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Quantum Computing Dialog

“The underlying physical laws necessary for the math-
ematical theory of a large part of physics ... are com-
pletely known, and the difficulty is only that the exact
application of these laws leads to equations much too
complicated to be soluble. It therefore becomes desir-
able that approximate practical methods ... should be
developed...” [Dirac, 1929]

“I’m not happy with all the analysis that go with
just classical theory, because nature isn’t classical,
dammit.
And if you want to make a simulation of nature, you’d
better make it quantum mechanical, and, by golly,
it’s a wonderful problem because it doesn’t look so
easy” [Feynman 1982]
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1981 MIT-IBM Conference

UT Austin CSE 392 Apr, 2024 5 / 44



History of Quantum Computing
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Early History

1970 Quantum money (Stephen Wiesner). Unpub-
lished until 1993

1981 Conference at MIT. Feynman reasoned that
because quantum mechanics is hard to simulate,
maybe a quantum computer would be good for sim-
ulating quantum mechanics

1982 No-cloning theorem (Wootters-Zurek)

1984 Quantum Crytography (Bennett-Brassard)
“BB84”

1989 Quantum Key Distribution Device

1993 Teleportation (Bennett et. al.)

1994 Polynomial time factoring algorithm (Peter
Shor)
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1995 Quantum Error-correcting codes (Calderbank-Shor)

1996 Fault-tolerant quantum computation (Peter Shor)

1997 Fault-tolerant Quantum Computation with Constant
Error (Aharonov-Ben Or)
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Current Effort

Superconducting qubits:

I IBM: 133 qubits (Heron)

I Google: 72 qubits (Bristlecone)

I Rigetti 84 qubits (Ankaa-2)

I DWave: 5760 “qubits” (quantum annealer)

Ion Traps:

I Quantinuum (32 qubits)

I IonQ (32 qubits)

Photonics:

I USTC: 76 qubits (Jiuzhang)

I Xanadu: 24 qubits (X24)
Qubit count is not everything... equally and often more important is the computation
fidelity and connectivity...
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Future Directions

Quantum Advantage (or “Supremacy”) - Demonstrate a special purpose application whose
output cannot be simulated as fast using existing classical computers (50-100 qubits)
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Future Directions

Quantum Advantage (or “Supremacy”) - Demonstrate a special purpose
application whose output cannot be simulated as fast using existing classical
computers (around 100 qubits)

Approximate quantum computer - Demonstrate a useful application (quantum
chemistry, optimization, . . . ) with a quantum device which does not need full fault
tolerance (1K-5K qubits)

Universal fault-tolerant quantum computer - Run useful quantum algorithms with
exponential speed up over their classical counterparts (requires error correction)
(1M-5M qubits)

Large-scale, fault tolerant (logical) quantum system

Topological qubits

Find useful algorithms of notable quantum advantage
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Classical Bits

A bit is a fundamental unit of information used in classical computation and
digital communication

A classical bit can hold the binary value of either 0 or 1, yet not a combination of
the two

In information theory, one bit is typically defined as the information entropy of a
binary random variable that is 0 or 1 with equal probability (sometimes called
a Shannon, but you’ll never see that...)

The state of each classical bit, can be set independently of the state of other
classical bits

The state of a register of q classical bits, can be represented by a binary string in
{0, 1}q

This is a q-dimensional space

The dimension of the state-space grows linearly with the number of bits

UT Austin CSE 392 Apr, 2024 12 / 44



Classical Bits

Physical representation of the abstract notion of a bit entity, can be by:
I Stone tablet

I Holes in a punch card

I Varying levels of voltage or current

I Magnetic field

I Reflective vs. non-reflective spots on an optical
disk

I etc.
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Single Quantum Bit - Definition

Definition: Computational Basis States : A qubit has two special states, which
in Dirac’s ket notation are denoted by |0〉 and |1〉
Definition : Single Qubit Quantum State: The state of a single quantum bit
(aka qubit) can be represented as a unitary vector in a 2-dimensional complex
vector space, C2

α|0〉+ β|1〉
where

I α, β ∈ C
I |α|2 + |β|2 = 1
I |0〉 and |1〉 represent the basis states in C2 (They correspond to the classical states)

Consider the standard unitary basis for C2, we can denote |0〉 by

(
1
0

)
and |1〉 by(

0
1

)
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Quantum Bits - Physical Representation

Various propositions for a physical substrate to represent the abstract notion of a qubit

Classical

Relay

Vacuum tube

Transistor

Quantum

Rydberg atoms (Haroche) Ion traps (Blatt & Wineland)

Superconducting resonators (IBM) Quantum dots (Petta)
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Quantum Bits - Tensor Product Space (Recall)

Definition: Tensor Product Space: Let V and W be vector spaces over the
field F

Let {v1, ..., vm} ∈ V and {w1, ..., wn} ∈W be bases of the respective spaces

The tensor product V ⊗W induces a tensor product space over the field F ,
equipped with the bi-linear operation ⊗ : V ×Q→ V ⊗W
The vectors vi ⊗ wj ,∀i = 1, ...,m, ∀j = 1, ..., n forms a basis for the vector space
V ⊗W
Considering the standard bases for the vector spaces V and W , the tensor product
space becomes the Kronecker product
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Tensor Product Properties

Tensor Product Properties: Let A, B ∈ Cm×m and C,D ∈ Cn×n be linear
transformations on V and W respectively, v, u ∈ Cm, w, x ∈ Cn and a, b ∈ C. The
tensor product satisfies the following properties:

I (A⊗ C)(B ⊗D) = AB ⊗ CD
I (A⊗ C)(u⊗ w) = Au⊗ Cw
I (u+ v)⊗ w = u⊗ w + v ⊗ w
I u⊗ (x+ w) = u⊗ w + u⊗ x
I (A⊗ C)∗ = A∗ ⊗ C∗
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Hilbert Space

Definition: Hilbert Space:
I A Hilbert space is a vector space H with an inner product 〈x, y〉 = x∗y such that

the norm defined by
|x| =

√
〈x, x〉

turns H into a complete metric space
I For a complex inner product space, the inner product 〈x, y〉 associates a complex

number to each pair of elements x, y of H while satisfying the following properties:
F The inner product of a pair of elements is equal to the complex conjugate of the inner

product of the swapped elements:

〈y, x〉 = 〈x, y〉
F The inner product is linear in its arguments. For all complex numbers a ∈ C and b ∈ C,

〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉
F The inner product of an element with itself is positive definite:

〈x, x〉 ≥ 0

where the case of equality holds precisely when x = 0
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State Representation

Definition: Bra-Ket Notation:
I Given a Hilbert space H, a quantity ψ ∈ H enclosed in a ket, denoted |ψ〉, is a vector

and can be thought of as a column vector
I A quantity φ ∈ H∗ enclosed in a bra, denoted 〈φ|, is a vector in the dual space, and

can be thought of as a row vector that is the conjugate transpose of φ ∈ H
I An inner product of 〈φ| and |ψ〉 in the Hilbert space H is denoted by 〈φ|ψ〉

Notation: Standard Basis: The standard basis for C2, which is a Hilbert space, is

denoted by |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
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Bra-Ket Representation

The bra-ket notion of a state α|0〉+ β|1〉 is equivalent to the previously defined representation[
α
β

]
, where α and β are the amplitudes of the |0〉 and |1〉 states respectively

Basis vectors are orthogonal:

〈0|1〉 =
[

1 0
] [ 0

1

]
= 0

The state can be denoted as
|ψ〉 = α|0〉+ β|1〉

Bras and kets are essentially vectors (in dual spaces), and as such they obey the usual rules
for vectors in vector spaces:

γ(α|0〉+ β|1〉) = γα|0〉+ γβ|1〉 ⇐⇒ γ

[
α
β

]
=

[
γα
γβ

]
(α1|0〉+β1|1〉)+(α2|0〉+β2|1〉) = (α1+α2)|0〉+(β1+β2)|1〉) ⇐⇒

[
α1

β1

]
+

[
α2

β2

]
=

[
α1 + α2

β1 + β2

]
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Bloch Sphere Representation

State space of a single qubit can be represented geometri-
cally using the Bloch sphere representation

Most general pure state

|ψ〉 = eiγ(cos
θ

2
|0〉+ sin

θ

2
eiφ|1〉)

The Bloch sphere is a unit 2-sphere, with antipodal points
corresponding to a pair of mutually orthogonal state vec-
tors

North and south poles are typically chosen to correspond to
the standard basis vectors |0〉 and |1〉
Points on the surface of the sphere correspond to the pure
states of the system, whereas interior points correspond to
the mixed states (aka density matrices)

Unitary operations correspond to rotations on the Bloch
sphere
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Multiple Qubit State

The state of q qubits is a unit vector in (C2)⊗q = C2 ⊗ C2 · · · ⊗ C2︸ ︷︷ ︸
q times

Given the standard basis for each C2, a basis for (C2)⊗q is given by:

|0〉 = |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
q times

= |0Bq〉 = | 000 . . . 0︸ ︷︷ ︸
q−terms

〉

|1〉 = |0〉 ⊗ · · · ⊗ |1〉︸ ︷︷ ︸
q times

= |1Bq〉 = | 000 . . . 1︸ ︷︷ ︸
q−terms

〉

...

|2q − 1〉 = |1〉 ⊗ · · · ⊗ |1〉︸ ︷︷ ︸
q times

= |(2q − 1)Bq〉 = | 111 . . . 1︸ ︷︷ ︸
q−terms

〉

The state of q qubits can be represented as: |ψ〉 =
∑2q−1

j=0 αj |j〉, with αj ∈ C and∑2q−1
j=0 |αj |2 = 1
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Postulates: State Space

Quantum states are vectors in a Hilbert space, a complex vector space:

|ψ〉 =


z1
.
.
.
zn


The zi are complex numbers, called amplitudes

The inner product on the vector space is defined as

〈ψ′|ψ〉 =
[
z′∗1 . . . z′∗n

]

z1
.
.
.
zn

 =

n∑
i=1

z′∗i zi

States are usually normalized 〈ψ|ψ〉 = 1

Systems are combined by the tensor product on their Hilbert spaces: |Ψ〉12 = |ψ〉1 ⊗ |ψ〉2.
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Postulates: Unitarity

Evolution is Unitary: |ψ〉 → |ψ′〉 = U |ψ〉.
U is a unitary matrix U †U = I (the identity matrix).

Therefore U is its own inverse U−1 = U .

Rows and columns of U are orthonormal.
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Basis States and Superposition

Definition: Standard Basis State: q qubits are in a basis state if their state

|ψ〉 =
∑2q−1
j=0 αj |j〉 is such that exists an index k for which αk = 1 while αj = 0,∀j 6= k

Otherwise, the qubits are in a superposition state

Proposition: Basis State of Multiple Qubits: q qubits are in a (standard) basis state
if and only if each of the individual qubits is in a basis state

There is no classical equivalent to superposition as q classical bits are always in a basis
state, i.e., the q bits will always correspond exactly to one of the 2q binary strings
representing the numbers 0, . . . , 2q − 1

Superposition is one of the unique key features of quantum computers
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Product States and Entanglement - Definition

Definition : A quantum state |ψ〉 ∈ (C2)⊗q is a product state if there exist q
single-qubit quantum states |ψi〉 ∈ (C2), i = 1, . . . , q such that

|ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψq〉

Otherwise, it is an entangled state
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Outline of Quantum Computation

Single qubit gates
U2x2 |ψ′〉 = U |ψ2×2〉

Multiple qubit gates
U4x4{ {

|ψ′〉 = U |ψ4×4〉
Universality : Any unitary operation (on any number of qubits) can be
decomposed in terms of arbitrary one- and two-qubit gates
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Quantum Logic Gate

Logical gates are the fundamental building blocks of computation and
information processing tasks

Similarly to classical logical gate, a quantum logic gate is a mean to manipulate
the state of a qubit or a set of qubits

Examples of classical gates:
I NOT - the only single bit gate (unless identity counts...)
I AND
I OR
I XOR
I NAND

Quantum gate set is more elaborate, and subject to several conditions
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Quantum Logical Gates - Properties

Definition: Gate : Any operation applied by a quantum computer with q qubits,
also called a gate, is a unitary matrix in C2q×2q

Definition: Unitary operation : A matrix U is unitary if

U †U = UU † = I

Property: Norm Preserving : Unitary matrices are norm-preserving: given a
unitary matrix U and a vector |ψ〉

‖U |ψ〉‖ = ‖|ψ〉‖

State Evolution: For a q-qubit system, the quantum state is a unit vector
|ψ〉 ∈ C2q , a quantum operation is a unitary matrix U ∈ C2q×2q , and the
application of U onto the state |ψ〉 is the unit vector U |ψ〉 ∈ C2q
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Quantum Logical Gates - Properties

These definitions entail the following central properties
I Linearity : Quantum operations are linear
I Reversibility : Quantum operations are reversible

Reversibility : The classical model of computation is typically not reversible,
as memory can be erased, yet, [Bennett, 1973] shows that computations can be made
reversible by means of (a reasonable amount of) extra space

Turing Completeness : While these properties may initially seem to be extremely
restrictive, [Deutsch, 1985] shows that a universal quantum computer is
Turing-complete, implying that it can simulate any Turing-computable
function, given sufficient time and memory
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The Pauli Matrices

Pauli Matrices : 2× 2 matrices commonly used in quantum
computation

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
I =

[
1 0
0 1

]
The Pauli matrices form a basis for C2×2, they are Hermitian,
and they satisfy the relationship XY Z = iI

The identity operator I is sometimes omitted from the list
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Single Qubit Gates - Pauli

Pauli Gates : Perform π radians rotations about a principal axis upon a single qubit

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
I =

[
1 0
0 1

]
X and Y gates perform quantum equivalent to the classical NOT gate

I X gate maps |0〉 to |1〉 and |1〉 to |0〉 (bit-flip)
I Z gate flips the phase, leaves |0〉 unchanged, and maps |1〉 to −|1〉
I Y gate performs both a bit-flip and a phase-flip

The identity operator I, performs an idle operation on a single qubit
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Single Qubit Gates - Quantum Wire

Quantum Wire : Trivially maintains the state of a system

Equivalent to application of identity gates sequentially

In practice, non-trivial at all in actual quantum systems
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Single Qubit Gates - Hadamard Gate

Hadamard Gate : Rotates by π radians about the X + Z
axis (which is equivalent to π about X followed by π

2 over
the Y -axis)

Exchanges the Z and X axes

Maps classical states to equal-weighted superposition
states and vice versa

I |0〉 → |+〉 = |0〉+|1〉√
2

|+〉 = |0〉+|1〉√
2
→ |0〉

I |1〉 → |−〉 = |0〉−|1〉√
2

|−〉 = |0〉−|1〉√
2
→ |1〉

Represented by

H =
1√
2

[
1 1
1 −1

]
Self-inverse
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Multi Qubit Gates

Definition : Quantum Register : A set of qubits grouped together

Controlled gates act on 2 or more qubits, where one or more qubits act as a control
for some operation

Controlled NOT gate (or CNOT) acts on 2 qubits, and performs the NOT
operation on the target qubit only when the control qubit is |1〉, and otherwise leaves
it unchanged (essentially a reversible XOR)

CNOT = =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Controlled Phase (CPhase)

I Same idea but target qubit is flipped around the Z axis (instead of X)
I Equivalent to CNOT up to single-qubit gates
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Quantum Computation Model

Circuit : The input to the quantum computer is a circuit, comprising the
instructions as well as the data (unless QRAM is assumed)

On a high level a quantum computer performs 3 tasks:
I State Preparation : The state of the quantum computer is contained in a quantum

register, which is initialized in a predefined way
I State Evolution : The state evolves according to operations specified in advance

according to an algorithm
I Quantum Measurement : At the end of the computation, some information on the

state of the quantum register is obtained by means of a special operation, called a
measurement
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Quantum Computation Model

By convention, the initial quantum state of the quantum computing device is |0〉
The input to a quantum computing device is a circuit, or a set of circuits, which are
then combined in an algorithm: the algorithm may be self-contained in the
quantum computer, or it may involve an external, classical computing
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Quantum Measurement

Can we determine the state of a quantum system by measurement ?

No, in a classical computer we can simply read the state of the bits, whereas in a
quantum computer we do not have direct, unrestricted access to the quantum
state

Partial information regarding the quantum state can be gathered through a
measurement gate
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Quantum Measurement: Quantum Drill Sergeant

Given a quantum system (e.g. a qubit) in an unknown state |ψ〉 = α|e1〉+ β|e2〉, can
we determine the quantum state ?

No! quantum states are not directly observable - fundamental limitation of
QM

The drill sergeant asks ‘‘Private |ψ〉, are you |e1〉 or
|e2〉? ”

The poor private responds ‘‘I don’t know, I’m a
little bit of both”

“I asked you a question private!”

The terrified private conducts a quick experiment,
and says “I’m |e1〉 sir!”

Thereafter, he remain |e1〉...
Measurement collapses the state to a classical state,
and the amplitudes are gone
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Complete Quantum Measurement

Attempt to articulate the Quantum Measurement postulate : A quantum
measurement is described by an orthonormal basis |ej〉 for the state space

If the initial state of the system is |ψ〉 then we get outcome j with probability

Pr(j) = | 〈ej |ψ〉︸ ︷︷ ︸
amplitude

|2

The posterior state is |ej〉

If we expand |ψ〉 =
∑

i αi|ei〉, the amplitude αj can be found by the inner product

〈ej |ψ〉 = 〈ej |
∑
i

αi|ei〉 = δijαi = αj

Problem : Not general enough to describe partial measurement
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(Partial) Measurement

Quantum Measurement : A quantum measurement is described by a
spanning set of orthogonal subspaces Vj with corresponding projectors Πj (i.e.
ΠjΠk = 0 when j 6= k)

If the initial state of the system is |ψ〉 then we get outcome j with probability

Pr(j) = 〈ψ|Π†jΠj |ψ〉

The posterior state is
Πj |ψ〉√

Pr(j)

The measurement operators satisfy the completeness equation∑
j

Π†jΠj = I

The projectors to measure a single qubit k out of a register are

|0〉〈0|k ⊗ Ik̄ and |1〉〈1|k ⊗ Ik̄
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Quantum Measurement - Principle of Uncertainty

Principle of Uncertainty : Measurement disturbs the qubit. Following the
measurement the measured qubit becomes classical and the original state is no
longer recoverable

The state of the quantum system after a measurement collapses to a linear
combination of only those basis states that are consistent with the outcome of
the measurement

From an information theory standpoint, it implies that only finite amount of
classical information is storagable in a qubit
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Single Qubit Measurement

Single Qubit Measurement : Given a q-qubit quantum state |ψ〉 =
∑2q−1

j=0 αj |j〉, a

measurement gate on qubit k outputs 0 with probability
∑

j:(jBq)k=0 |αj |2 and 1 with

probability
∑

j:(jBq)k=1 |αj |2

That is summation over all j’s such that the binary representation of j is 0 or 1
respectively

Let x ∈ {0, 1} be the measured value. Following the measurement, the quantum state
becomes ∑

j:(jBq)k=x

αj√∑
j:(jBq)k=x |αj |2

|j〉

Multiple Qubit Measurement : Given a q-qubit quantum state |ψ〉 =
∑2q−1

j=0 αj |j〉,
measurement of the q qubits yields jBq with probability |αj |2, for j = 0, . . . , 2q − 1
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Questions
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