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Lecture 3: Least squares regression and kernel methods
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Outline

1 Least squares regression

2 Ridge regression

3 Kernel methods
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Data fitting - Regression

We are given,
I A data matrix A ∈ Rn×d with n samples {ai}ni=1 ∈ Rd of d-dimensional features, and
I A column vector b ∈ Rn (targets).

Data fitting: Find a functional relation between features and targets wrt. certain
loss. General form: For a loss function `(·, ·), and a function f(·, θ), where θ are the
function parameters over a possible set Θ, we solve

θ∗ = min
θ∈Θ

n∑
i=1

`(f(ai, θ), bi)

Numerous applications from scientific computing to machine learning, finance,
statistics and many more.
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Least squares linear regression

In the least-squares regression problem, assuming d < n, we solve:

x∗ = min
x∈Rd

‖Ax− b‖22.

A linear function and Euclidean- (`2) norm (squared) loss function.

The observed targets, bi = a>x + εi, for i = 1, . . . , n and εi is noise..
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Normal equation

The vector x∗ minimizes ‖Ax− b‖2 if and only if it is the solution of the normal
equations:

A>Ax = A>b.

Proof: Consider any x̃ = x∗ + ∆x, then we have

‖Ax̃− b‖2 = ‖Ax∗ + A∆x− b‖2

= ‖Ax∗ − b‖2 − 2(A∆x)>(Ax∗ − b) + ‖A∆x‖2

= ‖Ax∗ − b‖2 − 2(∆x)>A>(Ax∗ − b)︸ ︷︷ ︸
∇x`

+ ‖A∆x‖2︸ ︷︷ ︸
≥0

Hence, ‖A(x∗ + ∆x)− b‖2 ≥ ‖Ax∗ − b‖2 for any ∆x, iff the gradient vector ∇x` is zero.
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0

{A}

Ax*

b - Ax*

b

x∗ is the best approximation to b from the subspace span{A} iff (b−Ax) is ⊥ to the
whole subspace span{A}. This in turn is equivalent to Normal equations

A>(Ax∗ − b) = 0.
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Matlab demo
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Issue with normal equations

The solution is x∗ = (A>A)−1A>b.

Condition number of a matrix :

κ2(A) = ‖A‖2‖A−1‖2 = σmax/σmin

Then, κ2(A>A) = ‖A>A‖2‖(A>A)−1‖2 = (σmax/σmin)2.

E.g., suppose we have a matrix with spectrum in [1, ε], i..e, κ2(A) = 1/ε.
Then, κ2(A>A) = ε−2.
A>A could be highly ill-conditioned.
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Ridge Regression

Ridge Regression or Tikhonov regularization: For a given A ∈ Rn×d and b ∈ Rn the
ridge-regression estimator is the minimizer of the problem:

xrr = arg min
x
‖Ax− b‖22 + λ‖x‖22,

where λ > 0 is a fixed regularization parameter.

The solution is xrr = (A>A + λI)−1A>b.

We select an appropriate λ such that:

we have a better conditioned matrix, and

we avoid over fitting.

Bias–variance tradeoff.
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LASSO Regression

Least absolute shrinkage and selection operator, or LASSO , proposed by Thibshirani in
1996, solves the optimization problem:

xlasso = arg min
x
‖Ax− b‖22 + λ‖x‖1,

where λ > 0 is a fixed regularization parameter.

The problem is still convex, but is non-smooth.

Many efficient optimization algorithms have been proposed. E.g., Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA), Alternating Direction Method of
Multipliers (ADMM).

Yields a sparse solution.
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𝑥!𝑥!

𝑥" 𝑥"

Constraint Regions for LASSO (left) and Ridge Regression (right). Shows why LASSO
yields a sparse solution.
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Matlab demo II
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Feature maps

Linear regression fits a linear functions to the data.

However, the functional relation could be “non-linear”.

Example: Consider fitting a cubic function:

b = x3a
3 + x2a

2 + x1a+ x0.

We can view the cubic function as a linear function over a different set of feature
variables. Let the function φ : R→ R4 be defined as:

φ(a) = [1; a; a2; a3].

If x = [x0, x1, x2, x3], then

b = x3a
3 + x2a

2 + x1a+ x0 = x>φ(a).

The function φ is called the feature map.
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Kernelization

Approach to linearize non-linear problems.

Map rows of A to φ(ai) in higher dimension.

Kernel Trick or kernel substitution: if the input enters an algorithm only in the
form of inner products, then we can replace the inner product with some other choice
of a kernel.

Kernel: corresponding to the feature map φ satisfies:

K(a, ã) = φ(a)>φ(ã)

Kernel is symmetric of its arguments , i.e., K(a, ã) = K(ã,a).
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Kernel properties

Mercer Theorem

Let K : Rd × Rd → R be given. Then for K to be a valid (Mercer) kernel, it is necessary
and sufficient that for any {a1, . . . ,an}, (n <∞), the corresponding kernel matrix is
symmetric positive semi-definite.

Proof: Let the kernel matrix K be defined as Kij = φ(ai)
>φ(aj). If K is a valid kernel, then

Kij = φ(ai)
>φ(aj) = φ(aj)

>φ(ai) = Kji, hence symmetric. Also for any vector z, we have:

z>Kz =
∑
i

∑
j

ziKijzj =
∑
i

∑
j

ziφ(ai)
>φ(aj)zj

=
∑
i

∑
j

zi
∑
k

φk(ai)φk(aj)zj =
∑
k

∑
i

∑
j

ziφk(ai)φk(aj)zj

=
∑
k

(∑
i

ziφk(ai)

)2

≥ 0.
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Kernels as similarity metrics

Intuitively, when φ(a) and φ(ã) are close to each other, the kernel
K(a, ã) = φ(a)>φ(ã) should be large.

Conversely, if they are far apart, K(a, ã) should be small.

Kernel as a similarity measure of the features.

Gaussian Kernel: Homogeneous kernels defined by the magnitude of distance:

K(a, ã) = exp

(
−‖a− ã‖

2σ2

)
.

It corresponds to an infinite dimensional feature map φ.
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Kernel Ridge Regression

Kernel methods - do not explicitly define or compute the feature map φ. Only
compute the kernel function K(·, ·).
In ridge regression, suppose we replace the feature vectors: ai → Φi = φ(ai) to
account for non-linear function relation.

Now the dimension can be much higher.

The solution to the ridge regression is, with φ(ai)’s as columns of Φ :

xkr = (ΦΦ> + λI)−1Φb = Φ (Φ>Φ + λI)−1b

Given a new data point a, the prediction will be:

b = φ(a)>xkr = φ(a)>Φ (Φ>Φ + λI)−1b = κ(a)(K + λI)−1b,

where κ(a) = [K(ai,a)]ni=1.
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Questions?
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