CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 4: Matrix factorizations I - QR, SVD

1 Orthogonality

2 QR Decomposition

3 Singular Value Decomposition

Orthogonality

- Two vectors \boldsymbol{u} and \boldsymbol{v} are orthogonal if $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 0$.
- A set of vectors $\{\boldsymbol{u}_1, \ldots, \boldsymbol{u}_d\}$ is orthogonal if $\langle \boldsymbol{u}_i, \boldsymbol{u}_j \rangle = 0$ for $i \neq j$; and orthonormal if $\langle \boldsymbol{u}_i, \boldsymbol{u}_j \rangle = \delta_{ij}$ for i = j.
- *U* ∈ ℝ^{n×d} is orthonormal if *U*^T*U* = *I*. If *U* is square, then it is orthogonal (or unitary if complex), and *UU*^T = *I*.
- Orthonormal matrices preserve norms: $\|\boldsymbol{U}\boldsymbol{y}\|_2 = \|\boldsymbol{y}\|_2$.

Projectors

Projection matrix: A symmetric matrix P of the form $P = UU^{\top}$ is an orthogonal projection matrix, with:

- $P^2 = P$.
- If \boldsymbol{P} is a (orthogonal) projection matrix, then:

$$ar{m{P}}=m{I}-m{P}$$

is also a projection matrix.

• If U is an orthonormal basis of $\mathbb{X} \subseteq \mathbb{R}^n$, then:

$$Ran(\mathbf{P}) = \mathbb{X}$$
, and $Ran(\mathbf{I} - \mathbf{P}) = Null(\mathbf{P}) = \mathbb{X}^{\perp}$

Question: $P\bar{P} = ?$

Subspaces of a matrix

Let $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ and consider $Ran(\boldsymbol{A})^{\perp}$, then :

$$Ran(\mathbf{A})^{\perp} = Null(\mathbf{A}^{\top})$$

Proof: Any $\boldsymbol{x} \in Ran(\boldsymbol{A})^{\perp}$ iff $\langle \boldsymbol{A}\boldsymbol{y}, \boldsymbol{x} \rangle = 0$ for all \boldsymbol{y} . This is same as $\langle \boldsymbol{y}, \boldsymbol{A}^{\top}\boldsymbol{x} \rangle = 0$ for all \boldsymbol{y} .

Similarly, we also have:

$$Ran(\mathbf{A}^{\top}) = Null(\mathbf{A})^{\perp}$$

Thus:

$$\begin{split} \mathbb{R}^n &= Ran(\boldsymbol{A}) \oplus Null(\boldsymbol{A}^\top) \\ \mathbb{R}^d &= Ran(\boldsymbol{A}^\top) \oplus Null(\boldsymbol{A}) \end{split}$$

Finding an orthonormal basis of a subspace

- Goal: Find vector in span(A) closest to some vector **b**.
- Much easier with an orthonormal basis for $span(\mathbf{A})$.

Given $A = [a_1, \ldots, a_d]$, compute $Q = [q_1, \ldots, q_d]$ which has orthonormal columns and s.t. span(Q) = span(A).

Each column of A must be a linear combination of certain columns of Q.

Gram-Schmidt process: Compute Q so that a_j (j column of A) is a linear combination of the first j columns of Q.

The QR Decomposition

Given $A \in \mathbb{R}^{n \times d}$ with $n \ge d$, and rank(A) = d, there is a $Q \in \mathbb{R}^{n \times d}$ and $R \in \mathbb{R}^{d \times d}$, s.t.

- A = QR
- \boldsymbol{Q} has orthonormal columns, $\boldsymbol{Q}^{\top}\boldsymbol{Q} = \boldsymbol{I}$.
- \mathbf{R} is upper triangular, $r_{ij} = 0$ for i > j.

We have $span(\mathbf{Q}) = span(\mathbf{A})$, the columns of \mathbf{Q} are an orthonormal basis of $span(\mathbf{A})$.

Question: What is the computational cost of QR?

Least squares using QR

• Recall: In the least-squares regression problem, assuming $n \ge d$, we solve:

$$oldsymbol{x}^* = \min_{oldsymbol{x} \in \mathbb{R}^d} \|oldsymbol{A}oldsymbol{x} - oldsymbol{b}\|_2^2.$$

- If A is full rank then we compute A = QR.
- The normal equation can be written as:

$$egin{aligned} m{A}^ op m{A} m{x} &= m{A}^ op m{b} & op & m{R}^ op m{Q}^ op m{Q} m{R} m{x} &= m{R}^ op m{Q}^ op m{b} \ & op & m{R}^ op m{R} m{x} &= m{R}^ op m{Q}^ op m{b} \ & op & m{R} m{x} &= m{Q}^ op m{b}. \end{aligned}$$

• Therefore,

$$x^* = R^{-1}Q^{\top}b.$$

Note that \boldsymbol{R} is non-singular.

- Alternatively, recall that $span(\mathbf{Q}) = span(\mathbf{A})$.
- We know that $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2$ is minimum when $\mathbf{A}\mathbf{x} \mathbf{b} \perp span(\mathbf{Q})$.
- This implies what?

As a rule it is not a good idea to form $\mathbf{A}^{\top}\mathbf{A}$ and solve the normal equations. Methods using the QR factorization are better. Why?

QR factorization is also used in direct solvers of linear system Ax = b.

The Singular Value Decomposition

SVD

For any matrix $A \in \mathbb{R}^{n \times d}$ there exist unitary matrices $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{d \times d}$ such that

$$oldsymbol{A} = oldsymbol{U} \Sigma oldsymbol{V}^ op$$

where Σ is a diagonal matrix with entries $\sigma_i \geq 0$.

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p$$
 with $p = \min(n, d)$

Let $\sigma_1 = \|\mathbf{A}\|_2 = \max_{\mathbf{x}, \|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\|_2$. There exists a pair of unit vectors such that

$$Av_1 = \sigma_1 u_1.$$

Thin SVD

• In the first case, suppose , we can write

$$oldsymbol{A} = [oldsymbol{U}_1 \, oldsymbol{U}_2] \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} oldsymbol{V}^{ op},$$

where $U_1 \in \mathbb{R}^{n \times d}$ and $U_2 \in \mathbb{R}^{n \times n - d}$. Then,

$$\boldsymbol{A} = \boldsymbol{U}_1 \boldsymbol{\Sigma}_1 \boldsymbol{V}^\top,$$

where $\Sigma_1, \boldsymbol{V} \in \mathbb{R}^{d \times d}$.

• Referred to as *thin or economical* SVD.

Question: How to compute the thin SVD of A from its QR factorization?

SVD Properties

${\rm Suppose}$

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$$
 and $\sigma_{r+1} = \cdots = \sigma_p = 0$

Then:

- $rank(\mathbf{A}) = r = rank(\mathbf{A}) = r = rank(\mathbf{A})$
- $Ran(\mathbf{A}) = span\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r\}$
- $Null(\mathbf{A}^{\top}) = span\{\mathbf{u}_{r+1}, \mathbf{u}_{r+2}, \dots, \mathbf{u}_n\}$
- $Ran(\mathbf{A}^{\top}) = span\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$
- $Null(\mathbf{A}) = span\{\mathbf{v}_{r+1}, \mathbf{v}_{r+1}, \dots, \mathbf{v}_d\}$

SVD Properties II

• A matrix \boldsymbol{A} admits the SVD expansion

$$oldsymbol{A} = \sum_{i=1}^r \sigma_i oldsymbol{u}_i oldsymbol{v}_i^ op$$

•
$$\|A\|_2 = \sigma_1 = \text{largest singular value}$$

•
$$\|\boldsymbol{A}\|_F = \sqrt{\sum_{i=1}^r \sigma_i^2}.$$

Eckart-Young-Mirsky Theorem

For any matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ with rank r, let $k \leq r$ and $\boldsymbol{A}_k = \sum_{i=1}^k \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\top}$ then

$$\min_{\boldsymbol{B}: \operatorname{rank}(\boldsymbol{B}) = k} \|\boldsymbol{A} - \boldsymbol{B}\|_2 = \|\boldsymbol{A} - \boldsymbol{A}_k\|_2 = \sigma_{k+1}.$$

Pseudo-inverse

• Given $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$, we rewrite it as :

$$\boldsymbol{A} = [\boldsymbol{U}_1 \ \boldsymbol{U}_2] \begin{bmatrix} \boldsymbol{\Sigma}_1 \ \boldsymbol{0} \\ \boldsymbol{0} \ \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_1^\top \\ \boldsymbol{V}_2^\top \end{bmatrix} = \boldsymbol{U}_1 \boldsymbol{\Sigma}_1 \boldsymbol{V}_1^\top$$

• Then the pseudo inverse of \boldsymbol{A} is:

$$oldsymbol{A}^{\dagger} = oldsymbol{V}_1 \Sigma_1^{-1} oldsymbol{U}_1^{ op} = \sum_{i=1}^r rac{1}{\sigma_i} oldsymbol{v}_i oldsymbol{u}_i^{ op}$$

• The pseudo-inverse of A is the mapping from a vector b to the (unique) Minimum Norm solution of the LS problem: $\min_{x \in \mathbb{R}^d} ||Ax - b||_2^2$.

$$\boldsymbol{x} = (\boldsymbol{A}^{\top}\boldsymbol{A})^{-1}\boldsymbol{A}^{\top}\boldsymbol{b} = \boldsymbol{A}^{\dagger}\boldsymbol{b}.$$

- Let us express solution \boldsymbol{x} in basis \boldsymbol{V} as: $\boldsymbol{x} = \boldsymbol{V}\boldsymbol{y} = [\boldsymbol{V}_1, \boldsymbol{V}_2]\begin{bmatrix} \boldsymbol{y}_1\\ \boldsymbol{y}_2 \end{bmatrix}$.
- Then left multiply by \boldsymbol{U}^{\top} to get:

$$\|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_{2}^{2} = \left\| \begin{bmatrix} \Sigma_{1} \ 0 \\ 0 \ 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{y}_{1} \\ \boldsymbol{y}_{2} \end{bmatrix} - \begin{bmatrix} \boldsymbol{U}_{1}^{\top} \boldsymbol{b} \\ \boldsymbol{U}_{2}^{\top} \boldsymbol{b} \end{bmatrix} \right\|_{2}^{2}$$

- Let us find all possible solutions in terms of $\boldsymbol{y} = [\boldsymbol{y}_1; \boldsymbol{y}_2]$.
- From above, we have $\boldsymbol{y}_1 = \Sigma_1^{-1} \boldsymbol{U}_1^{\top} \boldsymbol{b}$ and \boldsymbol{y}_2 can be anything.
- Then,

$$egin{array}{rcl} oldsymbol{x} &=& egin{array}{ccc} oldsymbol{V}_1, oldsymbol{V}_2 \end{bmatrix} egin{array}{ccc} oldsymbol{y}_1 \\ oldsymbol{y}_1 \Sigma_1^{-1} oldsymbol{U}_1^{ op} oldsymbol{b} + oldsymbol{V}_2 oldsymbol{y}_2 \\ &=& oldsymbol{A}^\dagger oldsymbol{b} + oldsymbol{V}_2 oldsymbol{y}_2. \end{array}$$

- We know that $A^{\dagger}b \in Ran(A^{\top})$ and $V_2y_2 \in Null(A)$.
- Therefore: least-squares solutions are all of the form:

$$A^{\dagger}b + w$$
 where $w \in Null(A)$.

- We obtain the smallest norm when $\boldsymbol{w} = 0$.
- The Minimum Norm solution of the LS problem: $\min_{\boldsymbol{x} \in \mathbb{R}^d} \|\boldsymbol{A}\boldsymbol{x} \boldsymbol{b}\|_2^2$ is :

$$\boldsymbol{x}_{LS} = \boldsymbol{V}_1 \boldsymbol{\Sigma}_1^{-1} \boldsymbol{U}_1^{\top} \boldsymbol{b} = \boldsymbol{A}^{\dagger} \boldsymbol{b}.$$

Moore-Penrose Inverse

The pseudo-inverse of $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ is given by

$$oldsymbol{A}^{\dagger} = oldsymbol{V} \left[egin{matrix} \Sigma_1^{-1} \ 0 \ 0 \ 0 \end{array}
ight] oldsymbol{U}^{ op} = \sum_{i=1}^r rac{1}{\sigma_i} oldsymbol{v}_i oldsymbol{u}_i^{ op}$$

Properties:

- $AA^{\dagger}A = A$ $A^{\dagger}AA^{\dagger} = A^{\dagger}$ $(A^{\dagger}A)^{H} = A^{\dagger}A$ $(AA^{\dagger})^{H} = AA^{\dagger}$
- $A^{\dagger}A = I$ when rank(A) = d, and $A^{\dagger} = A^{-1}$ if A is invertible.
- Left inverse: $A^{\dagger} = (A^{\top}A)^{-1}A^{\top}$, when $n \ge d$, and A is full rank.
- Right inverse: $A^{\dagger} = A^{\top} (AA^{\top})^{-1}$, when $n \leq d$, and A is full rank.

Exercises

- AA^{\dagger} is a projector onto which space?
- $A^{\dagger}A$ is a projector onto which space?

Questions?