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Lecture 4: Matrix factorizations I - QR, SVD
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Outline

1 Orthogonality

2 QR Decomposition

3 Singular Value Decomposition
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Orthogonality

Two vectors u and v are orthogonal if 〈u,v〉 = 0.

A set of vectors {u1, . . . ,ud} is orthogonal if 〈ui,uj〉 = 0 for i 6= j;
and orthonormal if 〈ui,uj〉 = δij for i = j.

U ∈ Rn×d is orthonormal if U>U = I. If U is square, then it is orthogonal (or
unitary if complex), and UU> = I.

Orthonormal matrices preserve norms: ‖Uy‖2 = ‖y‖2.
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Projectors

Projection matrix: A symmetric matrix P of the form P = UU> is an orthogonal
projection matrix, with:

P 2 = P .

If P is a (orthogonal) projection matrix, then:

P̄ = I − P

is also a projection matrix.

If U is an orthonormal basis of X ⊆ Rn, then:

Ran(P ) = X, and Ran(I − P ) = Null(P ) = X⊥

Question: PP̄ = ?
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Subspaces of a matrix

Let A ∈ Rn×d and consider Ran(A)⊥, then :

Ran(A)⊥ = Null(A>)

Proof: Any x ∈ Ran(A)⊥ iff 〈Ay,x〉 = 0 for all y.
This is same as 〈y,A>x〉 = 0 for all y.

Similarly, we also have:
Ran(A>) = Null(A)⊥

Thus:

Rn = Ran(A)⊕Null(A>)

Rd = Ran(A>)⊕Null(A)
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Finding an orthonormal basis of a subspace

Goal: Find vector in span(A) closest to some vector b.

Much easier with an orthonormal basis for span(A).

Given A = [a1, . . . ,ad], compute Q = [q1, . . . , qd] which has orthonormal columns
and s.t. span(Q) = span(A).

Each column of A must be a linear combination of certain columns of Q.

Gram-Schmidt process: Compute Q so that aj (j column of A) is a linear
combination of the first j columns of Q.
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The QR Decomposition

Given A ∈ Rn×d with n ≥ d, and rank(A) = d, there is a Q ∈ Rn×d and R ∈ Rd×d, s.t.

A = QR

Q has orthonormal columns, Q>Q = I.

R is upper triangular, rij = 0 for i > j.

We have span(Q) = span(A), the columns of Q are an orthonormal basis of span(A).

Question: What is the computational cost of QR?
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A

= 
Q

R
*

Original matrix
𝑄 is orthogonal
(𝑄!𝑄 = 𝐼)

𝑅 is upper
triangular
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Least squares using QR

Recall: In the least-squares regression problem, assuming n ≥ d, we solve:

x∗ = min
x∈Rd

‖Ax− b‖22.

If A is full rank then we compute A = QR.

The normal equation can be written as:

A>Ax = A>b → R>Q>QRx = R>Q>b

→ R>Rx = R>Q>b

→ Rx = Q>b.

Therefore,
x∗ = R−1Q>b.

Note that R is non-singular.
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Alternatively, recall that span(Q) = span(A).

We know that ‖Ax− b‖2 is minimum when Ax− b ⊥ span(Q).

This implies what?

As a rule it is not a good idea to form A>A and solve the normal equations.
Methods using the QR factorization are better.
Why?

QR factorization is also used in direct solvers of linear system Ax = b.
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The Singular Value Decomposition

SVD

For any matrix A ∈ Rn×d there exist unitary matrices U ∈ Rn×n and V ∈ Rd×d such that

A = UΣV >

where Σ is a diagonal matrix with entries σi ≥ 0.

σ1 ≥ σ2 ≥ · · · ≥ σp with p = min(n, d)

Let σ1 = ‖A‖2 = maxx,‖x‖=1 ‖Ax‖2. There exists a pair of unit vectors such that

Av1 = σ1u1.
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Thin SVD

In the first case, suppose , we can write

A = [U1 U2]

[
Σ

0

]
V >,

where U1 ∈ Rn×d and U2 ∈ Rn×n−d. Then,

A = U1Σ1V
>,

where Σ1,V ∈ Rd×d.

Referred to as thin or economical SVD.

Question: How to compute the thin SVD of A from its QR factorization?
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SVD Properties

Suppose
σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σp = 0

Then:

rank(A) = r = number of nonzero singular values.

Ran(A) = span{u1,u2, . . . ,ur}
Null(A>) = span{ur+1,ur+2, . . . ,un}
Ran(A>) = span{v1,v2, . . . ,vr}
Null(A) = span{vr+1,vr+1, . . . ,vd}
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SVD Properties II

A matrix A admits the SVD expansion

A =

r∑
i=1

σiuiv
>
i

‖A‖2 = σ1 = largest singular value.

‖A‖F =
√∑r

i=1 σ
2
i .

Eckart-Young-Mirsky Theorem

For any matrix A ∈ Rn×d with rank r, let k ≤ r and Ak =
∑k

i=1 σiuiv
>
i then

min
B:rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1.
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Pseudo-inverse

Given A = UΣV >, we rewrite it as :

A = [U1 U2]

[
Σ1 0

0 0

] [
V >1
V >2

]
= U1Σ1V

>
1

Then the pseudo inverse of A is:

A† = V1Σ
−1
1 U>1 =

r∑
i=1

1

σi
viu

>
i

The pseudo-inverse of A is the mapping from a vector b to the (unique)
Minimum Norm solution of the LS problem: minx∈Rd ‖Ax− b‖22.

x = (A>A)−1A>b = A†b.
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Let us express solution x in basis V as: x = V y = [V1, V2]
[
y1

y2

]
.

Then left multiply by U> to get:

‖Ax− b‖22 =

∥∥∥∥[Σ1 0

0 0

] [
y1

y2

]
−
[
U>1 b

U>2 b

]∥∥∥∥2
2

Let us find all possible solutions in terms of y = [y1;y2].

From above, we have y1 = Σ−11 U>1 b and y2 can be anything.

Then,

x = [V1, V2]

[
y1

y2

]
= V1y1 + V2y2

= V1Σ
−1
1 U>1 b + V2y2

= A†b + V2y2.
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We know that A†b ∈ Ran(A>) and V2y2 ∈ Null(A).

Therefore: least-squares solutions are all of the form:

A†b + w where w ∈ Null(A).

We obtain the smallest norm when w = 0.

The Minimum Norm solution of the LS problem: minx∈Rd ‖Ax− b‖22 is :

xLS = V1Σ
−1
1 U>1 b = A†b.
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Moore-Penrose Inverse

The pseudo-inverse of A ∈ Rn×d is given by

A† = V

[
Σ−11 0

0 0

]
U> =

r∑
i=1

1

σi
viu

>
i

Properties:

AA†A = A A†AA† = A† (A†A)H = A†A (AA†)H = AA†

A†A = I when rank(A) = d, and A† = A−1 if A is invertible.

Left inverse: A† = (A>A)−1A>, when n ≥ d, and A is full rank.

Right inverse: A† = A>(AA>)−1, when n ≤ d, and A is full rank.
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Exercises

AA† is a projector onto which space?

A†A is a projector onto which space?
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Questions?
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