CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 25: Introduction to quantum computing I

Outline

(1) History of Quantum Computing
(2) Qubits
(3) Quantum Gates
(4) Quantum Measurements

Quantum Computing Dialog

- "The underlying physical laws necessary for the mathematical theory of a large part of physics ... are completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods ... should be developed..." [Dirac, 1929]
- "I'm not happy with all the analysis that go with just classical theory, because nature isn't classical, dammit.
And if you want to make a simulation of nature, you'd better make it quantum mechanical, and, by golly, it's a wonderful problem because it doesn't look so easy" [Feynman 1982]

1981 MIT-IBM Conference

History of Quantum Computing

Early History

- 1970 Quantum money (Stephen Wiesner). Unpublished until 1993
- 1981 Conference at MIT. Feynman reasoned that because quantum mechanics is hard to simulate, maybe a quantum computer would be good for simulating quantum mechanics
- 1982 No-cloning theorem (Wootters-Zurek)
- 1984 Quantum Crytography (Bennett-Brassard) "BB84"
- 1989 Quantum Key Distribution Device

- 1993 Teleportation (Bennett et. al.)
- 1994 Polynomial time factoring algorithm (Peter Shor)
- 1995 Quantum Error-correcting codes (Calderbank-Shor)
- 1996 Fault-tolerant quantum computation (Peter Shor)
- 1997 Fault-tolerant Quantum Computation with Constant Error (Aharonov-Ben Or)

Current Effort

- Superconducting qubits:
- IBM: 133 qubits (Heron)
- Google: 72 qubits (Bristlecone)
- Rigetti 84 qubits (Ankaa-2)
- DWave: 5760 "qubits" (quantum annealer)
- Ion Traps:
- Quantinuum (32 qubits)
- IonQ (32 qubits)
- Photonics:
- USTC: 76 qubits (Jiuzhang)

- Xanadu: 24 qubits (X24)
- Qubit count is not everything... equally and often more important is the computation fidelity and connectivity...

Future Directions

- Quantum Advantage (or "Supremacy") - Demonstrate a special purpose application whose output cannot be simulated as fast using existing classical computers (50-100 qubits)

Future Directions

- Quantum Advantage (or "Supremacy") - Demonstrate a special purpose application whose output cannot be simulated as fast using existing classical computers (50-100 qubits)
naw nature
Article | Published: 23 October 2019
Quantum supremacy using a
programmable superconducting processor
Frank Arute, Kunal Arya, [...] John M. Martinis \square
Nature 574, 505-510(2019) | Cite this article
661k Accesses $\mathbf{2 6}$ Citations | $\mathbf{6 0 1 6}$ Altmetric | Metrics

Abstract

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor ${ }^{1}$. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits ${ }^{2,3,5,5,6,7}$ to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 2^{53} (about 10^{16}). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy ${ }^{8,9,10,11,12,13,14}$ for this specific computational task, heralding a much-anticipated computing

Future Directions

- Quantum Advantage (or "Supremacy") - Demonstrate a special purpose application whose output cannot be simulated as fast using existing classical computers (50-100 qubits) namv nature

Article | Published: 23 October 2019
Quantum supremacy using a programmable superconducting processor
Frank Arute, Kunal Arya, [...] John M. Martinis $\bar{\square}$
Nature 574, 505-510(2019) | Cite this article
661k Accesses 26 Citations 6016 Altmetric | Metrics

Abstract

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor ${ }^{1}$. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits ${ }^{2,3,5,5,6,7}$ to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 2^{53} (about 10^{16}). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy ${ }^{8,9,10,11,12,13,14}$ for this specific computational task, heralding a much-anticipated computing

UT Austin

Future Directions

- Quantum Advantage (or "Supremacy") - Demonstrate a special purpose application whose output cannot be simulated as fast using existing classical computers (around 100 qubits)
- Approximate quantum computer - Demonstrate a useful application (quantum chemistry, optimization, ...) with a quantum device which does not need full fault tolerance (1K-5K qubits)
- Universal fault-tolerant quantum computer - Run useful quantum algorithms with exponential speed up over their classical counterparts (requires error correction) (1M-5M qubits)
- Large-scale, fault tolerant (logical) quantum system
- Topological qubits
- Find useful algorithms of notable quantum advantage

Classical Bits

- A bit is a fundamental unit of information used in classical computation and digital communication
- A classical bit can hold the binary value of either 0 or 1 , yet not a combination of the two
- In information theory, one bit is typically defined as the information entropy of a binary random variable that is 0 or 1 with equal probability (sometimes called a Shannon, but you'll never see that...)
- The state of each classical bit, can be set independently of the state of other classical bits
- The state of a register of q classical bits, can be represented by a binary string in $\{0,1\}^{q}$
- This is a q-dimensional space
- The dimension of the state-space grows linearly with the number of bits

Classical Bits

- Physical representation of the abstract notion of a bit entity, can be by:
- Stone tablet
- Holes in a punch card
- Varying levels of voltage or current
- Magnetic field
- Reflective vs. non-reflective spots on an optical disk

Varing led of

- etc.

Single Quantum Bit - Definition

- Definition: Computational Basis States: A qubit has two special states, which in Dirac's ket notation are denoted by $|0\rangle$ and $|1\rangle$
- Definition : Single Qubit Quantum State: The state of a single quantum bit (aka qubit) can be represented as a unitary vector in a 2 -dimensional complex vector space, \mathbb{C}^{2}

$$
\alpha|0\rangle+\beta|1\rangle
$$

where

- $\alpha, \beta \in \mathbb{C}$
- $|\alpha|^{2}+|\beta|^{2}=1$
- $|0\rangle$ and $|1\rangle$ represent the basis states in \mathbb{C}^{2} (They correspond to the classical states)
- Consider the standard unitary basis for \mathbb{C}^{2}, we can denote $|0\rangle$ by $\binom{1}{0}$ and $|1\rangle$ by $\binom{0}{1}$

Quantum Bits - Physical Representation

- Various propositions for a physical substrate to represent the abstract notion of a qubit

Classical

Relay

Vacuum tube

Transistor
UT Austin

Quantum

Superconducting resonators (IBM) Quantum dots (Petta)

Quantum Bits - Tensor Product Space (Recall)

- Definition: Tensor Product Space: Let V and W be vector spaces over the field F
- Let $\left\{v_{1}, \ldots, v_{m}\right\} \in V$ and $\left\{w_{1}, \ldots, w_{n}\right\} \in W$ be bases of the respective spaces
- The tensor product $V \otimes W$ induces a tensor product space over the field F, equipped with the bi-linear operation $\otimes: V \times Q \rightarrow V \otimes W$
- The vectors $v_{i} \otimes w_{j}, \forall i=1, \ldots, m, \forall j=1, \ldots, n$ forms a basis for the vector space $V \otimes W$
- Considering the standard bases for the vector spaces V and W, the tensor product space becomes the Kronecker product

Tensor Product Properties

- Tensor Product Properties: Let $A, B \in \mathbb{C}^{m \times m}$ and $C, D \in \mathbb{C}^{n \times n}$ be linear transformations on V and W respectively, $v, u \in \mathbb{C}^{m}, w, x \in \mathbb{C}^{n}$ and $a, b \in \mathbb{C}$. The tensor product satisfies the following properties:
- $(A \otimes C)(B \otimes D)=A B \otimes C D$
- $(A \otimes C)(u \otimes w)=A u \otimes C w$
- $(u+v) \otimes w=u \otimes w+v \otimes w$
- $u \otimes(x+w)=u \otimes w+u \otimes x$
- $(A \otimes C)^{*}=A^{*} \otimes C^{*}$

Hilbert Space

- Definition: Hilbert Space:

- A Hilbert space is a vector space \mathbb{H} with an inner product $\langle x, y\rangle=x^{*} y$ such that the norm defined by

$$
|x|=\sqrt{\langle x, x\rangle}
$$

turns \mathbb{H} into a complete metric space

- For a complex inner product space, the inner product $\langle x, y\rangle$ associates a complex number to each pair of elements x, y of \mathbb{H} while satisfying the following properties:
\star The inner product of a pair of elements is equal to the complex conjugate of the inner product of the swapped elements:

$$
\langle y, x\rangle=\overline{\langle x, y\rangle}
$$

\star The inner product is linear in its arguments. For all complex numbers $a \in \mathbb{C}$ and $b \in \mathbb{C}$,

$$
\left\langle a x_{1}+b x_{2}, y\right\rangle=a\left\langle x_{1}, y\right\rangle+b\left\langle x_{2}, y\right\rangle
$$

\star The inner product of an element with itself is positive definite:

$$
\langle x, x\rangle \geq 0
$$

where the case of equality holds precisely when $x=0$

State Representation

- Definition: Bra-Ket Notation:

- Given a Hilbert space \mathbb{H}, a quantity $\psi \in \mathbb{H}$ enclosed in a ket, denoted $|\psi\rangle$, is a vector and can be thought of as a column vector
- A quantity $\phi \in \mathbb{H}^{*}$ enclosed in a bra, denoted $\langle\phi|$, is a vector in the dual space, and can be thought of as a row vector that is the conjugate transpose of $\phi \in \mathbb{H}$
- An inner product of $\langle\phi|$ and $|\psi\rangle$ in the Hilbert space \mathbb{H} is denoted by $\langle\phi \mid \psi\rangle$
- Notation: Standard Basis: The standard basis for \mathbb{C}^{2}, which is a Hilbert space, is denoted by $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$

Bra-Ket Representation

- The bra-ket notion of a state $\alpha|0\rangle+\beta|1\rangle$ is equivalent to the previously defined representation $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$, where α and β are the amplitudes of the $|0\rangle$ and $|1\rangle$ states respectively
- Basis vectors are orthogonal:

$$
\langle 0 \mid 1\rangle=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=0
$$

- The state can be denoted as

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

- Bras and kets are essentially vectors (in dual spaces), and as such they obey the usual rules for vectors in vector spaces:

$$
\begin{gathered}
\gamma(\alpha|0\rangle+\beta|1\rangle)=\gamma \alpha|0\rangle+\gamma \beta|1\rangle \Longleftrightarrow \gamma\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{l}
\gamma \alpha \\
\gamma \beta
\end{array}\right] \\
\left.\left(\alpha_{1}|0\rangle+\beta_{1}|1\rangle\right)+\left(\alpha_{2}|0\rangle+\beta_{2}|1\rangle\right)=\left(\alpha_{1}+\alpha_{2}\right)|0\rangle+\left(\beta_{1}+\beta_{2}\right)|1\rangle\right) \Longleftrightarrow\left[\begin{array}{l}
\alpha_{1} \\
\beta_{1}
\end{array}\right]+\left[\begin{array}{c}
\alpha_{2} \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{l}
\alpha_{1}+\alpha_{2} \\
\beta_{1}+\beta_{2}
\end{array}\right]
\end{gathered}
$$

Bloch Sphere Representation

- State space of a single qubit can be represented geometrically using the Bloch sphere representation
- Most general pure state

$$
|\psi\rangle=e^{i \gamma}\left(\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2} e^{i \phi}|1\rangle\right)
$$

- The Bloch sphere is a unit 2-sphere, with antipodal points corresponding to a pair of mutually orthogonal state vectors
- North and south poles are typically chosen to correspond to the standard basis vectors $|0\rangle$ and $|1\rangle$
- Points on the surface of the sphere correspond to the pure states of the system, whereas interior points correspond to the mixed states (aka density matrices)
- Unitary operations correspond to rotations on the Bloch
 sphere

Multiple Qubit State

- The state of q qubits is a unit vector in $\left(\mathbb{C}^{2}\right)^{\otimes q}=\underbrace{\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cdots \otimes \mathbb{C}^{2}}_{q \text { times }}$
- Given the standard basis for each \mathbb{C}^{2}, a basis for $\left(\mathbb{C}^{2}\right)^{\otimes q}$ is given by:

$$
\begin{gathered}
|0\rangle=\underbrace{|0\rangle \otimes \cdots \otimes|0\rangle}_{q \text { times }}=\left|0 B_{q}\right\rangle=\quad|\underbrace{000 \ldots 0}_{q-\text { terms }}\rangle \\
|1\rangle=\underbrace{|0\rangle \otimes \cdots \otimes|1\rangle}_{q \text { times }}=\left|1 B_{q}\right\rangle=\quad \underbrace{000 \ldots 1}_{q-\text { terms }}\rangle \\
\vdots \\
\left|2^{q}-1\right\rangle=\underbrace{|1\rangle \otimes \cdots \otimes|1\rangle}_{q \text { times }}=\left|\left(2^{q}-1\right) B_{q}\right\rangle=|\underbrace{111 \ldots 1}_{q \text {-terms }}\rangle
\end{gathered}
$$

- The state of q qubits can be represented as: $|\psi\rangle=\sum_{j=0}^{2^{q}-1} \alpha_{j}|j\rangle$, with $\alpha_{j} \in \mathbb{C}$ and $\sum_{j=0}^{2^{q}-1}\left|\alpha_{j}\right|^{2}=1$

Postulates: State Space

- Quantum states are vectors in a Hilbert space, a complex vector space:

$$
|\psi\rangle=\left[\begin{array}{c}
z_{1} \\
\cdot \\
\cdot \\
\cdot \\
z_{n}
\end{array}\right]
$$

- The z_{i} are complex numbers, called amplitudes
- The inner product on the vector space is defined as

$$
\left\langle\psi^{\prime} \mid \psi\right\rangle=\left[\begin{array}{llll}
z_{1}^{\prime *} & \cdot & \cdot & z_{n}^{\prime *}
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
\cdot \\
\cdot \\
\cdot \\
z_{n}
\end{array}\right]=\sum_{i=1}^{n} z_{i}^{\prime *} z_{i}
$$

- States are usually normalized $\langle\psi \mid \psi\rangle=1$
- Systems are combined by the tensor product on their Hilbert spaces: $|\Psi\rangle_{12}=|\psi\rangle_{1} \otimes|\psi\rangle_{2}$.

Postulates: Unitarity

- Evolution is Unitary: $|\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle=U|\psi\rangle$.
- U is a unitary matrix $U^{\dagger} U=I$ (the identity matrix).
- Therefore U is its own inverse $U^{-1}=U$.
- Rows and columns of U are orthonormal.

Basis States and Superposition

- Definition: Standard Basis State: q qubits are in a basis state if their state $|\psi\rangle=\sum_{j=0}^{2^{q}-1} \alpha_{j}|j\rangle$ is such that exists an index k for which $\alpha_{k}=1$ while $\alpha_{j}=0, \forall j \neq k$
- Otherwise, the qubits are in a superposition state

Proposition: Basis State of Multiple Qubits: q qubits are in a (standard) basis state if and only if each of the individual qubits is in a basis state

- There is no classical equivalent to superposition as q classical bits are always in a basis state, i.e., the q bits will always correspond exactly to one of the 2^{q} binary strings representing the numbers $0, \ldots, 2^{q}-1$
- Superposition is one of the unique key features of quantum computers

SGHRÖDINGER'S GAT IS
 AIEEATE

Product States and Entanglement - Definition

- Definition : A quantum state $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes q}$ is a product state if there exist q single-qubit quantum states $\left|\psi_{i}\right\rangle \in\left(\mathbb{C}^{2}\right), i=1, \ldots, q$ such that

$$
|\psi\rangle=\left|\psi_{1}\right\rangle \otimes \cdots \otimes\left|\psi_{q}\right\rangle
$$

- Otherwise, it is an entangled state

Outline of Quantum Computation

- Single qubit gates

- Multiple qubit gates

$$
\left|\psi^{\prime}\right\rangle=U\left|\psi_{4 \times 4}\right\rangle
$$

- Universality : Any unitary operation (on any number of qubits) can be decomposed in terms of arbitrary one- and two-qubit gates

Quantum Logic Gate

- Logical gates are the fundamental building blocks of computation and information processing tasks
- Similarly to classical logical gate, a quantum logic gate is a mean to manipulate the state of a qubit or a set of qubits
- Examples of classical gates:
- NOT - the only single bit gate (unless identity counts...)
- AND
- OR
- XOR
- NAND
- Quantum gate set is more elaborate, and subject to several conditions

Quantum Logical Gates - Properties

- Definition: Gate : Any operation applied by a quantum computer with q qubits, also called a gate, is a unitary matrix in $\mathbb{C}^{2^{q} \times 2^{q}}$
- Definition: Unitary operation : A matrix U is unitary if

$$
U^{\dagger} U=U U^{\dagger}=I
$$

- Property: Norm Preserving : Unitary matrices are norm-preserving: given a unitary matrix U and a vector $|\psi\rangle$

$$
\| U|\psi\rangle\|=\||\psi\rangle \|
$$

- State Evolution: For a q-qubit system, the quantum state is a unit vector $|\psi\rangle \in \mathbb{C}^{2^{q}}$, a quantum operation is a unitary matrix $U \in \mathbb{C}^{2^{q} \times 2^{q}}$, and the application of U onto the state $|\psi\rangle$ is the unit vector $U|\psi\rangle \in \mathbb{C}^{2^{q}}$

Quantum Logical Gates - Properties

- These definitions entail the following central properties
- Linearity : Quantum operations are linear
- Reversibility : Quantum operations are reversible
- Reversibility : The classical model of computation is typically not reversible, as memory can be erased, yet, [Bennett, 1973] shows that computations can be made reversible by means of (a reasonable amount of) extra space
- Turing Completeness : While these properties may initially seem to be extremely restrictive, [Deutsch, 1985] shows that a universal quantum computer is Turing-complete, implying that it can simulate any Turing-computable function, given sufficient time and memory

The Pauli Matrices

- Pauli Matrices : 2×2 matrices commonly used in quantum computation

$$
\begin{array}{ll}
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \\
Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] & I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{array}
$$

- The Pauli matrices form a basis for $\mathbb{C}^{2 \times 2}$, they are Hermitian, and they satisfy the relationship $X Y Z=i I$

- The identity operator I is sometimes omitted from the list

Single Qubit Gates - Pauli

- Pauli Gates : Perform π radians rotations about a principal axis upon a single qubit

$$
\begin{array}{ll}
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \\
Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] & I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{array}
$$

- X and Y gates perform quantum equivalent to the classical NOT gate
- X gate maps $|0\rangle$ to $|1\rangle$ and $|1\rangle$ to $|0\rangle$ (bit-flip)
- Z gate flips the phase, leaves $|0\rangle$ unchanged, and maps $|1\rangle$ to $-|1\rangle$
- Y gate performs both a bit-flip and a phase-flip
- The identity operator I, performs an idle operation on a single qubit

Single Qubit Gates - Quantum Wire

- Quantum Wire : Trivially maintains the state of a system

- Equivalent to application of identity gates sequentially
- In practice, non-trivial at all in actual quantum systems

Single Qubit Gates - Hadamard Gate

- Hadamard Gate: Rotates by π radians about the $X+Z$ axis (which is equivalent to π about X followed by $\frac{\pi}{2}$ over the Y-axis)
- Exchanges the Z and X axes
- Maps classical states to equal-weighted superposition states and vice versa
$-|0\rangle \rightarrow|+\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}} \quad|+\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}} \rightarrow|0\rangle$
$-|1\rangle \rightarrow|-\rangle=\frac{|0\rangle-|1\rangle}{\sqrt{2}} \quad|-\rangle=\frac{|0\rangle-|1\rangle}{\sqrt{2}} \rightarrow|1\rangle$

- Represented by

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

$\frac{1}{\sqrt{2}}\left|>+\frac{1}{2}\right| \Rightarrow$

- Self-inverse

Multi Qubit Gates

- Definition : Quantum Register : A set of qubits grouped together
- Controlled gates act on 2 or more qubits, where one or more qubits act as a control for some operation
- Controlled NOT gate (or CNOT) acts on 2 qubits, and performs the NOT operation on the target qubit only when the control qubit is $|1\rangle$, and otherwise leaves it unchanged (essentially a reversible XOR)

$$
\mathrm{CNOT}=\backsim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- Controlled Phase (CPhase)
- Same idea but target qubit is flipped around the Z axis (instead of X)
- Equivalent to $C N O T$ up to single-qubit gates

Quantum Computation Model

- Circuit : The input to the quantum computer is a circuit, comprising the instructions as well as the data (unless QRAM is assumed)
- On a high level a quantum computer performs 3 tasks:
- State Preparation: The state of the quantum computer is contained in a quantum register, which is initialized in a predefined way
- State Evolution: The state evolves according to operations specified in advance according to an algorithm
- Quantum Measurement : At the end of the computation, some information on the state of the quantum register is obtained by means of a special operation, called a measurement

Quantum Computation Model

- By convention, the initial quantum state of the quantum computing device is $|0\rangle$
- The input to a quantum computing device is a circuit, or a set of circuits, which are then combined in an algorithm: the algorithm may be self-contained in the quantum computer, or it may involve an external, classical computing

Quantum Measurement

- Can we determine the state of a quantum system by measurement ?

Quantum Measurement

- Can we determine the state of a quantum system by measurement ?
- No, in a classical computer we can simply read the state of the bits, whereas in a quantum computer we do not have direct, unrestricted access to the quantum state
- Partial information regarding the quantum state can be gathered through a measurement gate

Quantum Measurement: Quantum Drill Sergeant

- Given a quantum system (e.g. a qubit) in an unknown state $|\psi\rangle=\alpha\left|e_{1}\right\rangle+\beta\left|e_{2}\right\rangle$, can we determine the quantum state ?

Quantum Measurement: Quantum Drill Sergeant

- Given a quantum system (e.g. a qubit) in an unknown state $|\psi\rangle=\alpha\left|e_{1}\right\rangle+\beta\left|e_{2}\right\rangle$, can we determine the quantum state ?
- No! quantum states are not directly observable - fundamental limitation of QM

Quantum Measurement: Quantum Drill Sergeant

- Given a quantum system (e.g. a qubit) in an unknown state $|\psi\rangle=\alpha\left|e_{1}\right\rangle+\beta\left|e_{2}\right\rangle$, can we determine the quantum state ?
- No! quantum states are not directly observable - fundamental limitation of QM

- The drill sergeant asks "Private $|\psi\rangle$, are you $\left|e_{1}\right\rangle$ or $\left|e_{2}\right\rangle$?"

Quantum Measurement: Quantum Drill Sergeant

- Given a quantum system (e.g. a qubit) in an unknown state $|\psi\rangle=\alpha\left|e_{1}\right\rangle+\beta\left|e_{2}\right\rangle$, can we determine the quantum state ?
- No! quantum states are not directly observable - fundamental limitation of QM

- The drill sergeant asks "Private $|\psi\rangle$, are you $\left|e_{1}\right\rangle$ or $\left|e_{2}\right\rangle$?"
- The poor private responds "I don't know, I'm a little bit of both"

Quantum Measurement: Quantum Drill Sergeant

- Given a quantum system (e.g. a qubit) in an unknown state $|\psi\rangle=\alpha\left|e_{1}\right\rangle+\beta\left|e_{2}\right\rangle$, can we determine the quantum state ?
- No! quantum states are not directly observable - fundamental limitation of QM

- The drill sergeant asks "Private $|\psi\rangle$, are you $\left|e_{1}\right\rangle$ or $\left|e_{2}\right\rangle$?"
- The poor private responds "I don't know, I'm a little bit of both"
- "I asked you a question private!"
- The terrified private conducts a quick experiment, and says "I'm $\left|e_{1}\right\rangle$ sir!"
- Thereafter, he remain $\left|e_{1}\right\rangle \ldots$
- Measurement collapses the state to a classical state, and the amplitudes are gone

Complete Quantum Measurement

- Attempt to articulate the Quantum Measurement postulate: A quantum measurement is described by an orthonormal basis $\left|e_{j}\right\rangle$ for the state space
- If the initial state of the system is $|\psi\rangle$ then we get outcome j with probability

$$
\operatorname{Pr}(j)=|\underbrace{\left\langle e_{j} \mid \psi\right\rangle}_{\text {amplitude }}|^{2}
$$

- The posterior state is $\left|e_{j}\right\rangle$
- If we expand $|\psi\rangle=\sum_{i} \alpha_{i}\left|e_{i}\right\rangle$, the amplitude α_{j} can be found by the inner product

$$
\left\langle e_{j} \mid \psi\right\rangle=\left\langle e_{j}\right| \sum_{i} \alpha_{i}\left|e_{i}\right\rangle=\delta_{i j} \alpha_{i}=\alpha_{j}
$$

- Problem : Not general enough to describe partial measurement

(Partial) Measurement

- Quantum Measurement : A quantum measurement is described by a spanning set of orthogonal subspaces V_{j} with corresponding projectors Π_{j} (i.e. $\Pi_{j} \Pi_{k}=0$ when $\left.j \neq k\right)$
- If the initial state of the system is $|\psi\rangle$ then we get outcome j with probability

$$
\operatorname{Pr}(j)=\langle\psi| \Pi_{j}^{\dagger} \Pi_{j}|\psi\rangle
$$

- The posterior state is $\frac{\Pi_{j}|\psi\rangle}{\sqrt{\operatorname{Pr}(j)}}$
- The measurement operators satisfy the completeness equation

$$
\sum_{j} \Pi_{j}^{\dagger} \Pi_{j}=I
$$

- The projectors to measure a single qubit k out of a register are

$$
|0\rangle\left\langle\left. 0\right|_{k} \otimes I_{\bar{k}} \quad \text { and } \quad \mid 1\right\rangle\left\langle\left. 1\right|_{k} \otimes I_{\bar{k}}\right.
$$

Quantum Measurement - Principle of Uncertainty

- Principle of Uncertainty : Measurement disturbs the qubit. Following the measurement the measured qubit becomes classical and the original state is no longer recoverable
- The state of the quantum system after a measurement collapses to a linear combination of only those basis states that are consistent with the outcome of the measurement
- From an information theory standpoint, it implies that only finite amount of classical information is storagable in a qubit

Single Qubit Measurement

- Single Qubit Measurement : Given a q-qubit quantum state $|\psi\rangle=\sum_{j=0}^{2^{q}-1} \alpha_{j}|j\rangle$, a measurement gate on qubit k outputs 0 with probability $\sum_{j:\left(j B_{q}\right)_{k}=0}\left|\alpha_{j}\right|^{2}$ and 1 with probability $\sum_{j:\left(j B_{q}\right)_{k}=1}\left|\alpha_{j}\right|^{2}$
- That is summation over all j 's such that the binary representation of j is 0 or 1 respectively
- Let $x \in\{0,1\}$ be the measured value. Following the measurement, the quantum state becomes

$$
\sum_{j:\left(j B_{q}\right)_{k}=x} \frac{\alpha_{j}}{\sqrt{\sum_{j:\left(j B_{q}\right)_{k}=x}\left|\alpha_{j}\right|^{2}}}|j\rangle
$$

- Multiple Qubit Measurement : Given a q-qubit quantum state $|\psi\rangle=\sum_{j=0}^{2^{q}-1} \alpha_{j}|j\rangle$, measurement of the q qubits yields $j B_{q}$ with probability $\left|\alpha_{j}\right|^{2}$, for $j=0, \ldots, 2^{q}-1$

Questions

