]. Let E[c;] = p; and
Var[c;] = 02. Let u =Y, pu; and 0? = 3. 02. Then, for and o > 0,5 = Y, ¢; satisfies

_ 202
Pr[|S — u| > a] < 2e Zilai=t)?,

Here, a; = —]_/d, bl = 1/d i =7
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Hoeftding Inequality
Let cy,...,cq be independent random variables with each ¢; € [a;, b;]. Let E[c;] = p; and
Var[c;] = 02. Let u =Y, pu; and 0? = 3. 02. Then, for and o > 0,5 = Y, ¢; satisfies

_ 202
Pr[|S — u| > a] < 2e Zilai=t)?,

Here, a; = —]_/d, bl = 1/d i =7

We have ,
Prljz x| > ¢] < 2e7 42

For any pair i, j, we have Pr[|z/ ;| < € >1— 2¢~4/2_ Taking union bound over all
possible pairs, we get

t
Pr[|le] zj| <€ >1— (2) 2" /2
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Near-orthogonal vectors

@ Result: In d-dimensional space, there are t = 20(€d)ynit vectors with all pairwise
inner products < e.

e Alternate point of view : Random vectors tend to be far apart (and roughly
equidistant) in high-dimensions.

o Curse of dimensionality: If our data distribution is truly random, suppose we
want to use say k-nearest neighbors to learn a function or classify points in R¢, we
typically need an exponential amount of data.

e Hope is that there exists low dimensional structure is our data.
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Alternate approach: e-Nets

Some definitions:
e Unit sphere: Let Sg_l ={z cR?| ||, =1}
We will omit p, when p = 2, and d when in context.
e Semi-norms from sets: For symmetric matrix W € R4*?¢ and non-empty N' C R,
let
IW iy = sup{lz We|/|z|* |z € N,z # 0}
so when N C S, [|W ||y = supgen |2 Wa|.
o Embedding of NV: For N C R% B € R™*¢ and 3 € (0, 1],
|IB"B —I||y <8 = B is a 3-embedding of \.
e B'B — I is called the centered Grammian of B.
If |BTB — I||s < 3, then B is a 3-embedding of R
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e-Nets

o N = N(e) is an e-net of set P if it is both:
> e-packing: all p € N at least € from N

dip, N\ {p}) > eforpe N
» e-covering: all p € P at most € from A

d(p,N) <eforpeP

PK points, N = 400, packi us =0.0924
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e-Nets

Sphere covering number
The unit sphere S in R? has an e-net of size at most (1 + 2/¢)?. J

Proof is through a volume argument. Since the points in A/ (€) are e-separated, the balls of
radii €/2 centered at the points in A/(€) are disjoint. Also, all such balls lie in (1 + ¢/2) B¢
where BY denotes the unit Euclidean ball centered at the origin. So, we have

vol(;BS) - IN'(e)] < woll((1+ 5)B3)
; dy — ,.d d
Since, vol(rBY) = r*vol(BS), we get
€

NI < 1+ 5/(5) = 1+ )2
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e-Net bound

For N, an e-net of unit sphere S in R? and e < 1, if matrix W is symmetric, then
(1 =29)[W]2 < [[W]n. < [Wls = [W]2

and so if B is a 3-embedding of N, then
it is a 3/(1 — 2¢)- embedding of S, and so of RZ.
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e-Net bound

For N, an e-net of unit sphere S in R? and e < 1, if matrix W is symmetric, then
(1 =2¢)[W]2 < W], < [[Wls = [[Wl2

and so if B is a 3-embedding of N, then
it is a 3/(1 — 2¢)- embedding of S, and so of RZ.

Proof: Let unit y be such that |y Wy| = [|[W], = |[W|s.

Since N is an e-net, there is z with ||z]] <€ and (y — 2) € N..

Next,
W=y Wy|l=|(y—2) Wy —2)+2 Wy+2z W(y - 2)|
<|y—2)"W(y-—2)|+|z" Wy|+|2"W(y - 2)|
< Wln. 2zl - Wyl + 2] - [W (y — 2) |l
< |\Wln. + 2€||W |2
Ty



Independent Gaussians

Recall the norm estimation random vectors.
o Gaussians are stable: Given y € R?, if g € R? has entries i.i.d N(0,1), then

gy ~N(©,yl*

e A sum of independent Gaussians is Gaussian, and a scalar multiple of a Gaussian is
Gaussian.
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Independent Gaussians

Recall the norm estimation random vectors.

o Gaussians are stable: Given y € R?, if g € R? has entries i.i.d N(0,1), then

gy ~N(O,|y|?

@ A sum of independent Gaussians is Gaussian, and a scalar multiple of a Gaussian is
Gaussian.

o Vector embedding: Given a unit vector y € R? e € (0,1]. If G € R™*? has
independent entries g;; ~ N (0,1/m), then

Pr{[|Gy||3 — 1| > ¢} < 2exp(—€>m/16).

We know /mGy ~ N(0,1) and squared norm is a x2, distribution. Using the standard
bounds for concentration of a x?2,, we get the above.

e With high probability, G e-embeds unit vectors y € R?%. Also, for any fixed y € R
Feb, 2024  14/24



Gaussian width

e Gaussian width: Given R C R¢, the Gaussian width of R is

w(R) = Egpo,n)! sup. g'(y—=z).
y,:l:

o Alternatively, the Gaussian width of R is
w(R) = Egno.nlsup g y/ylll.
YyeER

e Gaussian widths:
> w(RY) < Vd
» w(L) < Vk for £ a k-dimensional subspace.

» w(R) < +/2log|R| for finte R.
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Gordon’s theorem

Gordon’s theorem [G88]
For given R C R?, if G € R™*4 has independent entries g;; ~ N(0,1/m), then

Pr{|GTG — I||r > 28+ 3%} < 2exp(—t/2),

w(R)+1+t

where g = Tm
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Euclidean dimensionality reduction

Johnson-Lindenstrauss, 1984

For any set of n data points @1, ..., x, € R? there exists a linear map II : R — R™ where
m = 0(1352—") such that for all 7, j,

(1 =)z — 22 < [[a; — gl < (14 €)f|a; — a2

B
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Johnson-Lindenstrauss, 1984

For any set of n data points @1, ..., x, € R? there exists a linear map II : R — R™ where
m= O(loe#) such that for all 4, j,

(1 =€)z — x> < [[Ha; — Hajlls < (14 €)f|; — a2

Proof:

@ We show that for a Gaussian matrix G € R™*? has independent entries gi; ~N(0,1/m), the
result holds.

@ Use the vector embedding result from before (squared norm ||G(z; — x;)||? is x2, distribution

with mean ||z; — z;||?).

@ Set the probability to 1/n%. Since we have < n? possible pairs i, j, using union bound, we get
the result.

@ For vectors in finite R C R?, we can use Gordon’s theorem to prove similar result.

Original result used rows of a random orthogonal matrix. Random sign matrix, where rows are
Radamacher vectors, is an example.
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Oblivious subspace embedding

e For real ,y and €, by = (1 + €¢)y we mean that | — y| < €|y]|.
o Embedding: A matrix S € R™*" is an e-embedding of set P C R" if, for all y € P,

1Syll2 = (L £ e)[yll2.
We will call § a “sketching matrix”.

Subspace embedding

For A € R"*? a matrix § € R™*" is a subspace e-embedding for A if S is an
e-embedding for span(A) = {Ax | = € R%}. Te., for all x € RY,

1SAz|2 = (1 + €)[| Az]]5.

We will call SA a “sketch”.
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Obliviousness

An Oblivious subspace embedding is:
@ A probability distribution D over matrices S € R"™*" so that

e For any unknown but fixed matrix A, S is a subspace e-embedding for A with high
probability.

Advantages:
e Distribution D does not depend on input data. Construct S without knowing A.
e Streaming: when entries of A change, SA is easy to update.

o Distributed: If each p processor has matrix A®) and A = Zp AP compute sketch at
each processor.

o Analysis: If U has span(U) = span(A), then the embedding condition holds for
span(A) iff it holds for span(U). So, we can assume A is orthonormal.
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Subspace embedding

Given €, > 0, A € R and unit vector y € R”. There is m = O(dl%gl/&)) so that if

S € R™*™ is randomly chosen from a fixed (oblivious to A) distribution with the property
that S is an €/6-embedding of y (JL property) with failure probability

8 = K1 exp(—Ka€e*m), for some K1, Ky > 0, then

S is a subspace e-embedding for A with failure probability 4.
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Subspace embedding

Given €, > 0, A € R and unit vector y € R”. There is m = O(dl%gl/&)) so that if

S € R™*™ is randomly chosen from a fixed (oblivious to A) distribution with the property
that S is an €/6-embedding of y (JL property) with failure probability

8 = K1 exp(—Ka€e*m), for some K1, Ky > 0, then

S is a subspace e-embedding for A with failure probability 4.

Proof: We will use the e-net argument with the e-embedding (JL) property.
@ Since S is oblivious, assume A has orthonormal columns.
e For some €y > 0 (to be determined), we pick an eg-net N, C S.
o For x € N,y = Ax € span(A) is a unit vector.
o Let W:=ATSTSA- T
o Note that, for any 8 € (0,1], (14 8)? < (1+38) and (1 — 8)? > (1 — 38).
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So, we have |||Sy||3 — 1| < ¢/2. Also,
ISyll5 -1/ =|y'STSy -y y| =z ATS'SAz — 2" AT Az| = |2 Wx| < ¢/2

with failure probability ¢’.
Applying this to all vectors in N, and union bound,

IWllx;, < ¢/2 with failure probability < ¢'|N|
Using the relation between |[W||s and [[W ||y, and the bound on net size |N|,

2
[Wls < e€/2/(1 — €) with failure probability < §'|N,| < (1+ 6—)dK1 exp(—Kae*m).
0

For fixed ¢p, there is m = O(‘ﬂ%ﬂ/‘s))
For g < 1/2, we have |[W||s <e.

, so that this is at most d.
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Further Reading

@ Woodruff, David P. “Sketching as a tool for numerical linear algebra.” Foundations and
Trends®) in Theoretical Computer Science 10.1-2 (2014): 1-157.

@ Martinsson, P. G., and Tropp, J. “Randomized numerical linear algebra: foundations and
algorithms”. arXiv preprint arXiv:2002.01387 (2020).
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Questions?
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