CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 5: Matrix factorizations II - eigenvalue decomposition, PCA

Outline

(1) Eigenvalue problems
(2) PCA
(3) Eigenfaces

Eigenvalue problems

Given a square matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$, the eigenvalue problem:

$$
\boldsymbol{A} \boldsymbol{u}=\lambda \boldsymbol{u} .
$$

λ is an eigenvalue and \boldsymbol{u} is an eigenvector of \boldsymbol{A}.
Types of problems:

- Find the largest or the smallest eigenvalues.
- Compute all eigenvalues in region of \mathbb{C}.
- Compute dominant eigenvalues and eigenvectors.

Applications: Structural engineering, stability analysis, electronic structure calculations, dimensionality reduction, spectral clustering and graphs, pagerank and many more.

Eigenvalues and properties

A complex scalar λ is called an eigenvalue of a square matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ if there exists a nonzero vector $\boldsymbol{u} \in \mathbb{C}^{n}$ such that

$$
\boldsymbol{A} \boldsymbol{u}=\lambda \boldsymbol{u}
$$

The vector \boldsymbol{u} is called an eigenvector of \boldsymbol{A} associated with λ.

- λ is an eigenvalue iff the columns of $\boldsymbol{A}-\lambda \boldsymbol{I}$ are linearly dependent.
- That is, $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$.

Eigenvalues and properties II

- The set of all eigenvalues of \boldsymbol{A}, denoted $\Lambda(\boldsymbol{A})$, is the spectrum of \boldsymbol{A}.
- An eigenvalue is a root of the characteristic polynomial:

$$
p_{\boldsymbol{A}}(\lambda)=\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})
$$

- So there are n eigenvalues (counted with their multiplicities).
- The multiplicity of these eigenvalues as roots of $p_{\boldsymbol{A}}$ are called algebraic multiplicities.
- The geometric multiplicity of an eigenvalue λ_{i} is the number of linearly independent eigenvectors associated with λ_{i}.
- Geometric multiplicity is \leq algebraic multiplicity.

Eigenvalues and properties III

- Diagonalization: Two matrices $\boldsymbol{A}, \boldsymbol{B}$ are similar if there exists a nonsingular matrix \boldsymbol{X} such that: $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{B} \boldsymbol{X}^{-1}$.
- $\boldsymbol{A} \boldsymbol{u}=\lambda \boldsymbol{u} \Leftrightarrow \boldsymbol{B}\left(\boldsymbol{X}^{-1} \boldsymbol{u}\right)=\lambda\left(\boldsymbol{X}^{-1} \boldsymbol{u}\right)$ eigenvalues remain the same, eigenvectors transformed.
- \boldsymbol{A} is diagonalizable if it is similar to a diagonal matrix.
- Transformations that preserve eigenvectors:
- Shift : $\boldsymbol{B}=(\boldsymbol{A}-\eta \boldsymbol{I})$
- Polynomial : $\boldsymbol{B}=p(\boldsymbol{A})$
- Inverse: $\boldsymbol{B}=\boldsymbol{A}^{-1}$
- Shift and inverse: $\boldsymbol{B}=(\boldsymbol{A}-\eta \boldsymbol{I})^{-1}$

Symmetric eigenvalue problem

- For every square symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, we can compute eigendecompostion:

$$
\boldsymbol{A}=\boldsymbol{U} \Lambda \boldsymbol{U}^{\top}
$$

where \boldsymbol{U} is an orthogonal matrix with eigenvectors \boldsymbol{u}_{i} as columns, and Λ is diagonal matrix with eigenvalues λ_{i} on the diagonal.

- \boldsymbol{U} forms an orthonormal basis of eigenvectors of \boldsymbol{A}.
- Eigenvalues of \boldsymbol{A} are real.
- When \boldsymbol{A} is real, \boldsymbol{U} is also real.

The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly: $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.
The eigenvalues of a Hermitian matrix \boldsymbol{A} are characterized by the relation

$$
\lambda_{k}=\max _{\boldsymbol{S}, \mathrm{dim}(\boldsymbol{S})=k} \min _{\boldsymbol{x} \in \boldsymbol{S}, \boldsymbol{x} \neq 0} \frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}
$$

or

$$
\lambda_{k}=\min _{\boldsymbol{S}, \operatorname{dim}(\boldsymbol{S})=n-k+1} \max _{\boldsymbol{x} \in \boldsymbol{S}, \boldsymbol{x} \neq 0} \frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}
$$

- $\frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}$ is called the Rayleigh-Ritz quotient of \boldsymbol{A}.
- $\lambda_{1}=\max _{\boldsymbol{x} \neq 0} \frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}$ and $\lambda_{n}=\min _{\boldsymbol{x} \neq 0} \frac{\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}$.

Question: Use min-max theorem to show that $\sigma_{1}=\|\boldsymbol{A}\|_{2}$.

Interlacing Theorem

Suppose $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is symmetric. Let $\boldsymbol{B} \in \mathbb{R}^{m \times m}$ with $m<n$ be a principal submatrix (obtained by deleting both i-th row and i-th column for some values of i).
Suppose \boldsymbol{A} has eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$, and \boldsymbol{B} has eigenvalues $\mu_{1} \geq \cdots \geq \mu_{m}$. Then

$$
\lambda_{k} \geq \mu_{k} \geq \lambda_{n+k-m} \text { for } k=1, \ldots, m
$$

and if $m=n-1$,

$$
\lambda_{1} \geq \mu_{1} \geq \lambda_{2} \geq \mu_{2} \geq \cdots \geq \mu_{n-1} \geq \lambda_{n}
$$

PageRank

- PageRank is the first Google algorithm developed to evaluate the quality and importance of web pages.
- Webgraph - created by all World Wide Web pages as nodes and hyperlinks as edges.
- Likelihood that a person randomly clicking on links will arrive at any particular page.

PageRank

- PageRank value of a page is given as:

$$
P R\left(p_{i}\right)=\frac{1-d}{N}+d \sum_{p_{j} \in M\left(p_{i}\right)} \frac{P R\left(p_{j}\right)}{L\left(p_{j}\right)}
$$

$p_{1}, p_{2}, \ldots, p_{N}$ are the pages, $M\left(p_{i}\right)=$ set of pages that link to $p_{i}, L\left(p_{j}\right)=$ number of outbound links on page $p_{j}, N=$ total number of pages, and $d=$ damping factor.

- The values are the entries of the dominant right eigenvector of the modified adjacency matrix rescaled so that each column adds up to one.

$$
\mathbf{r}=\left[\begin{array}{c}
P R\left(p_{1}\right) \\
P R\left(p_{2}\right) \\
\vdots \\
P R\left(p_{N}\right)
\end{array}\right]
$$

- \mathbf{r} is the solution of the equation

$$
\mathbf{r}=\left[\begin{array}{c}
(1-d) / N \\
(1-d) / N \\
\vdots \\
(1-d) / N
\end{array}\right]+d\left[\begin{array}{cccc}
\ell\left(p_{1}, p_{1}\right) & \ell\left(p_{1}, p_{2}\right) & \ldots & \ell\left(p_{1}, p_{N}\right) \\
\ell\left(p_{2}, p_{1}\right) & \ddots & & \vdots \\
\vdots & & \ell\left(p_{i}, p_{j}\right) & \\
\ell\left(p_{N}, p_{1}\right) & \cdots & & \ell\left(p_{N}, p_{N}\right)
\end{array}\right] \mathbf{r}
$$

the adjacency function $\ell\left(p_{i}, p_{j}\right)$ is the ratio between number of links outbound from page j to page i to the total number of outbound links of page j.
-

$$
\sum_{i=1}^{N} \ell\left(p_{i}, p_{j}\right)=1
$$

The matrix is a stochastic matrix. Closely related to the problem of finding the stationary points of Markov processes. It is also a variant of the eigenvector centrality measure used commonly in network analysis.

Dimensionality Reduction

Dimensionality Reduction

- Dimensionality Reduction (DR) techniques pervasive to many data applications.
- Reduce computational cost; but also more often :
- reduce noise and redundancy in data, and
- discover patterns.
- Given $\boldsymbol{x} \in \mathbb{R}^{d}$, and $k \ll d$, find the mapping $\Phi: \boldsymbol{x} \in \mathbb{R}^{d} \longrightarrow \boldsymbol{y} \in \mathbb{R}^{k}$.

Projection-based Dimensionality Reduction

- Given dataset $\boldsymbol{X}=\left[\boldsymbol{x}_{i}, \ldots, \boldsymbol{x}_{n}\right]$, and dimension k, find the reduced set \boldsymbol{Y}.
- Projection method: Explicit mapping to the lower dimension

$$
\boldsymbol{y}=\boldsymbol{V}^{\top} \boldsymbol{x}
$$

with $\boldsymbol{V} \in \mathbb{R}^{d \times k}$.

- Projection-based Dimensionality Reduction : $\boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$. Find the best such mapping (optimization) given that the \boldsymbol{y}_{i} 's must satisfy certain constraints.

Principal Component Analysis

- Principal Component Analysis (PCA) : find (orthogonal) \boldsymbol{V} so that projected data $\boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$ has maximum variance.
- Maximize over all orthogonal $d \times k$ matrices \boldsymbol{V} :

$$
\sum_{i}\left\|\boldsymbol{y}_{i}-\frac{1}{n} \sum_{j} \boldsymbol{y}_{j}\right\|_{2}^{2}=\cdots=\operatorname{Tr}\left[\boldsymbol{V}^{\top} \overline{\boldsymbol{X}} \overline{\boldsymbol{X}}^{\top} \boldsymbol{V}\right]
$$

where $\overline{\boldsymbol{X}}=\left[\overline{\boldsymbol{x}}_{1}, \ldots, \overline{\boldsymbol{x}}_{n}\right]$ with $\overline{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}-\boldsymbol{\mu}$, and $\boldsymbol{\mu}=$ mean.

- Solution: $\boldsymbol{V}=$ dominant k eigenvectors of the covariance matrix. Top k singular vectors of $\overline{\boldsymbol{X}}$.

Exercises

- Show that $\overline{\boldsymbol{X}}=\boldsymbol{X}\left(\boldsymbol{I}-\frac{1}{n} \boldsymbol{e} \boldsymbol{e}^{\top}\right)$ (here $\boldsymbol{e}=$ vector of all ones). What does the projector $\left(\boldsymbol{I}-\frac{1}{n} \boldsymbol{e} \boldsymbol{e}^{\top}\right)$ do?
- Show that solution \boldsymbol{V} also minimizes reconstruction error:

$$
\sum_{i}\left\|\overline{\boldsymbol{x}}_{i}-\boldsymbol{V} \boldsymbol{V}^{\top} \overline{\boldsymbol{x}}_{i}\right\|^{2}=\sum_{i}\left\|\overline{\boldsymbol{x}}_{i}-\boldsymbol{V} \overline{\boldsymbol{y}}_{i}\right\|^{2}
$$

- It also maximizes $\sum_{i, j}\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|^{2}$

Low rank approximation

- Given a data matrix $\boldsymbol{X} \in \mathbb{R}^{n \times d}$ and integer k, find a rank- k approximation of \boldsymbol{X}.
- $\boldsymbol{X}_{k}=\boldsymbol{U}_{k} \Sigma_{k} \boldsymbol{V}_{k}^{\top}=\boldsymbol{U}_{k} \boldsymbol{U}_{k}^{\top} \boldsymbol{X}=\boldsymbol{X} \boldsymbol{V}_{k} \boldsymbol{V}_{k}^{\top}$.

$$
\begin{gathered}
\boldsymbol{U}_{k}=\arg \min _{\boldsymbol{U} \in \mathbb{R}^{n \times k}}\left\|\boldsymbol{X}-\boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{X}\right\|_{F}^{2}=\arg \max _{\boldsymbol{U} \in \mathbb{R}^{n \times k}}\left\|\boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{X}\right\|_{F}^{2} \\
\left\|\boldsymbol{X}-\boldsymbol{X}_{k}\right\|_{F}^{2}=\sum_{i=k+1}^{n} \sigma_{i}^{2}
\end{gathered}
$$

Eigenfaces

