CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 4: Matrix factorizations I - QR, SVD

Outline

(1) Orthogonality
(2) QR Decomposition
(3) Singular Value Decomposition

Orthogonality

- Two vectors \boldsymbol{u} and \boldsymbol{v} are orthogonal if $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=0$.
- A set of vectors $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right\}$ is orthogonal if $\left\langle\boldsymbol{u}_{i}, \boldsymbol{u}_{j}\right\rangle=0$ for $i \neq j$; and orthonormal if $\left\langle\boldsymbol{u}_{i}, \boldsymbol{u}_{j}\right\rangle=\delta_{i j}$ for $i=j$.
- $\boldsymbol{U} \in \mathbb{R}^{n \times d}$ is orthonormal if $\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}$. If \boldsymbol{U} is square, then it is orthogonal (or unitary if complex), and $\boldsymbol{U} \boldsymbol{U}^{\top}=\boldsymbol{I}$.
- Orthonormal matrices preserve norms: $\|\boldsymbol{U} \boldsymbol{y}\|_{2}=\|\boldsymbol{y}\|_{2}$.

Projectors

Projection matrix: A symmetric matrix \boldsymbol{P} of the form $\boldsymbol{P}=\boldsymbol{U} \boldsymbol{U}^{\top}$ is an orthogonal projection matrix, with:

- $\boldsymbol{P}^{2}=\boldsymbol{P}$.
- If \boldsymbol{P} is a (orthogonal) projection matrix, then:

$$
\bar{P}=I-P
$$

is also a projection matrix.

- If \boldsymbol{U} is an orthonormal basis of $\mathbb{X} \subseteq \mathbb{R}^{n}$, then:

$$
\operatorname{Ran}(\boldsymbol{P})=\mathbb{X}, \text { and } \operatorname{Ran}(\boldsymbol{I}-\boldsymbol{P})=\operatorname{Null}(\boldsymbol{P})=\mathbb{X}^{\perp}
$$

Question: $\boldsymbol{P} \bar{P}=$?

Subspaces of a matrix

Let $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ and consider $\operatorname{Ran}(\boldsymbol{A})^{\perp}$, then :

$$
\operatorname{Ran}(\boldsymbol{A})^{\perp}=\operatorname{Null}\left(\boldsymbol{A}^{\top}\right)
$$

Proof: Any $\boldsymbol{x} \in \operatorname{Ran}(\boldsymbol{A})^{\perp}$ iff $\langle\boldsymbol{A} \boldsymbol{y}, \boldsymbol{x}\rangle=0$ for all \boldsymbol{y}. This is same as $\left\langle\boldsymbol{y}, \boldsymbol{A}^{\top} \boldsymbol{x}\right\rangle=0$ for all \boldsymbol{y}.

Similarly, we also have:

$$
\operatorname{Ran}\left(\boldsymbol{A}^{\top}\right)=\operatorname{Null}(\boldsymbol{A})^{\perp}
$$

Thus:

$$
\begin{aligned}
& \mathbb{R}^{n}=\operatorname{Ran}(\boldsymbol{A}) \oplus \operatorname{Null}\left(\boldsymbol{A}^{\top}\right) \\
& \mathbb{R}^{d}=\operatorname{Ran}\left(\boldsymbol{A}^{\top}\right) \oplus \operatorname{Null}(\boldsymbol{A})
\end{aligned}
$$

Finding an orthonormal basis of a subspace

- Goal: Find vector in $\operatorname{span}(\boldsymbol{A})$ closest to some vector \boldsymbol{b}.
- Much easier with an orthonormal basis for $\operatorname{span}(\boldsymbol{A})$.

Given $\boldsymbol{A}=\left[\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{d}\right]$, compute $\boldsymbol{Q}=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{d}\right]$ which has orthonormal columns and s.t. $\operatorname{span}(\boldsymbol{Q})=\operatorname{span}(\boldsymbol{A})$.

Each column of \boldsymbol{A} must be a linear combination of certain columns of \boldsymbol{Q}.

Gram-Schmidt process: Compute \boldsymbol{Q} so that $\boldsymbol{a}_{j}(j$ column of $\boldsymbol{A})$ is a linear combination of the first j columns of \boldsymbol{Q}.

The QR Decomposition

Given $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ with $n \geq d$, and $\operatorname{rank}(\boldsymbol{A})=d$, there is a $\boldsymbol{Q} \in \mathbb{R}^{n \times d}$ and $\boldsymbol{R} \in \mathbb{R}^{d \times d}$, s.t.

- $A=Q R$
- \boldsymbol{Q} has orthonormal columns, $\boldsymbol{Q}^{\top} \boldsymbol{Q}=\boldsymbol{I}$.
- \boldsymbol{R} is upper triangular, $r_{i j}=0$ for $i>j$.

We have $\operatorname{span}(\boldsymbol{Q})=\operatorname{span}(\boldsymbol{A})$, the columns of \boldsymbol{Q} are an orthonormal basis of $\operatorname{span}(\boldsymbol{A})$.
Question: What is the computational cost of QR ?

Original matrix

Q is orthogonal ($Q^{T} Q=I$)

R is upper triangular

Least squares using QR

- Recall: In the least-squares regression problem, assuming $n \geq d$, we solve:

$$
\boldsymbol{x}^{*}=\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2} .
$$

- If \boldsymbol{A} is full rank then we compute $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R}$.
- The normal equation can be written as:

$$
\begin{aligned}
\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{\top} \boldsymbol{b} & \rightarrow \boldsymbol{R}^{\top} \boldsymbol{Q}^{\top} \boldsymbol{Q} \boldsymbol{R} \boldsymbol{x}=\boldsymbol{R}^{\top} \boldsymbol{Q}^{\top} \boldsymbol{b} \\
& \rightarrow \boldsymbol{R}^{\top} \boldsymbol{R} \boldsymbol{x}=\boldsymbol{R}^{\top} \boldsymbol{Q}^{\top} \boldsymbol{b} \\
& \rightarrow \boldsymbol{R} \boldsymbol{x}=\boldsymbol{Q}^{\top} \boldsymbol{b} .
\end{aligned}
$$

- Therefore,

$$
\boldsymbol{x}^{*}=\boldsymbol{R}^{-1} \boldsymbol{Q}^{\top} \boldsymbol{b}
$$

Note that \boldsymbol{R} is non-singular.

- Alternatively, recall that $\operatorname{span}(\boldsymbol{Q})=\operatorname{span}(\boldsymbol{A})$.
- We know that $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}$ is minimum when $\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b} \perp \operatorname{span}(\boldsymbol{Q})$.
- This implies what?

As a rule it is not a good idea to form $\boldsymbol{A}^{\top} \boldsymbol{A}$ and solve the normal equations. Methods using the QR factorization are better. Why?

QR factorization is also used in direct solvers of linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$.

The Singular Value Decomposition

SVD

For any matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ there exist unitary matrices $\boldsymbol{U} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{V} \in \mathbb{R}^{d \times d}$ such that

$$
\boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\top}
$$

where Σ is a diagonal matrix with entries $\sigma_{i} \geq 0$.

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \text { with } p=\min (n, d)
$$

Let $\sigma_{1}=\|\boldsymbol{A}\|_{2}=\max _{\boldsymbol{x},\|\boldsymbol{x}\|=1}\|\boldsymbol{A} \boldsymbol{x}\|_{2}$. There exists a pair of unit vectors such that

$$
\boldsymbol{A} \boldsymbol{v}_{1}=\sigma_{1} \boldsymbol{u}_{1} .
$$

Thin SVD

- In the first case, suppose, we can write

$$
\boldsymbol{A}=\left[\boldsymbol{U}_{1} \boldsymbol{U}_{2}\right]\left[\begin{array}{l}
\Sigma \\
0
\end{array}\right] \boldsymbol{V}^{\top}
$$

where $\boldsymbol{U}_{1} \in \mathbb{R}^{n \times d}$ and $\boldsymbol{U}_{2} \in \mathbb{R}^{n \times n-d}$. Then,

$$
\boldsymbol{A}=\boldsymbol{U}_{1} \Sigma_{1} \boldsymbol{V}^{\top}
$$

where $\Sigma_{1}, \boldsymbol{V} \in \mathbb{R}^{d \times d}$.

- Referred to as thin or economical SVD.

Question: How to compute the thin SVD of \boldsymbol{A} from its QR factorization?

SVD Properties

Suppose

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0 \text { and } \sigma_{r+1}=\cdots=\sigma_{p}=0
$$

Then:

- $\operatorname{rank}(\boldsymbol{A})=r=$ number of nonzero singular values.
- $\operatorname{Ran}(\boldsymbol{A})=\operatorname{span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{r}\right\}$
- $\operatorname{Null}\left(\boldsymbol{A}^{\top}\right)=\operatorname{span}\left\{\boldsymbol{u}_{r+1}, \boldsymbol{u}_{r+2}, \ldots, \boldsymbol{u}_{n}\right\}$
- $\operatorname{Ran}\left(\boldsymbol{A}^{\top}\right)=\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$
- $\operatorname{Null}(\boldsymbol{A})=\operatorname{span}\left\{\boldsymbol{v}_{r+1}, \boldsymbol{v}_{r+1}, \ldots, \boldsymbol{v}_{d}\right\}$

SVD Properties II

- A matrix \boldsymbol{A} admits the SVD expansion

$$
\boldsymbol{A}=\sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}
$$

- $\|\boldsymbol{A}\|_{2}=\sigma_{1}=$ largest singular value.
- $\|\boldsymbol{A}\|_{F}=\sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}}$.

Eckart-Young-Mirsky Theorem

For any matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ with rank r, let $k \leq r$ and $\boldsymbol{A}_{k}=\sum_{i=1}^{k} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}$ then

$$
\min _{\boldsymbol{B}: \operatorname{rank}(\boldsymbol{B})=k}\|\boldsymbol{A}-\boldsymbol{B}\|_{2}=\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{2}=\sigma_{k+1}
$$

Pseudo-inverse

- Given $\boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\top}$, we rewrite it as :

$$
\boldsymbol{A}=\left[\begin{array}{ll}
\boldsymbol{U}_{1} & \boldsymbol{U}_{2}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{V}_{1}^{\top} \\
\boldsymbol{V}_{2}^{\top}
\end{array}\right]=\boldsymbol{U}_{1} \Sigma_{1} \boldsymbol{V}_{1}^{\top}
$$

- Then the pseudo inverse of \boldsymbol{A} is:

$$
\boldsymbol{A}^{\dagger}=\boldsymbol{V}_{1} \Sigma_{1}^{-1} \boldsymbol{U}_{1}^{\top}=\sum_{i=1}^{r} \frac{1}{\sigma_{i}} \boldsymbol{v}_{i} \boldsymbol{u}_{i}^{\top}
$$

- The pseudo-inverse of \boldsymbol{A} is the mapping from a vector \boldsymbol{b} to the (unique) Minimum Norm solution of the LS problem: $\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{A x}-\boldsymbol{b}\|_{2}^{2}$.

$$
\boldsymbol{x}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}=\boldsymbol{A}^{\dagger} \boldsymbol{b}
$$

- Let us express solution \boldsymbol{x} in basis \boldsymbol{V} as: $\boldsymbol{x}=\boldsymbol{V} \boldsymbol{y}=\left[\begin{array}{ll}\boldsymbol{V}_{1}, & \boldsymbol{V}_{2}\end{array}\right]\left[\begin{array}{l}\boldsymbol{y}_{1} \\ \boldsymbol{y}_{2}\end{array}\right]$.
- Then left multiply by \boldsymbol{U}^{\top} to get:

$$
\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}=\left\|\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{y}_{1} \\
\boldsymbol{y}_{2}
\end{array}\right]-\left[\begin{array}{c}
\boldsymbol{U}_{1}^{\top} \boldsymbol{b} \\
\boldsymbol{U}_{2}^{\top} \boldsymbol{b}
\end{array}\right]\right\|_{2}^{2}
$$

- Let us find all possible solutions in terms of $\boldsymbol{y}=\left[\boldsymbol{y}_{1} ; \boldsymbol{y}_{2}\right]$.
- From above, we have $\boldsymbol{y}_{1}=\Sigma_{1}^{-1} \boldsymbol{U}_{1}^{\top} \boldsymbol{b}$ and \boldsymbol{y}_{2} can be anything.
- Then,

$$
\begin{aligned}
\boldsymbol{x} & =\left[\boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right]\left[\begin{array}{l}
\boldsymbol{y}_{1} \\
\boldsymbol{y}_{2}
\end{array}\right]=\boldsymbol{V}_{1} \boldsymbol{y}_{1}+\boldsymbol{V}_{2} \boldsymbol{y}_{2} \\
& =\boldsymbol{V}_{1} \Sigma_{1}^{-1} \boldsymbol{U}_{1}^{\top} \boldsymbol{b}+\boldsymbol{V}_{2} \boldsymbol{y}_{2} \\
& =\boldsymbol{A}^{\dagger} \boldsymbol{b}+\boldsymbol{V}_{2} \boldsymbol{y}_{2} .
\end{aligned}
$$

- We know that $\boldsymbol{A}^{\dagger} \boldsymbol{b} \in \operatorname{Ran}\left(\boldsymbol{A}^{\top}\right)$ and $\boldsymbol{V}_{2} \boldsymbol{y}_{2} \in \operatorname{Null}(\boldsymbol{A})$.
- Therefore: least-squares solutions are all of the form:

$$
\boldsymbol{A}^{\dagger} \boldsymbol{b}+\boldsymbol{w} \quad \text { where } \quad \boldsymbol{w} \in \operatorname{Null}(\boldsymbol{A})
$$

- We obtain the smallest norm when $\boldsymbol{w}=0$.
- The Minimum Norm solution of the LS problem: $\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{A x}-\boldsymbol{b}\|_{2}^{2}$ is :

$$
\boldsymbol{x}_{L S}=\boldsymbol{V}_{1} \Sigma_{1}^{-1} \boldsymbol{U}_{1}^{\top} \boldsymbol{b}=\boldsymbol{A}^{\dagger} \boldsymbol{b}
$$

Moore-Penrose Inverse

The pseudo-inverse of $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ is given by

$$
\boldsymbol{A}^{\dagger}=\boldsymbol{V}\left[\begin{array}{cc}
\Sigma_{1}^{-1} & 0 \\
0 & 0
\end{array}\right] \boldsymbol{U}^{\top}=\sum_{i=1}^{r} \frac{1}{\sigma_{i}} \boldsymbol{v}_{i} \boldsymbol{u}_{i}^{\top}
$$

Properties:

- $\boldsymbol{A} \boldsymbol{A}^{\dagger} \boldsymbol{A}=\boldsymbol{A}$

$$
\boldsymbol{A}^{\dagger} \boldsymbol{A} \boldsymbol{A}^{\dagger}=\boldsymbol{A}^{\dagger}
$$

$$
\left(\boldsymbol{A}^{\dagger} \boldsymbol{A}\right)^{H}=\boldsymbol{A}^{\dagger} \boldsymbol{A}
$$

$$
\left(\boldsymbol{A} \boldsymbol{A}^{\dagger}\right)^{H}=\boldsymbol{A} \boldsymbol{A}^{\dagger}
$$

- $\boldsymbol{A}^{\dagger} \boldsymbol{A}=\boldsymbol{I}$ when $\operatorname{rank}(\boldsymbol{A})=d$, and $\boldsymbol{A}^{\dagger}=\boldsymbol{A}^{-1}$ if \boldsymbol{A} is invertible.
- Left inverse: $\boldsymbol{A}^{\dagger}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top}$, when $n \geq d$, and \boldsymbol{A} is full rank.
- Right inverse: $\boldsymbol{A}^{\dagger}=\boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{A}^{\top}\right)^{-1}$, when $n \leq d$, and \boldsymbol{A} is full rank.

Exercises

- $\boldsymbol{A} \boldsymbol{A}^{\dagger}$ is a projector onto which space?
- $\boldsymbol{A}^{\dagger} \boldsymbol{A}$ is a projector onto which space?

Questions?

