CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 20: Randomized Tucker, TensorSketch

Outline

(1) Randomized Tucker
(2) TensorSketch
(3) Tensor Train Decomposition

Recall: Tucker Decomposition

- The Tucker decomposition of a three-mode tensor $\mathcal{X} \in \mathbb{R}^{m \times n \times p}$ is given by:

$$
\mathcal{X} \approx \mathcal{G} \times_{1} \boldsymbol{A} \times_{2} \boldsymbol{B} \times_{3} \boldsymbol{C}=: \llbracket \mathcal{G} ; \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C} \rrbracket,
$$

where $\mathcal{G} \in \mathbb{R}^{k_{1} \times k_{2} \times k_{3}}$ is called the core tensor and $\boldsymbol{A} \in \mathbb{R}^{m \times k_{1}}, \boldsymbol{B} \in \mathbb{R}^{n \times k_{2}}$ and $\boldsymbol{C} \in \mathbb{R}^{p \times k_{3}}$ are factor matrices.

- Elementwise:

$$
x_{i j \ell} \approx \sum_{q=1}^{k_{1}} \sum_{r=1}^{k_{2}} \sum_{s=1}^{k_{3}} g_{q r s} d_{i q} b_{j r} c_{\ell s} \text { for } i \in[m], j \in[n], \ell \in[p]
$$

HOSVD Algorithm

Inputs: Tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$, ranks $\left\{r_{1}, \ldots, r_{d}\right\} \in \mathbb{N}$.
(1) for $\ell=1, \ldots, d$ do
(2) $\boldsymbol{U}^{(\ell)} \leftarrow r_{\ell}$ leading left singular vectors of $\boldsymbol{A}_{(\ell)}$
(3) end for
(1) $\mathcal{G}=\mathcal{A} \times{ }_{1} \boldsymbol{U}^{(1) \top} \times_{2} \boldsymbol{U}^{(2) \top} \cdots \times_{d} \boldsymbol{U}^{(d) \top}$
© return $\mathcal{G}, \boldsymbol{U}^{(1)}, \boldsymbol{U}^{(2)}, \cdots, \boldsymbol{U}^{(d)}$

HOOI Algorithm

Inputs: Tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$, ranks $\left\{r_{1}, \ldots, r_{d}\right\} \in \mathbb{N}$.
(1) Initialize $\boldsymbol{U}^{(\ell)} \in \mathbb{R}^{n_{\ell} \times r_{\ell}}$ for all $\ell \in[d]$
(2) repeat
(3) for $\ell=1, \ldots, d$ do
(1) $\mathcal{Y}=\mathcal{A} \times_{1} \boldsymbol{U}^{(1) \top} \cdots \times_{\ell-1} \boldsymbol{U}^{(\ell-1) \top} \times_{\ell+1} \boldsymbol{U}^{(\ell+1) \top} \cdots \times_{d} \boldsymbol{U}^{(d) \top}$
(0) $\boldsymbol{U}^{(\ell)} \leftarrow r_{\ell}$ leading left singular vectors of $\boldsymbol{Y}_{(\ell)}$
(6) end for
(3) until fit ceases to improve or maximum iterations exhausted
(8) $\mathcal{G}=\mathcal{A} \times{ }_{1} \boldsymbol{U}^{(1) \top} \times{ }_{2} \boldsymbol{U}^{(2) \top} \cdots \times_{d} \boldsymbol{U}^{(d) \top}$
© return $\mathcal{G}, \boldsymbol{U}^{(1)}, \boldsymbol{U}^{(2)}, \cdots, \boldsymbol{U}^{(d)}$

Sequential Truncated HOSVD (ST-HOSVD)

- Choose an ordering in which to visit the modes
- Once left singular vectors for a mode are computed, immediately project. Then only operate on the projected core result
- Example (ordering $1,2,3$ and truncation $\left(k_{1}, k_{2}, k_{3}\right)$):
- Compute $\boldsymbol{U}^{(1)}$ from SVD of $\mathcal{A}_{(1)}$
- Compute $\boldsymbol{U}^{(2)}$ from SVD of $\widehat{\mathcal{C}}:=\mathcal{A} \times 1\left(\boldsymbol{U}^{(1)}\right)^{\top}$
- Compute $\boldsymbol{U}^{(3)}$ from SVD of $\tilde{\mathcal{C}}:=\widehat{\mathcal{C}} \times{ }_{2}\left(\boldsymbol{U}^{(2)}\right)^{\top}$
- $\mathcal{C}=\tilde{\mathcal{C}} \times{ }_{3}\left(\boldsymbol{U}^{(3)}\right)^{\top}$
- Now let $\mathcal{A} \approx\left[\mathcal{C} ; \mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \mathbf{U}^{(3)}\right]$. Worst case error bound is same as for tr-HOSVD.
- Computing on successively smaller objects, more efficient; often near-comparable, or better, behavior than tr-HOSVD!

Towards Randomized Tucker

Both HOSVD and STHOSVD rely on matrix SVDs. The obvious first choice for randomization - use calls to matrix routine randSVD.

Matrix RandSVD: Given $\mathbf{X} \in \mathbb{R}^{m \times n}$, target rank r, oversampling parameter $p \geq 0$ such that $r+p \leq \min \{m, n\}$,

- Draw Gaussian random matrix $\Omega \in \mathbb{R}^{n \times(r+p)}$
- Multiply $\mathbf{Y} \leftarrow \mathbf{X} \Omega$
- Thin QR factorization $\mathbf{Y}=\mathbf{Q R}$
- Form $\mathbf{B} \leftarrow \mathbf{Q}^{\top} \mathbf{X}$
- Calculate thin SVD B $=\widehat{\mathbf{U}}_{\mathbf{B}} \widehat{\mathbf{S}} \widehat{\mathbf{V}}^{\top}$
- Form $\widehat{\mathbf{U}} \leftarrow \mathbf{Q}\left(\widehat{\mathbf{U}}_{\mathbf{B}}\right)_{:, 1: r}$
- Compress $\widehat{\mathbf{S}} \leftarrow \widehat{\mathbf{S}}_{1: r, 1: r}$, and $\widehat{\mathbf{V}} \leftarrow \widehat{\mathbf{V}}_{:, 1: r}$, so $\mathbf{X}=\widehat{\mathbf{U}} \widehat{\mathbf{S}} \widehat{\mathbf{V}}$

Halko, Martinsson, Tropp, SIREV, 2011

Towards Randomized Tucker

Both HOSVD and STHOSVD rely on matrix SVDs. The obvious first choice for randomization - use calls to matrix routine randSVD.

Given: $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}} ;$ target rank vector $\mathbf{r} \in \mathbb{N}^{d} ; \quad$ oversampling parameter $p \geq 0$

$$
j=1: d
$$

- Draw random Gaussian matrix $\boldsymbol{\Omega}_{j} \in \mathbb{R}^{\Pi_{i \neq j} n_{i} \times\left(r_{j}+p\right)}$
- $[\widehat{\mathbf{U}}, \widehat{\boldsymbol{\Sigma}}, \widehat{\mathbf{V}}]=\operatorname{RandSVD}\left(\mathcal{A}_{(j)}, r_{j}, p, \boldsymbol{\Omega}_{j}\right)$
- Set $\mathbf{U}^{(j)} \leftarrow \widehat{\mathbf{U}}$

Form $\mathcal{C}=\mathcal{A} \times{ }_{j=1}^{d}\left(\mathbf{U}^{(j)}\right)^{\top}$
G. Zhou, A. Cichocki, and S. Xie, Decomposition of Big Tensors with Low Multilinear Rank, arXiv 1412.1885, 2014

Result ${ }^{1}$

The output (with minor assumptions) satisfies

Theorem (Randomized HOSVD)

$$
\mathbb{E}_{\left\{\Omega_{k}\right\}_{k=1}^{d}}\|\mathcal{A}-\widehat{\mathcal{A}}\|_{F} \leq\left(d+\frac{\sum_{j=1}^{d} r_{j}}{p-1}\right)^{1 / 2}\left\|\mathcal{A}-\widehat{\mathcal{A}}_{\text {opt }}\right\|_{F} .
$$

special cases: Let $r=\max _{1 \leq j \leq d} r_{j}$. Then, if $p=r+1$,

$$
\mathbb{E}_{\left\{\boldsymbol{\Omega}_{k}\right\}_{k=1}^{d}}\|\mathcal{A}-\widehat{\mathcal{A}}\|_{F} \leq \sqrt{2}\left\|\mathcal{A}-\widehat{\mathcal{A}}_{\mathrm{HOSVD}}\right\|_{F} \leq \sqrt{2 d}\left\|\mathcal{A}-\widehat{\mathcal{A}}_{o p t}\right\|_{F}
$$

If $p=\left\lceil\frac{r}{\epsilon}\right\rceil+1$ for some $\epsilon>0$,

$$
\mathbb{E}_{\left\{\boldsymbol{\Omega}_{k}\right\}_{k=1}^{d}}\|\mathcal{A}-\widehat{\mathcal{A}}\|_{F} \leq \sqrt{1+\epsilon}\left\|\mathcal{A}-\widehat{\mathcal{A}}_{\mathrm{HOSVD}}\right\|_{F} \leq \sqrt{d(1+\epsilon)}\left\|\mathcal{A}-\widehat{\mathcal{A}}_{o p t}\right\|_{F} .
$$

[^0]
Randomized Sequentially Truncated-HOSVD (r-STHOSVD)

- Similar structure, except feed current intermediate (mode-wise unfolded) core tensor.
- Complication for the theoretical result: at each intermediate step, the partially truncated core tensor is a random tensor.
- The theoretical result gives the same upper bound (fix the processing order; but ultimately independent of this)!
- Again, we see that in the worst case, the randomized versions of either algorithm can have the same performance.
- The latter is cheaper, and in practice can perform better. Use processing order that makes it cheapest.

Dynamic Randomized HOSVD and STHOSVD ${ }^{3}$

If target rank is unknown, how to find $\widehat{\mathcal{A}}$ such that

$$
\|\mathcal{A}-\widehat{\mathcal{A}}\|_{F} \leq \epsilon\|\mathcal{A}\|_{F} \text { ? }
$$

Utilize matrix adaptive randomized range finders ${ }^{2}$ for interim calculations. Given a matrix \mathbf{A} and a tolerance $\varepsilon>0$, the goal is to find a matrix \mathbf{Q} with orthonormal columns that satisfies

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{\top} \mathbf{A}\right\| \leq \varepsilon\|\mathbf{A}\| .
$$

No. columns in \mathbf{Q} is assumed rank of the low rank approximation. Example: equally apportioned per mode: choose the factor matrices \mathbf{U}_{j} to satisfy

$$
\left\|\mathcal{A}_{(j)}-\mathbf{U}^{(j)}\left(\mathbf{U}^{(j)}\right)^{\top} \mathcal{A}_{(j)}\right\|_{F}=\left\|\mathcal{A} \times_{j}\left(\mathbf{I}-\mathbf{U}^{(j)}\left(\mathbf{U}^{(j)}\right)^{\top}\right)\right\|_{F} \leq \frac{\varepsilon}{\sqrt{d}}\|\mathcal{A}\|_{F}
$$

[^1]
Preserving Structure?

We know that the (intermediate) core can be dense in any of the above mentioned processes.

What if \mathcal{A} is sparse, or has other structure (e.g. non-negativity)?
Can we compute a factorization such that the core tensor inherits properties of \mathcal{A} ? Yes!

Process for a matrix \mathbf{X}

Instead of using $\mathbf{X} \approx \mathbf{Q Q}^{\top} \boldsymbol{X}$ where $\mathbf{Q R}=\left(\boldsymbol{X} \Omega_{r+p}\right)$ do:
Compute strong RRQR of \boldsymbol{Q}^{\top}

$$
\mathbf{Q}^{\top} \boldsymbol{S}=\boldsymbol{Z} \mathbf{N}
$$

then $\mathbf{P}=\boldsymbol{S}_{\text {:, 1:s }}$, so $\mathbf{P}^{\top} \boldsymbol{Q}$ well-conditioned rows of \mathbf{Q}.
Define the oblique projector:

$$
\mathbf{Q}\left(\mathbf{P}^{\top} \boldsymbol{Q}\right)^{-1} \boldsymbol{P}^{\top}
$$

and apply this to \boldsymbol{X}.

$$
\boldsymbol{X} \approx\left(\mathbf{Q}\left(\mathbf{P}^{\top} \mathbf{Q}\right)^{-1}\right) \underbrace{\mathbf{P}^{\top} \boldsymbol{X}}_{\widehat{\boldsymbol{X}}} .
$$

Note that $\widehat{\boldsymbol{X}}$ is subselected rows of \boldsymbol{X}.

Structure Preserving STHOSVD

Idea:

- pick an order to visit
- apply the previous idea to the current unfolded core
- update the current core (it will have subselected rows), and the resulting factor matrix is the left matrix product.

The final core will have multirank $\left(r_{1}+p, r_{2}+p, \ldots, r_{d}+p\right)$ and contain portions of the original tensor. The factor matrices are not orthogonal.

Randomized Variants that Handle Sparsity

Formidable Repository of Sparse Tensors and Tools database.

Tensor	Dimensions	Nonzeros
NELL-2	$12092 \times 9184 \times 28818$	$76,879,419$
Enron	$6066 \times 5699 \times 244268 \times 1176$	$54,202,099$

NELL-2: entity \times relation \times entity (NELL is a machine learning system that relates different categories)

Enron: sender \times receiver \times word \times date (word counts in emails released during an investigation by the FERC)

Approximate truncated (r, r, r) HOSVD and ST-HOSVD

Results

	Relative Error		Runtime in seconds	
r	SP-STHOSVD	R-STHOSVD	SP-STHOSVD	R-STHOSVD
20	0.6015	0.2081	0.4086	31.5615
45	0.3854	0.1259	0.7965	34.5802
145	0.0976	0.0332	3.5659	42.0969
195	0.0578	0.0180	6.8285	50.2907

Table: Results, Subsampled Enron dataset.

Taking advantage of the sparsity structure allows for faster compression ${ }^{4}$.

[^2]
Recall: TUCKER-ALS

- Minimize the objective function:

$$
F(\mathcal{G}, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})=\|\mathcal{X}-\llbracket \mathcal{G} ; \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C} \rrbracket\|_{F}^{2}
$$

- The canonical TUCKER-ALS - repeatedly solve until convergence:
- $\boldsymbol{A}_{t+1}=\arg \min _{\boldsymbol{A}} F\left(\mathcal{G}_{t}, \boldsymbol{A}, \boldsymbol{B}_{t}, \boldsymbol{C}_{t}\right)$

$$
=\arg \min _{\boldsymbol{A}}\left\|\left(\boldsymbol{C}_{t} \otimes \boldsymbol{B}_{t}\right) \boldsymbol{G}_{(1), t}^{\top} \boldsymbol{A}^{\top}-\boldsymbol{X}_{(1)}^{\top}\right\|_{F}^{2}
$$

- $\boldsymbol{B}_{t+1}=\arg \min _{\boldsymbol{B}} F\left(\mathcal{G}_{t}, \boldsymbol{A}_{t+1}, \boldsymbol{B}, \boldsymbol{C}_{t}\right)=\arg \min _{\boldsymbol{B}}\left\|\left(\boldsymbol{C}_{t} \otimes \boldsymbol{A}_{t+1}\right) \boldsymbol{G}_{(2), t}^{\top} \boldsymbol{B}^{\top}-\boldsymbol{X}_{(2)}^{\top}\right\|_{F}^{2}$
- $\boldsymbol{C}_{t+1}=\arg \min _{C} F\left(\mathcal{G}_{t}, \boldsymbol{A}_{t+1}, \boldsymbol{B}_{t+1}, \boldsymbol{C}\right)=\arg \min _{\boldsymbol{C}}\left\|\left(\boldsymbol{B}_{t+1} \otimes \boldsymbol{A}_{t+1}\right) \boldsymbol{G}_{(3), t}^{\top} \boldsymbol{C}^{\top}-\boldsymbol{X}_{(3)}^{\top}\right\|_{F}^{2}$
- $\mathcal{G}_{t+1}=\arg \min _{\mathcal{G}}\left\|\left(\boldsymbol{C}_{t+1} \otimes \boldsymbol{B}_{t+1} \otimes \boldsymbol{A}_{t+1}\right) \boldsymbol{g}_{(:)}-\boldsymbol{x}_{(:)}\right\|_{2}^{2}$

Recall: Kronecker FJLTs

$$
\min _{\boldsymbol{B}}\left\|\boldsymbol{Z} \boldsymbol{B}^{\top}-\boldsymbol{X}^{\top}\right\|_{F}^{2}
$$

$$
\min _{\boldsymbol{B}}\left\|\boldsymbol{S} \overline{\mathcal{F}} \overline{\boldsymbol{D}} \boldsymbol{Z} \boldsymbol{B}^{\top}-\boldsymbol{S} \overline{\mathcal{F}} \overline{\boldsymbol{D}} \boldsymbol{X}^{\top}\right\|_{F}^{2}
$$

- \boldsymbol{S} is $s \times N$ sampling matrix
- $\overline{\mathcal{F}}=\mathcal{F}_{d} \otimes \cdots \otimes \mathcal{F}_{k+1} \otimes \mathcal{F}_{k-1} \otimes \cdots \otimes \mathcal{F}_{1}$.
- $\overline{\boldsymbol{D}}=\boldsymbol{D}_{d} \otimes \cdots \otimes \boldsymbol{D}_{k+1} \otimes \boldsymbol{D}_{k-1} \otimes \cdots \otimes \boldsymbol{D}_{1}$.

[^3]
Mixing Kronecker product Efficiently Using KFJLT

$$
\left.\begin{array}{rl}
\begin{array}{c}
\text { Factor } \\
\text { Matrices }
\end{array} & \square \hat{\mathbf{A}}_{2}
\end{array} \begin{array}{rl}
\boldsymbol{S} \overline{\mathcal{F}} \overline{\boldsymbol{D}} \boldsymbol{Z} & =\boldsymbol{S}\left(\mathcal{F}_{2} \otimes \mathcal{F}_{1}\right)\left(\boldsymbol{D}_{2} \otimes \boldsymbol{D}_{1}\right)\left(\boldsymbol{A}_{2} \odot \boldsymbol{A}_{1}\right) \\
& =\boldsymbol{S}\left(\left(\mathcal{F}_{2} \boldsymbol{D}_{2}\right) \otimes\left(\mathcal{F}_{1} \boldsymbol{D}_{1}\right)\right)\left(\boldsymbol{A}_{2} \odot \boldsymbol{A}_{1}\right)
\end{array}\right)
$$

Same approach holds for Kronecker products too:

$$
\begin{aligned}
\boldsymbol{S} \overline{\mathcal{F}} \overline{\boldsymbol{D}} \boldsymbol{Z} & =\boldsymbol{S}\left(\mathcal{F}_{2} \otimes \mathcal{F}_{1}\right)\left(\boldsymbol{D}_{2} \otimes \boldsymbol{D}_{1}\right)\left(\boldsymbol{A}_{2} \otimes \boldsymbol{A}_{1}\right) \\
& =\boldsymbol{S}\left(\left(\mathcal{F}_{2} \boldsymbol{D}_{2}\right) \otimes\left(\mathcal{F}_{1} \boldsymbol{D}_{1}\right)\right)\left(\boldsymbol{A}_{2} \otimes \boldsymbol{A}_{1}\right) \\
& =\boldsymbol{S}\left(\left(\mathcal{F}_{2} \boldsymbol{D}_{2} \boldsymbol{A}_{2}\right) \otimes\left(\mathcal{F}_{1} \boldsymbol{D}_{1} \boldsymbol{A}_{1}\right)\right) \\
& =\boldsymbol{S}\left(\hat{\boldsymbol{A}}_{2} \otimes \hat{\boldsymbol{A}}_{1}\right)
\end{aligned}
$$

Structured Gaussian sketch

Standard Gaussian sketch: $\boldsymbol{S} \in \mathbb{R}^{m \times n_{2} n_{3}}$ All entries are i.i.d Gaussian, $\boldsymbol{S}_{i j} \sim \mathbb{N}(0,1)$.

Structured Gaussian sketch [BBB15]:
$\boldsymbol{S}=\left(\boldsymbol{S}_{C} \odot \boldsymbol{S}_{B}\right)^{\top}$, where $\boldsymbol{S}_{C} \in \mathbb{R}^{n_{3} \times m}$ and $\boldsymbol{S}_{B} \in$ $\mathbb{R}^{n_{2} \times m}$. Then,

$$
\left(\boldsymbol{S}_{C} \odot \boldsymbol{S}_{B}\right)^{\top}(\boldsymbol{C} \odot \boldsymbol{B})=\left(\boldsymbol{S}_{C}^{\top} \boldsymbol{C}\right) *\left(\boldsymbol{S}_{B}^{\top} \boldsymbol{B}\right)
$$

Efficient! Can prove JL-type results.

TensorSketch

- TensorSketch: Structured CountSketch.
- CountSketch: \boldsymbol{S} is of the form:

$$
\left[\begin{array}{cccccc}
0 & -1 & 0 & 0 & \cdots & 0 \\
+1 & 0 & 0 & +1 & \cdots & 0 \\
0 & 0 & -1 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & \cdots & -1
\end{array}\right]
$$

One random ± 1 per column. Row $\boldsymbol{A}_{i *}$ of \boldsymbol{A} contributes $\pm \boldsymbol{A}_{i *}$ to one of the rows of $\boldsymbol{S A}$.

- TensorSketch was first introduced in [Pham \& Pagh, 2013] for compressed matrix multiplication and approximating SVM polynomial kernels efficiently.
- Avron et al. show that TensorSketch provides an oblivious subspace embedding.

TensorSketch: Structured CountSketch

TensorSketch:
Countsketch: $\boldsymbol{S}=\boldsymbol{P} \boldsymbol{D} \in \mathbb{R}^{m \times N}$
$\boldsymbol{S}=\boldsymbol{P}\left(\boldsymbol{D}_{C} \otimes \boldsymbol{D}_{B}\right)$, where $\boldsymbol{D}_{C} \in \mathbb{R}^{n_{3} \times n_{3}}$ and $\boldsymbol{D}_{B} \in$ where \boldsymbol{P} has 1 nonzero per column $\mathbb{R}^{n_{2} \times n_{2}}$. Then, $\boldsymbol{P}_{:, j} \sim \operatorname{Unif}\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{N}\right)$.
and \boldsymbol{D} is diagonal with i.i.d ± 1 en- $\boldsymbol{S}(\boldsymbol{C} \odot \boldsymbol{B})=F F T^{-1}\left(F F T\left(\boldsymbol{S}_{C} \boldsymbol{C}\right) * F F T\left(\boldsymbol{S}_{B} \boldsymbol{B}\right)\right)$
tries.

$$
\boldsymbol{S}(\boldsymbol{C} \otimes \boldsymbol{B})=F F T^{-1}\left(\left(F F T\left(\boldsymbol{S}_{C} \boldsymbol{C}\right)^{\top} \odot F F T\left(\boldsymbol{S}_{B} \boldsymbol{B}\right)^{\top}\right)^{\top}\right)
$$

TuckerTS Algorithm

```
Algorithm 2: TUCKER-TS (proposal)
input : y , target rank \(\left(R_{1}, R_{2}, \ldots, R_{N}\right)\), sketch dimensions ( \(J_{1}, J_{2}\) )
output:Rank- \(\left(R_{1}, R_{2}, \ldots, R_{N}\right)\) Tucker decomposition \(\llbracket \mathcal{G} ; \mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)} \rrbracket\) of \(\boldsymbol{y}\)
Initialize \(\mathcal{G}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)}, \ldots, \mathbf{A}^{(N)}\)
Define TensorSketch operators \(\mathbf{T}^{(n)} \in \mathbb{R}^{J_{1} \times \prod_{i \neq n} I_{i}}\), for \(n \in[N]\), and \(\mathbf{T}^{(N+1)} \in \mathbb{R}^{J_{2} \times \prod_{i} I_{i}}\)
repeat
    for \(n=1, \ldots, N\) do
    \(\mathbf{A}^{(n)}=\arg \min _{\mathbf{A}}\left\|\left(\mathbf{T}^{(n)} \bigotimes_{i=N, i \neq n}^{1} \mathbf{A}^{(i)}\right) \mathbf{G}_{(n)}^{\top} \mathbf{A}^{\top}-\mathbf{T}^{(n)} \mathbf{Y}_{(n)}^{\top}\right\|_{F}^{2}\)
    end
    \(\mathcal{G}=\arg \min _{\mathcal{Z}}\left\|\left(\mathbf{T}^{(N+1)} \bigotimes_{i=N}^{1} \mathbf{A}^{(i)}\right) \mathbf{z}_{(:)}-\mathbf{T}^{(N+1)} \mathbf{y}_{(:)}\right\|_{2}^{2}\)
    Orthogonalize each \(\mathbf{A}^{(i)}\) and update \(\mathcal{G}\)
until termination criteria met
return \(\mathcal{G}, \mathrm{A}^{(1)}, \ldots, \mathrm{A}^{(N)}\)
```

$$
\mathbf{T A}=\mathbf{T} \bigotimes_{i=N}^{1} \mathbf{A}^{(i)}=\mathrm{FFT}^{-1}\left(\left(\bigodot_{i=N}^{1}\left(\mathrm{FFT}\left(\mathbf{S}^{(i)} \mathbf{A}^{(i)}\right)\right)^{\top}\right)^{\top}\right)
$$

TensorSketch: Results

[Avron et al, 2014]
(AMM) Given $\boldsymbol{A} \in \mathbb{R}^{n^{q} \times d} ; \boldsymbol{B} \in \mathbb{R}^{d^{\prime} \times n^{q}} ; \epsilon, \delta>0$.
Let $\boldsymbol{S} \in \mathbb{R}^{m \times n^{q}}$ be a TensorSketch matrix, and if $m \geq \frac{\left(2+3^{q}\right)}{\epsilon^{2} \delta}$, then with probability at least $1-\delta$:

$$
\left\|\boldsymbol{B} \boldsymbol{S}^{\top} \boldsymbol{S A}-\boldsymbol{B} \boldsymbol{A}\right\|_{F} \leq \epsilon\|\boldsymbol{A}\|_{F}\|\boldsymbol{B}\|_{F} .
$$

(Subspace embedding) For any fixed r-dimensional subspace \boldsymbol{U}, if $m \geq \frac{r^{2}\left(2+3^{q}\right)}{\epsilon^{2} \delta}$, then with probability at least $1-\delta$:

$$
\left\|\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U}-\boldsymbol{I}\right\|_{2} \leq \epsilon
$$

TensorSketch: Results

[Malik \& Becker, 2018]

Assume $\boldsymbol{T}^{(q+1)}$ be a TensorSketch matrix as in TuckerTS algorithm, and let $\boldsymbol{M}:=\left(\boldsymbol{T}^{(q+1)} \otimes_{i=q}^{1} \boldsymbol{A}^{(i)}\right)^{\top}\left(\boldsymbol{T}^{(q+1)} \otimes_{i=q}^{1} \boldsymbol{A}^{(i)}\right)$, where all $\boldsymbol{A}^{(i)}$ have orthonormal columns.
If $m \geq \frac{\left(\prod_{i} r_{i}\right)^{2}\left(2+3^{q}\right)}{\epsilon^{2} \delta}$, then with probability at least $1-\delta$:

$$
\|\boldsymbol{M}-\boldsymbol{I}\|_{2} \leq \epsilon
$$

Tensor Train Decomposition

- Based on the notion of variable splitting, consider an unfolding \boldsymbol{A} of a tensor \mathcal{A}

$$
\mathbf{A}\left(i_{1} i_{2} ; i_{3} i_{4} i_{5} i_{6}\right)=\sum_{\alpha_{2}} \mathbf{U}\left(i_{1} i_{2} ; \alpha_{2}\right) \mathbf{V}\left(i_{3} i_{4} i_{5} i_{6} ; \alpha_{2}\right)
$$

- Provided a-priori knowledge as for separability of variables, the dimension has reduced (e.g. 6-dimensional tensor is decomposed into a product of 3 - and 5-dimensional tensors)
- The process can obviously be repeated recursively leading to the Tensor Train decomposition

Tensor Train Decomposition

TT format of a tensor \mathcal{A}

$$
\mathcal{A}\left(i_{1}, \ldots, i_{d}\right)=\sum_{\alpha_{0}, \ldots, \alpha_{d}} \mathcal{G}_{1}\left(\alpha_{0}, i_{1}, \alpha_{1}\right) \mathcal{G}_{2}\left(\alpha_{1}, i_{2}, \alpha_{2}\right), \ldots, \mathcal{G}_{d}\left(\alpha_{d-1}, i_{d}, \alpha_{d}\right)
$$

Can be represented compactly as a matrix product:

$$
\mathcal{A}\left(i_{1}, \ldots, i_{d}\right)=\underbrace{\mathcal{G}_{1}\left[i_{1}\right]}_{1 \times r_{1}} \underbrace{\mathcal{G}_{2}\left[i_{2}\right]}_{r_{1} \times r_{2}} \cdots \underbrace{\mathcal{G}_{d}\left[i_{d}\right]}_{r_{d-1} \times 1}
$$

- \mathcal{G}_{i} : TT-cores (collections of matrices)
- r_{i} : TT-ranks
- $r=\max r_{i}$: the maximal TT-rank

TT uses $\mathcal{O}\left(d n r^{2}\right)$ memory to store $\mathcal{O}(n d)$ elements
Efficient only if the ranks are small

Oseledets, Tensor-train decomposition, 2011

References:

- Biagioni, David J., Daniel Beylkin, and Gregory Beylkin. "Randomized interpolative decomposition of separated representations." Journal of Computational Physics 281 (2015): 116-134.
- Pham, Ninh, and Rasmus Pagh. "Fast and scalable polynomial kernels via explicit feature maps" Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. 2013.
- Avron, Haim, Huy Nguyen, and David Woodruff. "Subspace embeddings for the polynomial kernel." Advances in neural information processing systems 27 (2014).
- Malik, Osman Asif, and Stephen Becker. "Low-rank tucker decomposition of large tensors using tensorsketch." Advances in neural information processing systems 31 (2018).

Questions?

[^0]: ${ }^{1}$ Minster, Saibaba, Kilmer, SIMODS, 2020

[^1]: ${ }^{2}$ See W. Yu, Y. Gu, and Y. Li, SIMAX, 2018 and references therein.
 ${ }^{3}$ Minster, Saibaba, Kilmer, SIMODS, 2020

[^2]: ${ }^{4}$ R. Minster, A.K. Saibaba, and M. E. Kilmer, "Randomized Algorithms for low-rank Decompositions in the Tucker Format," SIMODS, 2020.

[^3]: $\boldsymbol{Z}=\boldsymbol{A}_{d} \odot \cdots \odot \boldsymbol{A}_{k+1} \odot \boldsymbol{A}_{k-1} \odot \cdots \odot \boldsymbol{A}_{1}$

