CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 3: Least squares regression and kernel methods

Outline

(1) Least squares regression
(2) Ridge regression
(3) Kernel methods

Data fitting - Regression

- We are given,
- A data matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ with n samples $\left\{\boldsymbol{a}_{i}\right\}_{i=1}^{n} \in \mathbb{R}^{d}$ of d-dimensional features, and
- A column vector $\boldsymbol{b} \in \mathbb{R}^{n}$ (targets).
- Data fitting: Find a functional relation between features and targets wrt. certain loss. General form: For a loss function $\ell(\cdot, \cdot)$, and a function $f(\cdot, \theta)$, where θ are the function parameters over a possible set Θ, we solve

$$
\theta^{*}=\min _{\theta \in \Theta} \sum_{i=1}^{n} \ell\left(f\left(\boldsymbol{a}_{i}, \theta\right), b_{i}\right)
$$

- Numerous applications from scientific computing to machine learning, finance, statistics and many more.

Least squares linear regression

- In the least-squares regression problem, assuming $d<n$, we solve:

$$
\boldsymbol{x}^{*}=\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2} .
$$

- A linear function and Euclidean- $\left(\ell_{2}\right)$ norm (squared) loss function.
- The observed targets, $b_{i}=\boldsymbol{a}^{\top} \boldsymbol{x}+\varepsilon_{i}$, for $i=1, \ldots, n$ and ε_{i} is noise..

Normal equation

The vector \boldsymbol{x}^{*} minimizes $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}$ if and only if it is the solution of the normal equations:

$$
\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{\top} \boldsymbol{b}
$$

Normal equation

The vector \boldsymbol{x}^{*} minimizes $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}$ if and only if it is the solution of the normal equations:

$$
\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{\top} \boldsymbol{b}
$$

Proof: Consider any $\tilde{\boldsymbol{x}}=\boldsymbol{x}^{*}+\Delta \boldsymbol{x}$, then we have

$$
\begin{aligned}
\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b}\|^{2} & =\left\|\boldsymbol{A} \boldsymbol{x}^{*}+\boldsymbol{A} \Delta \boldsymbol{x}-\boldsymbol{b}\right\|^{2} \\
& =\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|^{2}-2(\boldsymbol{A} \Delta \boldsymbol{x})^{\top}\left(\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right)+\|\boldsymbol{A} \Delta \boldsymbol{x}\|^{2} \\
& =\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|^{2}-2(\Delta \boldsymbol{x})^{\top} \underbrace{\boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right)}_{\nabla_{\boldsymbol{x}} \ell}+\underbrace{\|\boldsymbol{A} \Delta \boldsymbol{x}\|^{2}}_{\geq 0}
\end{aligned}
$$

Hence, $\left\|\boldsymbol{A}\left(\boldsymbol{x}^{*}+\Delta \boldsymbol{x}\right)-\boldsymbol{b}\right\|^{2} \geq\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|^{2}$ for any $\Delta \boldsymbol{x}$, iff the gradient vector $\nabla_{\boldsymbol{x}} \ell$ is zero.

\boldsymbol{x}^{*} is the best approximation to \boldsymbol{b} from the subspace $\operatorname{span}\{\boldsymbol{A}\}$ iff $(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x})$ is \perp to the whole subspace $\operatorname{span}\{\boldsymbol{A}\}$. This in turn is equivalent to Normal equations

$$
\boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right)=0
$$

Matlab demo

Issue with normal equations

The solution is $\boldsymbol{x}^{*}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}$.

- Condition number of a matrix :

$$
\kappa_{2}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}\left\|\boldsymbol{A}^{-1}\right\|_{2}=\sigma_{\max } / \sigma_{\min }
$$

- Then, $\kappa_{2}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\left\|\boldsymbol{A}^{\top} \boldsymbol{A}\right\|_{2}\left\|\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1}\right\|_{2}=\left(\sigma_{\max } / \sigma_{\min }\right)^{2}$.
E.g., suppose we have a matrix with spectrum in $[1, \epsilon]$, i..e, $\kappa_{2}(\boldsymbol{A})=1 / \epsilon$. Then, $\kappa_{2}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\epsilon^{-2}$.
$\boldsymbol{A}^{\top} \boldsymbol{A}$ could be highly ill-conditioned.

Ridge Regression

Ridge Regression or Tikhonov regularization: For a given $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ and $\boldsymbol{b} \in \mathbb{R}^{n}$ the ridge-regression estimator is the minimizer of the problem:

$$
\boldsymbol{x}_{r r}=\arg \min _{\boldsymbol{x}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}+\lambda\|\boldsymbol{x}\|_{2}^{2},
$$

where $\lambda>0$ is a fixed regularization parameter.
The solution is $\boldsymbol{x}_{r r}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}$.
We select an appropriate λ such that:

- we have a better conditioned matrix, and
- we avoid over fitting.

Bias-variance tradeoff.

LASSO Regression

Least absolute shrinkage and selection operator, or LASSO, proposed by Thibshirani in 1996, solves the optimization problem:

$$
\boldsymbol{x}_{\text {lasso }}=\arg \min _{\boldsymbol{x}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}+\lambda\|\boldsymbol{x}\|_{1},
$$

where $\lambda>0$ is a fixed regularization parameter.

- The problem is still convex, but is non-smooth.
- Many efficient optimization algorithms have been proposed. E.g., Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), Alternating Direction Method of Multipliers (ADMM).
- Yields a sparse solution.

Constraint Regions for LASSO (left) and Ridge Regression (right). Shows why LASSO yields a sparse solution.

Matlab demo II

Feature maps

- Linear regression fits a linear functions to the data.
- However, the functional relation could be "non-linear".
- Example: Consider fitting a cubic function:

$$
b=x_{3} a^{3}+x_{2} a^{2}+x_{1} a+x_{0} .
$$

- We can view the cubic function as a linear function over a different set of feature variables. Let the function $\phi: \mathbb{R} \rightarrow \mathbb{R}^{4}$ be defined as:

$$
\phi(a)=\left[1 ; a ; a^{2} ; a^{3}\right] .
$$

- If $\boldsymbol{x}=\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$, then

$$
b=x_{3} a^{3}+x_{2} a^{2}+x_{1} a+x_{0}=\boldsymbol{x}^{\top} \phi(a) .
$$

- The function ϕ is called the feature map.

Kernelization

- Approach to linearize non-linear problems.
- Map rows of \boldsymbol{A} to $\phi\left(\boldsymbol{a}_{i}\right)$ in higher dimension.
- Kernel Trick or kernel substitution: if the input enters an algorithm only in the form of inner products, then we can replace the inner product with some other choice of a kernel.
- Kernel: corresponding to the feature map ϕ satisfies:

$$
K(\boldsymbol{a}, \tilde{\boldsymbol{a}})=\phi(\boldsymbol{a})^{\top} \phi(\tilde{\boldsymbol{a}})
$$

- Kernel is symmetric of its arguments, i.e., $K(\boldsymbol{a}, \tilde{\boldsymbol{a}})=K(\tilde{\boldsymbol{a}}, \boldsymbol{a})$.

Kernel properties

Mercer Theorem

Let $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be given. Then for K to be a valid (Mercer) kernel, it is necessary and sufficient that for any $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\},(n<\infty)$, the corresponding kernel matrix is symmetric positive semi-definite.

Kernel properties

Mercer Theorem

Let $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be given. Then for K to be a valid (Mercer) kernel, it is necessary and sufficient that for any $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\},(n<\infty)$, the corresponding kernel matrix is symmetric positive semi-definite.

Proof: Let the kernel matrix \boldsymbol{K} be defined as $K_{i j}=\phi\left(\boldsymbol{a}_{i}\right)^{\top} \phi\left(\boldsymbol{a}_{j}\right)$. If K is a valid kernel, then $K_{i j}=\phi\left(\boldsymbol{a}_{i}\right)^{\top} \phi\left(\boldsymbol{a}_{j}\right)=\phi\left(\boldsymbol{a}_{j}\right)^{\top} \phi\left(\boldsymbol{a}_{i}\right)=K_{j i}$, hence symmetric. Also for any vector \boldsymbol{z}, we have:

$$
\begin{aligned}
\boldsymbol{z}^{\top} \boldsymbol{K} \boldsymbol{z} & =\sum_{i} \sum_{j} z_{i} K_{i j} z_{j}=\sum_{i} \sum_{j} z_{i} \phi\left(\boldsymbol{a}_{i}\right)^{\top} \phi\left(\boldsymbol{a}_{j}\right) z_{j} \\
& =\sum_{i} \sum_{j} z_{i} \sum_{k} \phi_{k}\left(\boldsymbol{a}_{i}\right) \phi_{k}\left(\boldsymbol{a}_{j}\right) z_{j}=\sum_{k} \sum_{i} \sum_{j} z_{i} \phi_{k}\left(\boldsymbol{a}_{i}\right) \phi_{k}\left(\boldsymbol{a}_{j}\right) z_{j} \\
& =\sum_{k}\left(\sum_{i} z_{i} \phi_{k}\left(\boldsymbol{a}_{i}\right)\right)^{2} \geq 0 .
\end{aligned}
$$

Kernels as similarity metrics

- Intuitively, when $\phi(\boldsymbol{a})$ and $\phi(\tilde{\boldsymbol{a}})$ are close to each other, the kernel $K(\boldsymbol{a}, \tilde{\boldsymbol{a}})=\phi(\boldsymbol{a})^{\top} \phi(\tilde{\boldsymbol{a}})$ should be large.
- Conversely, if they are far apart, $K(\boldsymbol{a}, \tilde{\boldsymbol{a}})$ should be small.
- Kernel as a similarity measure of the features.
- Gaussian Kernel: Homogeneous kernels defined by the magnitude of distance:

$$
K(\boldsymbol{a}, \tilde{\boldsymbol{a}})=\exp \left(-\frac{\|\boldsymbol{a}-\tilde{\boldsymbol{a}}\|}{2 \sigma^{2}}\right) .
$$

It corresponds to an infinite dimensional feature map ϕ.

Kernel Ridge Regression

- Kernel methods - do not explicitly define or compute the feature map ϕ. Only compute the kernel function $K(\cdot, \cdot)$.
- In ridge regression, suppose we replace the feature vectors: $\boldsymbol{a}_{i} \rightarrow \Phi_{i}=\phi\left(\boldsymbol{a}_{i}\right)$ to account for non-linear function relation.
- Now the dimension can be much higher.
- The solution to the ridge regression is, with $\phi\left(\boldsymbol{a}_{i}\right)$'s as columns of Φ :

$$
\boldsymbol{x}_{k r}=\left(\Phi \Phi^{\top}+\lambda \boldsymbol{I}\right)^{-1} \Phi \boldsymbol{b}=\Phi\left(\Phi^{\top} \Phi+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{b}
$$

- Given a new data point \boldsymbol{a}, the prediction will be:

$$
b=\phi(\boldsymbol{a})^{\top} \boldsymbol{x}_{k r}=\phi(\boldsymbol{a})^{\top} \Phi\left(\Phi^{\top} \Phi+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{b}=\kappa(\boldsymbol{a})(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{b}
$$

where $\kappa(\boldsymbol{a})=\left[K\left(\boldsymbol{a}_{i}, \boldsymbol{a}\right)\right]_{i=1}^{n}$.

Questions?

