CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 26: Introduction to quantum computing II

Outline

(1) Complexity Classes
(2) Quantum Fourier Transform
(3) Quantum Phase Estimation
(4) Linear system solver

Complexity Classes

- There are many intractable problems where the best known algorithm has runtime that scales exponentially with input size

Complexity Classes

- Quantum Computers are the Only Novel Hardware which Changes the Game

The Complexity Zoo

- Should We Focus on NP-hard Problems ?
- Counter to the layman belief, there is a consensus among quantum computing researchers that quantum computing is not likely to exponentially speed-up computation of NP-hard problems [C.H. Bennett, E. Bernstein, G. Brassard, U. Vazirani, Strengths and Weaknesses of Quantum Computing, 1996]

Fourier Transform - Background

- Fourier Transform: Decomposes a function or a signal in one domain (e.g. time) into its constituent frequency representation
- Instrumental in signal processing, image analysis, (convolutional) neural networks, etc
- Gilbert Strang described the FFT as "the most important numerical algorithm of our lifetime"
- Inducted in Top 10 Algorithms of $20^{\text {th }}$ Century by the IEEE journal Computing in Science \& Engineering
- Classically, the Fast Fourier Transform (FFT) can perform the task in $N \log (N)$ run-time [Cooley and Tukey, 1965]
- Qunatumly, the Quantum Fast Fourier Transform (FFT) is due to [Coppersmith, 1994]

Quantum Fourier Transform

- Similarly to the classical, the quantum Fourier Transform, (QFT) performs a discrete Fourier transform on the complex valued vector $|\psi\rangle$, yet it can achieve runtime of $\mathcal{O}(n \log n)$
- Given: an n-qubit state as a superposition of basis states $|0\rangle,|1\rangle, \ldots,\left|2^{n}-1\right\rangle$
- Map each basis state $|j\rangle$

$$
Q F T(|j\rangle)=\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

qubit 0

qubit 1

qubit 2

qubit 3

Quantum Fourier Transform

- Notation: Fractional Binary Notation :

$$
\left[0 . x_{1} \ldots x_{m}\right]=\sum_{k=1}^{m} x_{k} 2^{-k}
$$

- For instance, $\left[0 . x_{1}\right]=\frac{x_{1}}{2}$ and $\left[0 . x_{1} x_{2}\right]=\frac{x_{1}}{2}+\frac{x_{2}}{2^{2}}$
- With this notation, the action of the quantum Fourier transform can be expressed in a compact manner:

$$
\begin{aligned}
& Q F T\left(\left|x_{1} x_{2} \ldots x_{n}\right\rangle\right)= \\
& \frac{1}{\sqrt{N}}\left(|0\rangle+e^{2 \pi i\left[0 . x_{n}\right]}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i\left[0 . x_{n-1} x_{n}\right]}|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+e^{2 \pi i\left[0 . x_{1} x_{2} \ldots x_{n}\right]}|1\rangle\right)
\end{aligned}
$$

or

$$
Q F T\left(\left|x_{1} x_{2} \ldots x_{n}\right\rangle\right)=\frac{1}{\sqrt{N}}\left(|0\rangle+\omega_{1}^{x}|1\rangle\right) \otimes\left(|0\rangle+\omega_{2}^{x}|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+\omega_{n}^{x}|1\rangle\right)
$$

Quantum Fourier Transform

- The algorithm effectively takes the 2^{n} amplitudes of an n-qubit state as a vector of size 2^{n} and performs a discrete Fourier Transform so that the result is encoded in the amplitudes of the output state
- The simplest way to show that the normalized Fourier Transform is a unitary operation is to demonstrate the quantum circuit that performs the QFT

Quantum Fourier Transform

- The input register contains an n-qubit basis state $|x\rangle$ expressed as the tensor product of the individual qubits in its binary expansion:

$$
|x\rangle \equiv\left|x_{1} x_{2} \cdots x_{n}\right\rangle \equiv\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle \otimes \cdots \otimes\left|x_{n}\right\rangle
$$

- The gates labeled R_{m} represent a series of single-qubit phase rotations
- For each integer $m \geq 2$, the gate R_{m} shifts the phase of the $|1\rangle$ component of the input qubit by a factor of $e^{\frac{2 \pi i}{2^{m}}}$, representing the unitary transformation

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\frac{2 \pi i}{2 m}}
\end{array}\right)
$$

Quantum Fourier Transform

- However, in the QFT circuit, each R^{m} gate is controlled by another qubit (indicated by a large dot connected to the gate by a vertical line)
- Given a two-qubit state, $\left|\psi_{1}\right\rangle\left|\psi_{2}\right\rangle$, composed of the controlling qubit, $\left|\psi_{1}\right\rangle$, and the input qubit, $\left|\psi_{2}\right\rangle$, the controlled- R^{m} gate represents the unitary transformation

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{\frac{2 \pi i}{2 m}}
\end{array}\right)
$$

Quantum Fourier Transform

- If the controlled- R_{m} gate is being applied to a basis state, $\left|x_{\ell}\right\rangle$, where x_{ℓ} is either 0 or 1 , then depending on the value of x_{ℓ}, the controlled- R_{m} gate performs the identity transformation, or the R_{m} transformation
- However, we may combine the two and equivalently say that the controlled- R_{m} gate performs the transformation

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\frac{2 \pi i x_{\ell}}{2^{m}}}
\end{array}\right)
$$

on the qubit $\left|\psi_{2}\right\rangle$, effectively performing a data-dependent phase rotation

Quantum Fourier Transform - Circuit Analysis

1 After the first Hadamard gate on qubit 1, the state is transformed from the input state to

$$
H \otimes I_{n-1}\left|x_{1} x_{2} \ldots x_{n}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{\frac{2 \pi i}{2} x_{1}}|1\rangle\right) \otimes\left|x_{2} x_{3} \ldots x_{n}\right\rangle
$$

2 Following application of R_{2} on qubit 1 controlled by qubit 2, the state becomes

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+e^{\frac{2 \pi i}{2^{2}} x_{2}+\frac{2 \pi i}{2} x_{1}}|1\rangle\right) \otimes\left|x_{2} x_{3} \ldots x_{n}\right\rangle
$$

3 After the application of the last R_{n} gate on qubit 1 controlled by qubit n, the state is

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+e^{\frac{2 \pi i}{2^{n}} x_{n}+\frac{2 \pi i}{2^{n-1}} x_{n-1}+\cdots+\frac{2 \pi i}{2^{2}} x_{2}+\frac{2 \pi i}{2} x_{1}}|1\rangle\right) \otimes\left|x_{2} x_{3} \ldots x_{n}\right\rangle
$$

Quantum Fourier Transform - Circuit Analysis

Since $x=2^{n-1} x_{1}+2^{n-2} x_{2}+\cdots+2^{1} x_{n-1}+2^{0} x_{n}$, we can rewrite the state as $\frac{1}{\sqrt{2}}\left(|0\rangle+e^{\frac{2 \pi i}{2^{n} x}}|1\rangle\right) \otimes\left|x_{2} x_{3} \ldots x_{n}\right\rangle$

4 Application of a similar sequence of gates for qubits $2 \ldots n$, the final state is:

$$
\frac{1}{\sqrt{2}}\left(|0\rangle+e^{\frac{2 \pi i}{2^{n}} x}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+e^{\frac{2 \pi i}{2^{n-1} x}}|1\rangle\right) \otimes \cdots \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+e^{\frac{2 \pi i}{2^{2}} x}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+e^{\frac{2 \pi i}{2^{1}} x}|1\rangle\right)
$$

which is the QFT of the input state in reversed order

Quantum Phase Estimation

- The Quantum Phase Estimation algorithm is one of the most instrumental algorithms in Quantum Computing
- Proposed first in von Neumman's Mathematical Foundations of Quantum Mechanics book (aka von Neumann measurement)
- Quantum Computing formulation is due to Kitaev
- Applications range from factoring, through eigenvalue decomposition, linear system solver and more...

Quantum Phase Estimation

- Recall : Unitary Eigenvalues : Let U be a $N \times N$ unitary transformation. U has an orthonormal basis of eigenvectors $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle, \ldots,\left|\psi_{N}\right\rangle$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$, where $\lambda_{j}=e^{2 \pi i \theta_{j}}$ for some θ_{j}
- Proof : U, being unitary, maps unit vectors to unit vectors and hence all the eigenvalues have unit magnitude, i.e. they are of the form $e^{2 \pi i \theta}$ for some θ
- Let $\left|\psi_{j}\right\rangle$ and $\left|\psi_{k}\right\rangle$ be two distinct eigenvectors with distinct eigenvalues λ_{j} and λ_{k}
- We have that

$$
\lambda_{j}\left\langle\psi_{j}, \psi_{k}\right\rangle=\left\langle\lambda_{j} \psi_{j}, \psi_{k}\right\rangle=\left\langle U \psi_{j}, \psi_{k}\right\rangle=\left\langle\psi_{j}, U \psi_{k}\right\rangle=\left\langle\psi_{j}, \lambda_{k} \psi_{k}\right\rangle=\lambda_{k}\left\langle\psi_{j}, \psi_{k}\right\rangle
$$

- Since $\lambda_{j} \neq \lambda_{k}$, the inner product $\left\langle\psi_{j}, \psi_{k}\right\rangle$ is 0 , i.e. the eigenvectors $\left|\psi_{j}\right\rangle$ and $\left|\psi_{k}\right\rangle$ are orthonormal

Quantum Phase Estimation

- Goal: Phase Estimation : Given a unitary transformation U, and one of its eigenstate $\left|\psi_{j}\right\rangle$
- Find: the corresponding eigenvalue $\lambda_{j}=e^{2 \pi i \theta_{j}}$ (or, equivalently, $\theta_{j} \in \mathbb{R}$)
- Reminder : Controlled U : For any unitary transformation U, the controlled U gate, $C U$, transforms the target register $|\psi\rangle$ to $U|\psi\rangle$ conditionally upon the control input qubit

- Estimation of the phase θ can be performed by the following simple prototype circuit

Quantum Phase Estimation Prototype - Circuit Analysis

- The application of \mathbf{H} gate upon the control qubit, transfers the controller into a uniform superposition state

$$
H \otimes I_{n}|0\rangle|\psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|\psi\rangle
$$

- Consequent application of the controlled CU entails

$$
\begin{aligned}
C U \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|\psi\rangle & =\frac{1}{\sqrt{2}}|0\rangle|\psi\rangle+\frac{1}{\sqrt{2}}|1\rangle \lambda|\psi\rangle \\
& =\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{\lambda}{\sqrt{2}}|1\rangle\right) \otimes|\psi\rangle
\end{aligned}
$$

- Note : After application of CU gate, the eigenstate, $|\psi\rangle$ remained unchanged while were able to push λ into the phase (phase kickback) of the controller qubit

Quantum Phase Estimation Prototype - Circuit Analysis

- Application of an additional Hadamard gate upon the controller qubit will transform the state into a measurable amplitude in the Z basis

$$
H\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{\lambda}{\sqrt{2}}|1\rangle\right)=\frac{1+\lambda}{2}|0\rangle+\frac{1-\lambda}{2}|1\rangle
$$

Quantum Phase Estimation - Circuit Analysis

- To perform a (more) efficient implementation of the phase estimation algorithm we need to extend the set of ancillary qubits
- Definition: m-Controlled \mathbf{U} : For any unitary transformation U, m-controlled U gate, $C_{m} U$, performs the transformation $C_{m} U|k\rangle \otimes|\psi\rangle=|k\rangle \otimes U^{k}|\psi\rangle$

where $k \in\left\{0,1, \ldots, 2^{m}-1\right\}$
- Estimation of θ within m bits of precision is equivalent to estimating the integer j, where $\frac{j}{2^{m}}$ is the closest approximation to θ

Quantum Phase Estimation - Circuit Analysis

- Let $w_{m}=e^{\frac{2 \pi i}{2 m}}$, the circuit below estimates the phase efficiently

- The Hadamard (over m qubits this time) results in a uniform superposition

$$
H^{\otimes m} \otimes I_{n}\left|0^{m}\right\rangle|\psi\rangle=\left(\frac{1}{\sqrt{2^{m}}} \sum_{k=0}^{2^{m}-1}|k\rangle\right) \otimes|\psi\rangle
$$

- Next, application of the m-controlled U gate

$$
\begin{aligned}
C_{m} U\left(\frac{1}{\sqrt{2^{m}}} \sum_{k=0}^{2^{m}-1}|k\rangle\right) \otimes|\psi\rangle= & \left(\frac{1}{\sqrt{2^{m}}} \sum_{k=0}^{2^{m}-1} \lambda^{k}|k\rangle\right) \otimes|\psi\rangle= \\
& \left(\frac{1}{\sqrt{2^{m}}} \sum_{k=0}^{2^{m}-1} w_{m}^{j k}|k\rangle\right) \otimes|\psi\rangle
\end{aligned}
$$

Quantum Phase Estimation - Circuit Analysis

- Following the controlled operation the ancillary register contains the Fourier Transform mod 2^{m} of j
- How do we retrieve j back ?

Quantum Phase Estimation - Circuit Analysis

- Following the controlled operation the ancillary register contains the Fourier Transform mod 2^{m} of j
- How do we retrieve j back ? Apply the inverse of the Fourier Transform mod 2^{m}
- Recall that quantum circuits are reversible, thus, following the inverse QFT we get back j

$$
Q F T_{2^{m}}^{-1} \otimes I_{n}\left(\frac{1}{\sqrt{2^{m}}} \sum_{k=0}^{2^{m}-1} w_{m}^{j k}|k\rangle\right) \otimes|\psi\rangle=|j\rangle \otimes|\psi\rangle
$$

- If $\theta=\frac{j}{2^{m}}$, then the circuit outputs j
- If $\theta \approx \frac{j}{2^{m}}$, then the circuit outputs j with high probability

Quantum Phase Estimation - Circuit Description

Linear System of Equations - Problem Definition

- Given a matrix A and a vector $|b\rangle$
- Find a vector $|x\rangle$ such that $A|x\rangle=|b\rangle$
- Solution of linear systems of equations is instrumental across most disciplines of science and engineering
- The study of Harrow, Hassidim and Lloyd (2008) provided algorithmic framework for linear regression with an exponential speed-up
- Note: it is a quantum algorithm but not a realizable quantum computation. i.e. it does not map classical input to a classical result, but rather manipulates
 quantum data only

Assumptions and Disclaimers

- The algorithm exemplifies the gap between the desired computation of providing the system A, and RHS b, and extracting x, vs. the quantum computation of $|x\rangle$ given A and $|b\rangle$. This difference is not as subtle as it may appear at first glance
- Data loading into the quantum computer, is assumed to be performed in logarithmic cost with respect to the problem size (an unrealistic assumption for general data), or alternatively the data is (somehow) already stored in a so-called QRAM (quantum RAM)
- Classical output is limited to a low dimensional function of the solution (e.g. an expectation)
- Known approximation of the expectation value of some operator associated with x, e.g., $x^{\dagger} M x$ for some matrix M
- A is sparse, $(s \ll N$ in entries / row), Hermitian $N \times N$ with condition number κ (this assumption can be avoided)

High Level Algorithmic Schematics

- Solve $A x=b$, where $|x\rangle$ and $|b\rangle$ are quantum states, and A represents the Hamiltonian

High Level Algorithmic - Steps

(1) State preparation - prepare the state $|b\rangle$ (amplitude encoding), n ancilla qubits at $|0\rangle$, additional ancillar qubit at $|0\rangle$
(2) Quantum Phase Estimation - perform phase estimation upon the state $|b\rangle$, using the n ancillar qubits - extract eigenvalues of $A-Q P E_{A}|b\rangle|0\rangle^{\otimes n}=\sum_{j} \beta_{j}\left|\psi_{j}\right\rangle\left|\overline{\lambda_{j}}\right\rangle$
(3) Conditional rotation - performs $\sum \beta_{j}\left|\psi_{j}\right\rangle\left|\overline{\lambda_{j}}\right\rangle|0\rangle \rightarrow \sum \beta_{j}\left|\psi_{j}\right\rangle\left|\overline{\lambda_{j}}\right\rangle\left(\sqrt{1-\frac{C^{2}}{\lambda_{j}^{2}}}|0\rangle+\frac{C}{\lambda_{j}}|1\rangle\right)$
(4) Uncompute QPE - uncompute eigenvalue register with the inverted phase $\sum \beta_{j}\left|\psi_{j}\right\rangle|0\rangle\left(\sqrt{1-\frac{C^{2}}{\lambda_{j}^{2}}}|0\rangle+\frac{C}{\lambda_{j}}|1\rangle\right)$
(5) Rejection sampling - identify cases in which the conditional rotation was successful

Linear System of Equations - Solution Approach

- Assume $A=A^{\dagger}$
- Otherwise, solve instead

$$
\left(\begin{array}{cc}
0 & A \\
A^{\dagger} & 0
\end{array}\right)\binom{0}{x}=\binom{b}{0}
$$

which implies that $A x=b$ for all A (not necessarily square, can be over-determined or under-determined)

- Per the sparsity assumption upon $A, s \ll N, A=A^{\dagger}$ is local
- Then exponentiation of the operator A (aka Hamiltonian simulation) $e^{-i A t}$ can be performed in time $\mathcal{O}(\log (N))$ [Lloyd 1996]

Linear System of Equations - Solution Approach

- If we know how to diagonalize A, i.e.

$$
U A U^{\dagger}=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{N}
\end{array}\right)
$$

then inverse is just the inverse of the diagonal elements

$$
U^{\dagger} A^{-1} U=\left(\begin{array}{ccc}
\lambda_{1}^{-1} & & 0 \\
& \ddots & \\
0 & & \lambda_{N}^{-1}
\end{array}\right)
$$

- Based on Kitaev's QPE algorithm for finding eigenpairs, a momentum operator p is used to advance the system $|b\rangle|0\rangle$ by a distance proportional to the eigenvalue of A
- Let the state $|b\rangle$ be represented by an eigen decomposition of A, i.e. $|b\rangle=\sum_{j} \beta_{j}\left|\psi_{j}\right\rangle$

$$
Q P E_{A}|b\rangle|0\rangle=\sum_{j} \beta_{j}\left|\psi_{j}\right\rangle\left|\lambda_{j}\right\rangle
$$

Linear System of Equations - Solution Approach

- Next, we pick the inverse of the eigenvalues λ_{j} and turn them into a phase

$$
\sum_{j} \beta_{j} e^{i \delta \lambda_{j}^{-1}}\left|\psi_{j}\right\rangle\left|\lambda_{j}\right\rangle
$$

with a small δ

- Next, following the swap of λ and λ^{-1} undo the phase estimation operation

$$
\beta_{j} e^{i \delta \lambda_{j}^{-1}}\left|\psi_{j}\right\rangle|0\rangle
$$

- The above term is essentially

$$
e^{i \delta A^{-1}}|b\rangle|0\rangle
$$

Linear System of Equations - Solution Approach

- If δ is small enough

$$
e^{i \delta A^{-1}}|b\rangle|0\rangle \approx\left(I+i \delta A^{-1}\right)|b\rangle|0\rangle=(|b\rangle+i \delta \underbrace{A^{-1}|b\rangle}_{|x\rangle})|0\rangle
$$

- Thus, within the expression we have the desired $A^{-1}|b\rangle$ which can be extracted with probability of δ^{2}

Linear Solver - Run-Time Complexity

- The classical algorithms can find x and estimate $x^{\dagger} M x$ in $\tilde{\mathcal{O}}(N \sqrt{\kappa})$ run time
- For A of condition number, κ, in k steps we get $A^{-1}|b\rangle$ to accuracy of $\mathcal{O}\left(\frac{\kappa^{2} s^{2}}{\epsilon} \log N\right)$
- This is indeed a remarkable exponential acceleration
- Consequent work improved upon the condition number dependency [A. Childs, R. Kothari and R. Somma, 2015]
- Extension to non-sparse settings and further complexity reduction based on quantum singular value estimation are due to $\mathcal{O}\left(\sqrt{N} \log N \kappa^{2}\right)$ [L. Wossing et al, 2018]

Questions

