CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 6: Approximate matrix product and sampling

Outline

(1) Randomization
(2) Approximating Matrix Multiplication
(3) Length-squared sampling
(4) Leverage score sampling

Why randomization?

- Modern data applications: massive data, computationally expensive problems.
- Approximate solutions suffice in many situations.
- Randomized sampling and sketching allow us to design approximation algorithms with provable error guarantees.
- Probabilistic error bounds. E.g., the (ϵ, δ) type bounds.

Product and norms using randomization

If a random distribution on $s \in \mathbb{R}^{n}$ has entries s_{i} with:

- $\mathbb{E}\left[\mathrm{s}_{i}^{2}\right]=1$ for $i=[n]$ and $\mathbb{E}\left[\mathrm{s}_{i} \mathrm{~s}_{j}\right]=0$ for $i, j=[n], i \neq j$.
- Then, for $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have

$$
\mathbb{E}[\langle\boldsymbol{s} \cdot \boldsymbol{x}, \boldsymbol{s} \cdot \boldsymbol{y}\rangle]=\mathbb{E}\left[\left(\boldsymbol{s}^{\top} \boldsymbol{x}\right) \cdot\left(\boldsymbol{s}^{\top} \boldsymbol{y}\right)\right]=\mathbb{E}\left[\boldsymbol{x}^{\top} \boldsymbol{s} \boldsymbol{s}^{\top} \boldsymbol{y}\right]=\boldsymbol{x}^{\top} \boldsymbol{y}
$$

- In particular, $\mathbb{E}\left[\left(\boldsymbol{s}^{\top} \boldsymbol{y}\right)^{2}\right]=\mathbb{E}\left[\boldsymbol{y}^{\top} \boldsymbol{s} \boldsymbol{s}^{\top} \boldsymbol{y}\right]=\boldsymbol{y}^{\top} \boldsymbol{y}=\|\boldsymbol{y}\|^{2}$.

$$
\mathbb{E}\left[\boldsymbol{s} \boldsymbol{s}^{\top}\right]=\left[\begin{array}{cccc}
\mathrm{s}_{1}^{2} & \mathrm{~s}_{1} \mathrm{~s}_{2} & \cdots & \mathrm{~s}_{1} \mathrm{~s}_{n} \\
\mathrm{~s}_{2}, \mathrm{~s}_{1} & \mathrm{~s}_{2}^{2} & & \vdots \\
\vdots & & \ddots & \\
\mathrm{~s}_{n}, \mathrm{~s}_{1} & \cdots & & \mathrm{~s}_{n}^{2}
\end{array}\right]=\boldsymbol{I}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & & \vdots \\
\vdots & & \ddots & \\
0 & \cdots & & 1
\end{array}\right]
$$

Sketching and Sampling

Sketching:

- Suppose $\mathrm{s}_{i} \sim \mathcal{N}(0,1)$ and independent.
- We have $\mathbb{E}\left[\mathrm{s}_{i}\right]=0, \mathbb{E}\left[\mathrm{~s}_{i}^{2}\right]=\operatorname{Var}\left(\mathrm{s}_{i}\right)=1$.
- For $i \neq j$, independence implies

$$
\mathbb{E}\left[\mathrm{s}_{i} \mathrm{~s}_{j}\right]=\mathbb{E}\left[\mathrm{s}_{i}\right] \mathbb{E}\left[\mathrm{s}_{i}\right]=0
$$

Sampling:

- Suppose we pick $i \in[n]$ uniformly with probability $\frac{1}{n}$ and set $\mathrm{s}_{i} \leftarrow \sqrt{n}, 0$ o.w.
- We have $\mathbb{E}\left[\mathrm{s}_{i}^{2}\right]=\frac{1}{n} \sqrt{n}^{2}+\left(1-\frac{1}{n}\right) 0=1$.
- For $i \neq j$ if $\mathrm{s}_{i} \neq 0 \Longrightarrow \mathrm{~s}_{j}=0$, so $\mathrm{s}_{i} \mathrm{~s}_{j}=0$.

Randomized techniques

With repetitions and better distributions, randomization can be made highly accurate.
A random distribution on $\boldsymbol{S} \in \mathbb{R}^{c \times n}$ has independent rows, each row is $\frac{1}{\sqrt{c}}$ times a sample of $s \in \mathbb{R}^{n}$, then

$$
\mathbb{E}\left[\boldsymbol{S}^{\top} \boldsymbol{S}\right]=\mathbb{E}\left[\sum_{i \in[c]} \boldsymbol{S}_{i *}^{\top} \boldsymbol{S}_{i *}\right]=\sum_{i \in[c]} \mathbb{E}\left[\boldsymbol{S}_{i *}^{\top} \boldsymbol{S}_{i *}\right]=\sum_{i \in[c]} \frac{1}{c} \boldsymbol{I}=\boldsymbol{I},
$$

so for $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have $\mathbb{E}[\langle\boldsymbol{S} \boldsymbol{x}, \boldsymbol{S} \boldsymbol{y}\rangle]=\mathbb{E}\left[\boldsymbol{x}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{y}\right]=\boldsymbol{x}^{\top} \mathbb{E}\left[\boldsymbol{S}^{\top} \boldsymbol{S}\right] \boldsymbol{y}=\boldsymbol{x}^{\top} \boldsymbol{y}$.
In particular, $\mathbb{E}\left[\|\boldsymbol{S} \boldsymbol{y}\|^{2}\right]=\|\boldsymbol{y}\|^{2}$

Applications:

- Approximating matrix multiplication
- Least squares regression
- Low rank approximation

Approximating Matrix Multiplication (AMM)

Problem Statement:

Given an $m \times n$ matrix \boldsymbol{A} and an $n \times p$ matrix \boldsymbol{B}, approximate the product $\boldsymbol{A} \cdot \boldsymbol{B}$, OR, equivalently,
Approximate the sum of n rank-one matrices.

$$
\boldsymbol{A} \cdot \boldsymbol{B}=\sum_{i=1}^{n} \underbrace{\left[\boldsymbol{A}_{* i}\right] \cdot\left[\begin{array}{ll}
\boldsymbol{B}_{i *}
\end{array}\right]}_{m \times p}
$$

where $\boldsymbol{A}_{* i}$ is the i th column of \boldsymbol{A} and $\boldsymbol{B}_{i *}$ is the i th row of \boldsymbol{B}.

Sampling rows of a matrix

- If $\boldsymbol{S} \in \mathbb{R}^{c \times n}$ is a random row sampling matrix, then $\boldsymbol{S} \boldsymbol{A}$:

$$
\left[\begin{array}{cccccc}
0 & \mathrm{~s}_{12} & 0 & 0 & \cdots & 0 \\
\mathrm{~s}_{21} & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \mathrm{~s}_{33} & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & \cdots & \mathrm{~s}_{c n}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{A}_{1 *} \\
\boldsymbol{A}_{2 *} \\
\vdots \\
\boldsymbol{A}_{n *}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{s}_{12} \boldsymbol{A}_{2 *} \\
\mathrm{~s}_{21} \boldsymbol{A}_{1 *} \\
\mathrm{~s}_{33} \boldsymbol{A}_{3 *} \\
\vdots \\
\mathrm{~s}_{c n} \boldsymbol{A}_{n *}
\end{array}\right]
$$

- As above, for a single sampling vector \boldsymbol{s}, uniform sampling would pick $i \in[n]$ uniformly with probability $\frac{1}{n}$ and set $\mathrm{s}_{i} \leftarrow \sqrt{n}$.
- Generally, given $\boldsymbol{p} \in[0,1]^{n}, \sum_{i} p_{i}=1$. Pick $i \in[n]$ with probability $p_{i}, \mathrm{~s}_{i} \leftarrow \sqrt{1 / p_{i}}$. We have $\mathbb{E}\left[\mathrm{s}_{i}^{2}\right]=p_{i}{\sqrt{1 / p_{i}}}^{2}+\left(1+p_{i}\right) 0=1$.
- In some instances, by choosing appropriate p_{i} 's, we can get improved results.

AMM - Sampling

$$
\begin{aligned}
\boldsymbol{A} \cdot \boldsymbol{B} & =\sum_{i=1}^{n} \underbrace{\left[\boldsymbol{A}_{* i}\right] \cdot\left[\begin{array}{c}
\boldsymbol{B}_{i *}
\end{array}\right]}_{m \times p} \\
& \approx \frac{1}{c} \sum_{t=1}^{c} \frac{1}{p_{j_{t}}} \underbrace{\left[\boldsymbol{A}_{* j_{t}}\right] \cdot\left[\boldsymbol{B}_{j_{t^{*}}}\right]}_{m \times p}
\end{aligned}
$$

Pick c terms of the sum, with replacement, with respect to the p_{i} 's. I.e. set $j_{t}=i$, where $\operatorname{Pr}\left(j_{t}=i\right)=p_{i}$.

- We would like to estimate $\boldsymbol{A B} \approx \boldsymbol{A} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{B}$.
- Suppose \boldsymbol{S} has just one row \boldsymbol{s}_{i}. Then, we just get $\boldsymbol{A}_{i * \mathrm{~s}_{i}^{2}} \boldsymbol{B}_{* i}=\boldsymbol{A}_{* i} \boldsymbol{B}_{i *} / p_{i}$ with probability p_{i}.
- If we pick uniformly with $p_{i}=1 / n$, and suppose one of the row norms $\left\|\boldsymbol{B}_{1 *}\right\|^{2}$ is much \gg norms of other rows, then the estimate will be poor, if we miss the row $i=1$.
- One idea : catch the rows with large norms by setting $p_{i} \propto\left\|\boldsymbol{B}_{1 *}\right\|^{2}$. This is called Length-squared sampling.

- Create \boldsymbol{C} and \boldsymbol{R} by picking columns $\boldsymbol{A}_{* j_{t}}$ and rows $\boldsymbol{B}_{j_{t^{*}}}$ with probability

$$
\operatorname{Pr}\left(j_{t}=i\right)=\frac{\left\|\boldsymbol{A}_{* i}\right\|_{2}\left\|\boldsymbol{B}_{i *}\right\|_{2}}{\sum_{j=1}^{n}\left\|\boldsymbol{A}_{* j}\right\|_{2}\left\|\boldsymbol{B}_{i *}\right\|_{2}}
$$

- Include $\boldsymbol{A}_{* j_{t}} / \sqrt{c p_{j_{t}}}$ as a column of \boldsymbol{C}, and $\boldsymbol{B}_{j_{t} *} / \sqrt{c p_{j_{t}}}$ as a row of \boldsymbol{R}.

Length-squared sampling

Given $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{B} \in \mathbb{R}^{n \times p}$. Let $\boldsymbol{S} \in \mathbb{R}^{c \times n}$ be the length squared sampling matrix. Then, $\mathbb{E}[\boldsymbol{C R}]=\boldsymbol{A B}$ (unbiased estimator), where $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{S}^{\top}, \boldsymbol{R}=\boldsymbol{S} \boldsymbol{B}$, and

$$
\mathbb{E}\left[\|\boldsymbol{C} \boldsymbol{R}-\boldsymbol{A} \boldsymbol{B}\|_{F}^{2}\right] \leq \frac{1}{c}\|\boldsymbol{A}\|_{F}^{2}\|\boldsymbol{B}\|_{F}^{2}
$$

Length-squared sampling

Given $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{B} \in \mathbb{R}^{n \times p}$. Let $\boldsymbol{S} \in \mathbb{R}^{c \times n}$ be the length squared sampling matrix. Then, $\mathbb{E}[\boldsymbol{C R}]=\boldsymbol{A B}$ (unbiased estimator), where $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{S}^{\top}, \boldsymbol{R}=\boldsymbol{S} \boldsymbol{B}$, and

$$
\mathbb{E}\left[\|\boldsymbol{C R}-\boldsymbol{A} \boldsymbol{B}\|_{F}^{2}\right] \leq \frac{1}{c}\|\boldsymbol{A}\|_{F}^{2}\|\boldsymbol{B}\|_{F}^{2}
$$

Proof: First, for any probability p_{i}, we know that $\mathbb{E}\left[\boldsymbol{C} \boldsymbol{R}_{i j}\right]=\boldsymbol{A} \boldsymbol{B}_{i j}$. Elementwise is an unbiased estimator.
Next, note that for a single vector $\boldsymbol{s}, \mathbb{E}\left[\left\|\boldsymbol{A} \boldsymbol{s} \boldsymbol{s}^{\top} \boldsymbol{B}-\boldsymbol{A} \boldsymbol{B}\right\|_{F}^{2}\right]$ is the sum of entry-wise variances.
Since $\operatorname{Var}[\mathrm{x}]=\mathbb{E}\left[\mathrm{x}^{2}\right]-\mathbb{E}[\mathrm{x}]^{2}$, we have $\mathbb{E}\left[\left\|\boldsymbol{A} \boldsymbol{s s}^{\top} \boldsymbol{B}-\boldsymbol{A} \boldsymbol{B}\right\|_{F}^{2}\right] \leq \mathbb{E}\left[\left\|\boldsymbol{A} \boldsymbol{s}^{\top} \boldsymbol{B}\right\|_{F}^{2}\right]$

$$
\begin{aligned}
\mathbb{E}\left[\left\|\boldsymbol{A} \boldsymbol{s} \boldsymbol{s}^{\top} \boldsymbol{B}\right\|_{F}^{2}\right] & =\sum_{j, k} \mathbb{E}\left[\left(\boldsymbol{A}_{j *} \boldsymbol{s} \boldsymbol{s}^{\top} \boldsymbol{B}_{* k}\right)^{2}\right]=\sum_{j, k} \mathbb{E}\left[\left(\sum_{i} a_{j i} \mathrm{~s}_{i}^{2} b_{i k}\right)^{2}\right] \\
& =\sum_{j, k} \sum_{i} a_{j i}^{2} p_{i} \frac{1}{p_{i}^{2}} b_{i k}^{2}=\sum_{i} \sum_{j} a_{j i}^{2} \frac{1}{p_{i}} \sum_{k} b_{i k}^{2}=\sum_{i}\left\|\boldsymbol{A}_{* i}\right\|^{2} \frac{1}{p_{i}}\left\|\boldsymbol{B}_{i *}\right\|^{2} \\
& =\|\boldsymbol{A}\|_{F}^{2}\|\boldsymbol{B}\|_{F}^{2} .
\end{aligned}
$$

Next, for the case of c rows, the expected Frobenius norm error is sum of variance of the form

$$
\operatorname{Var}\left[\sum_{i \in[c]} \mathrm{x}^{(i)} / c\right]=\sum_{i \in[c]} \operatorname{Var}\left[\mathrm{x}^{(i)} / c\right]=\operatorname{Var}\left[\mathrm{x}^{(1)}\right] / c
$$

Thus, we get the result

$$
\mathbb{E}\left[\|\boldsymbol{C} \boldsymbol{R}-\boldsymbol{A} \boldsymbol{B}\|_{F}^{2}\right] \leq \frac{1}{c}\|\boldsymbol{A}\|_{F}^{2}\|\boldsymbol{B}\|_{F}^{2}
$$

Using Markov's inequality, we can show that for $c \geq 1 / \epsilon^{2} \delta$,

$$
\operatorname{Pr}\left(\|\boldsymbol{C} \boldsymbol{R}-\boldsymbol{A} \boldsymbol{B}\|_{F} \geq \epsilon\|\boldsymbol{A}\|_{F}\|\boldsymbol{B}\|_{F}\right) \leq \delta
$$

CUR decomposition

Given $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, a particular type of low rank approximation:

- A row sampling matrix $\boldsymbol{S}_{1} \in \mathbb{R}^{c \times m}$, and $\boldsymbol{R}=\boldsymbol{S}_{1} \boldsymbol{A} \in \mathbb{R}^{c \times n}$
- A column sampling matrix $\boldsymbol{S}_{2} \in \mathbb{R}^{n \times c}$, and $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{S}_{2} \in \mathbb{R}^{m \times c}$
- A matrix $\boldsymbol{U} \in \mathbb{R}^{c \times c}$, such that $\boldsymbol{A} \approx \boldsymbol{C} \boldsymbol{U} \boldsymbol{R}$ and $c \ll\{m, n\}$.

CUR decomposition

- We can compute $\boldsymbol{U}=\left(\boldsymbol{A} \boldsymbol{S}_{2}\right)^{\dagger} \boldsymbol{S}_{1}^{\top}=\left(\boldsymbol{C}^{\top} \boldsymbol{C}\right)^{-1}\left(\boldsymbol{S}_{1} \boldsymbol{A} \boldsymbol{S}_{2}\right)^{\top}$.
- \boldsymbol{U} can be ill-conditioned.
- Typically, in applications, we are interested in random columns \boldsymbol{C} and rows \boldsymbol{R} of \boldsymbol{A}.
- We can also consider, $\boldsymbol{S}_{1} \in \mathbb{R}^{r \times m}$ and $\boldsymbol{S}_{2} \in \mathbb{R}^{n \times c}$, for different c, r.

Given $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, row sampler $\boldsymbol{S}_{1} \in \mathbb{R}^{r \times m}$, column $\boldsymbol{S}_{2} \in \mathbb{R}^{n \times c}$, and with $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{S}_{2}, \boldsymbol{R}=\boldsymbol{S}_{1} \boldsymbol{A}, \boldsymbol{U}=\left(\boldsymbol{A} \boldsymbol{S}_{2}\right)^{\dagger} \boldsymbol{S}_{1}^{\top}$, then

$$
\mathbb{E}\left[\|\boldsymbol{C} \boldsymbol{U} \boldsymbol{R}-\boldsymbol{A}\|_{2}^{2}\right] \leq 2\|\boldsymbol{A}\|_{F}^{2}\left(\frac{1}{\sqrt{c}}+\frac{c}{r}\right) \leq \epsilon\|\boldsymbol{A}\|_{F}^{2},
$$

for $c=16 / \epsilon^{2}, r=64 / \epsilon^{3}$.

Matrix (low rank) approximations

- We can also consider sampling only the columns as $\boldsymbol{A} \approx \boldsymbol{C X}$, or
- Sample only the rows $\boldsymbol{A} \approx \boldsymbol{X} \boldsymbol{R}$.
- More flexible structure can give better-conditioned \boldsymbol{X}.
- We need fast decaying spectrum.
- For

$$
\operatorname{Pr}\left(\|\boldsymbol{C} \boldsymbol{U} \boldsymbol{R}-\boldsymbol{A}\|_{2} \geq \epsilon\|\boldsymbol{A}\|_{F}\right) \leq \delta,
$$

we need $c=O\left(\delta^{-2} \epsilon^{-4}\right), r=O\left(\delta^{-3} \epsilon^{-6}\right)$.

- Cost $=$?

Better variance reduction

- We want \boldsymbol{S} such that $\|\boldsymbol{S} \boldsymbol{A} \boldsymbol{x}\|$ is a good estimator of $\|\boldsymbol{A} \boldsymbol{x}\|$.
- Length-squared sampling : $p_{i} \propto\left\|\boldsymbol{A}_{i *}\right\|^{2}$ is good, but for some \boldsymbol{x}, we could have $\boldsymbol{A}_{i *} \boldsymbol{x}=0$ even if $\left\|\boldsymbol{A}_{i *}\right\|^{2}$ is large.
- We want $\left(\frac{1}{\sqrt{p_{i}}} \boldsymbol{A}_{i *} \boldsymbol{x}\right)^{2}$ to be "well-behaved" for all i and \boldsymbol{x}.
- "well-behaved" in one sense : bounded relative contribution to $\|\boldsymbol{A} \boldsymbol{x}\|^{2}=\sum_{i}\left(\boldsymbol{A}_{i *} \boldsymbol{x}\right)^{2}$.
- sampling using information related to $\operatorname{span}(\boldsymbol{A})$.

Leverage scores

- Leverage scores: Given a linear subspace $L \subset \mathbb{R}^{m}$, for $i \in[m]$, the i th leverage score $\ell_{i}(L)=\sup _{\boldsymbol{y} \in L} y_{i}^{2} /\|\boldsymbol{y}\|^{2}$.
- The leverage scores of $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ are $\ell_{i}(\boldsymbol{A})=\ell_{i}(\operatorname{span}(\boldsymbol{A}))$.

Given $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, and an orthonormal basis \boldsymbol{U} for $\operatorname{span}(\boldsymbol{A})$, for $i \in[m]$, the i th leverage score

$$
\ell_{i}(\boldsymbol{A})=\sup _{\boldsymbol{x}} \frac{\left(\boldsymbol{A}_{i *} \boldsymbol{x}\right)^{2}}{\|\boldsymbol{A} \boldsymbol{x}\|^{2}}=\left\|\boldsymbol{U}_{i *}\right\|^{2}
$$

Leverage scores

- Leverage scores: Given a linear subspace $L \subset \mathbb{R}^{m}$, for $i \in[m]$, the i th leverage score $\ell_{i}(L)=\sup _{\boldsymbol{y} \in L} y_{i}^{2} /\|\boldsymbol{y}\|^{2}$.
- The leverage scores of $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ are $\ell_{i}(\boldsymbol{A})=\ell_{i}(\operatorname{span}(\boldsymbol{A}))$.

Given $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, and an orthonormal basis \boldsymbol{U} for $\operatorname{span}(\boldsymbol{A})$, for $i \in[m]$, the i th leverage score

$$
\ell_{i}(\boldsymbol{A})=\sup _{\boldsymbol{x}} \frac{\left(\boldsymbol{A}_{i *} \boldsymbol{x}\right)^{2}}{\|\boldsymbol{A} \boldsymbol{x}\|^{2}}=\left\|\boldsymbol{U}_{i *}\right\|^{2}
$$

For $L=\operatorname{span}(\boldsymbol{A})=\operatorname{span}(\boldsymbol{U})$, and $\boldsymbol{z} \in L$ has $\boldsymbol{z}=\boldsymbol{A} \boldsymbol{x}=\boldsymbol{U} \boldsymbol{y}$ for some $\boldsymbol{x}, \boldsymbol{y}$. So,

$$
\sup _{\boldsymbol{x}} \frac{\left(\boldsymbol{A}_{i *} \boldsymbol{x}\right)^{2}}{\|\boldsymbol{A} \boldsymbol{x}\|^{2}}=\sup _{\boldsymbol{y}} \frac{\left(\boldsymbol{U}_{i *} \boldsymbol{y}\right)^{2}}{\|\boldsymbol{U} \boldsymbol{y}\|^{2}}=\sup _{\boldsymbol{y}} \frac{\left(\boldsymbol{U}_{i *} \boldsymbol{y}\right)^{2}}{\|\boldsymbol{y}\|^{2}}=\left\|\boldsymbol{U}_{i *}\right\|^{2} .
$$

We have $\ell_{i}(\boldsymbol{A}) \in[0,1]$ and $\sum_{i} \ell_{i}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A})$.

Leverage score sampling

Leverage score sampling: sample rows with probability proportional to the square of the Euclidean norms of the rows of the left singular vectors of \boldsymbol{A}.

$$
p_{i}=\frac{\left\|\boldsymbol{U}_{i *}\right\|^{2}}{\|\boldsymbol{U}\|_{F}^{2}}=\frac{\left\|\boldsymbol{U}_{i *}\right\|^{2}}{n}
$$

Column sampling is equivalent to row sampling by focusing on \boldsymbol{A}^{\top}. So, we consider the right singular vectors \boldsymbol{V}.

$$
p_{j}=\frac{\left\|\boldsymbol{V}_{j *}\right\|^{2}}{n} .
$$

Leverage scores: general case

Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and \boldsymbol{A}_{k} its best rank- k approximation (as computed by the SVD):

Row Leverage scores and Column Leverage scores

$$
p_{i}=\frac{\left\|\left(\boldsymbol{U}_{k}\right)_{i *}\right\|^{2}}{k} \quad p_{j}=\frac{\left\|\left(\boldsymbol{V}_{k}\right)_{j *}\right\|^{2}}{k}
$$

Leverage score sampling

Given $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, if we randomly sample the columns $\boldsymbol{C} \in \mathbb{R}^{m \times c}$ using leverage scores, then, with probability at least 0.9 ,

$$
\|\boldsymbol{A}-\boldsymbol{C} \boldsymbol{X}\|_{F}=\left\|\boldsymbol{A}-\boldsymbol{C} \boldsymbol{C}^{\dagger} \boldsymbol{A}\right\|_{F} \leq(1+\epsilon)\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{F},
$$

for sampling complexity

$$
c=O\left(\frac{k}{\epsilon^{2}} \log \left(\frac{k}{\epsilon}\right)\right)
$$

Leverage score sampling

Given $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, if we randomly sample the columns $\boldsymbol{C} \in \mathbb{R}^{m \times c}$ using leverage scores, then, with probability at least 0.9 ,

$$
\|\boldsymbol{A}-\boldsymbol{C} \boldsymbol{X}\|_{F}=\left\|\boldsymbol{A}-\boldsymbol{C} \boldsymbol{C}^{\dagger} \boldsymbol{A}\right\|_{F} \leq(1+\epsilon)\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{F},
$$

for sampling complexity

$$
c=O\left(\frac{k}{\epsilon^{2}} \log \left(\frac{k}{\epsilon}\right)\right)
$$

Proof uses Matrix Chernoff inequality.
Let \boldsymbol{X}_{i} for $i \in[c]$ be i.i.d copies of symmetric random $\boldsymbol{X} \in \mathbb{R}^{n \times n}$ with $\gamma, \sigma^{2}>0$, $\mathbb{E}[\boldsymbol{X}]=0,\|\boldsymbol{X}\|_{2} \leq \gamma$, and $\left\|\mathbb{E}\left[\boldsymbol{X}^{2}\right]\right\|_{2} \leq \sigma^{2}$. Then for $\epsilon>0$,

$$
\operatorname{Pr}\left(\left\|\frac{1}{c} \sum_{i} \boldsymbol{X}_{i}\right\|_{2} \geq \epsilon\right) \leq 2 n \exp \left(-c \epsilon^{2} /\left(\sigma^{2}+\gamma \epsilon / 3\right)\right)
$$

Further Reading

- Drineas, Petros, Ravi Kannan, and Michael W. Mahoney. "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication." SIAM Journal on Computing 36.1 (2006): 132-157.
- Drineas, Petros, Ravi Kannan, and Michael W. Mahoney. "Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix." SIAM Journal on computing 36.1 (2006): 158-183.
- Kannan, Ravindran, and Santosh Vempala. "Randomized algorithms in numerical linear algebra." Acta Numerica 26 (2017): 95-135.
- Boutsidis, Christos, and David P. Woodruff. "Optimal CUR matrix decompositions." Proceedings of the forty-sixth annual ACM symposium on Theory of computing. 2014.

Questions?

