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This lecture

Topics to be covered today

e Probability and properties.
o Concentration measures.

» Markov and Chebyshev inequality
» CLT and tail bounds
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Probability review

Let x be a random variable taking value in some set S.
For continuous random variable, it might be S = R.

o Expectation: E[x] = ) _¢s-Prx = g]
For continuous case, E[x] = [ _¢s- Pr[x = s]ds
e Variance: Var[x] = E [(x — E[x])?] = E[x?] — E[x]?

T T T T T T T T T T
10 T T

Excerise 1: For any scalar a, show that E[ax] = aE[x] and Var[ax] = o?Var[x].
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Probability review

Let A and B be random events. Then,

e Joint Probability: Pr(A N B) - The probability that both events happen.

e Conditional Probability: Pr(A | B) = Pgég?) . Probability A happens

conditioned on the event that B happens.

e Independence: A and B are independent events if: Pr(A | B) = Pr(A).
For independent events, we also have that

Pr(An B) =Pr(A) - Pr(B)

e Mutually exclusive events : Pr(AN B) = 0.
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Probability review

Random sampling can be:
o with replacement

e without replacement

Question: Which of the above event is independent?

Example: What is the probability that for two independent dice rolls taking values
uniformly in {1,2,3,4,5,6}, the first roll comes up even and the second is < 47?
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Expectation

For random variables x and y,

o Linearity of expectation: For constants c1,ce € R,
Elcix + coy] = a1E[x] 4+ c2Ely].

Result holds irrespective of the dependence between x and y.

e Law of Total Expectation: If the sample space is the disjoint union of events
Ay, Ay, ..., then

Elx] =) E[x| Ai] Pr(4).
@ Product of expectation: For any two independent random variables x and y,
Efx-y] = E[x] - E[y]

also Var[x + y] = Var[x] + Var[y].
Jan, 2024  8/24



Norms of random variables

@ Moment norm: For a real random variable x and p > 1, let
lixll, = E[|x|?]'/?.

We use || - || to distinguish from matrix/vector norm.

o For real random variables x,y and p > 1,
(Minkowski) lIx + yll, < lIxll, + My,
and for a € R, lloxll, = |alixll,.

e Centered random variables: Random variable x € R is centered if E[x] = 0.

@ Tail from norms: For ¢ > 0, for centered x,

Pr{|x| >t} < x5/
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o For centered x, [|x[I3 = E[x?] = Var[x]. So, lIxllz = sd[x].

@ We know that for two independent random variables x,y,
Var[x + y| = Var[x] + Var[y].

So, if they are also centered, then

Ix +yll2 = v/ lixll2 + Myll2 < lixlli2 + Wyll2-

@ Sub-Guassian norms: For a real random variable x,
lixlly, = sup lixll,/ /P
p>1

If lIxlly, is bounded, we call x sub-Gaussian.

UT Austin CSE 392 Jan, 2024 10 /24



Concentration inequalities

One of the key tools in analyzing randomized algorithms.
How likely a random variable x deviates a certain amount from its expectation E[x].

We will learn three fundamental concentration inequalities:
e Markov’s Inequality - Applies to non-negative random variables.
o Chebyshev’s Inequality - For random variables with bounded variance.

e Hoeffding/Bernstein/Chernoff bounds - For sums of independent random
variables.
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Markov’s Inequality

For any random variable x which only takes non-negative values, and any positive ¢,

Prlx > t] < EE—X]

Equivalently, Pr[x > o - E[x]] < L.
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Markov’s Inequality

For any random variable x which only takes non-negative values, and any positive ¢,

Prlx > t] < E}E—X]

Equivalently, Pr[x > o - E[x]] < 1.

Proof: We have to show that E[x] > ¢ - Pr[x > t]:
Ex] = Z k-Pr(x=k)

\% \%
M
? 2
™ %
I I
=z

= t-» Pr(x=k)
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Example

A coin is weighted so that its probability of landing on heads is 20%. Suppose the coin is
flipped 20 times. Find a bound for the probability it lands on heads at least 16 times.
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Example

A coin is weighted so that its probability of landing on heads is 20%. Suppose the coin is
flipped 20 times. Find a bound for the probability it lands on heads at least 16 times.

Binomial distribution - n = 20,p = 0.2

Ex]=n-p=20%0.2=4.
Let us use Markov’s:
E[x]

P > 16| < —/—
rlx > 16] < 16

= 0.25.

Is this a good estimate?

Popular applications: k-frequent items, hash functions, and others.
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Union Bound

Union Bound
For any random events Ay, ..., Ag:

Pl"[Al UAsU...U Ak] < PI’[Al] + PI‘[AQ] + ...+ PI‘[Ak]
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Union Bound

Union Bound

For any random events Ay, ..., Ag:

PI‘[Al UAsU...U Ak] < PI‘[Al] + PI‘[AQ] + ...+ PI‘[Ak]

Proof: Choose x; = 1[4;], and we apply Markov’s to S = Zle X;.
Hint: Express the union event A; U Ay U...U Ay in terms of S. What is E[x;] = ?
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Chebyshev’s Inequality

Let x be a random variable, then for any k > 0,

Var[x] .

Pr(jx —Efx]| > k) < —5
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Chebyshev’s Inequality

Let x be a random variable, then for any k > 0,

Var|[x]

Pr(lx —Epd| 2 k) < —

Proof: Note that
Pr(|x — E[x]| > k) = Pr((x — E[x])* > k?).

Applying Markov’s inequality to the random variable (x — E[x])? gives us the result.
o Alternatively, for any ¢ > 0,

1
Pr(jx —E[x]| > ¢-0x) < 2

where oy = \/Var[x] = /E[(x — E[x])?], is the standard deviation of x.
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Properties of Chebyshev’s inequality

@ x need not be non-negative.

e It is a two-sided bound, gives the probability that |x — E[x]| is large or not.
L.e., x is not too far above or below its expectation.
Markov’s only bounded probability that x exceeds E[x].

e Probability of x being ¢ times away from o.

@ We need a bound on the variance of x.

It is worst case bound, may not be tight in many cases.
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Gaussian concentration

For x ~ N (u,0?), we have:

1 2 2
Prix=pu+x|~ e X /20
[x=p+x] T
Gaussian Tail Bound:
For x ~ N (u,0?),
Prllx —p| > k-0] < e~F/2

Where as, using Chebyshev’s inequality we get Pr[|x — u| > k- o] < 1/k?

Gaussian random variables concentrate much tighter around their expectation than what
Chebyshev’s inequality predicts.
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Central limit theorem

Lindeberg—Levy CLT:

Suppose {x1,...,X,} is a sequence of i.i.d. random variables with E[x;] = p and
Var[x;] = 02 < co. Then, as n approaches infinity, the random variables \/n (%, — u),
where %, = ' | x;/n converge in distribution to a normal N(0, o%):

Vi (&p —p) > N(O,O’Q).

CLT can be made rigorous to obtain tighter tail bounds than Chebyshev’s inequality.
@ Chernoff bound

@ Bernstein bound

e Hoeffding bound

Different assumptions on random variables (e.g. binary vs. bounded), different forms
(additive vs. multiplicative error), etc.
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Chernoff Bound

Chernoff Bounds

Let S = )" | x;, where x; = 1 with probability p; and x; = 0 with probability 1 — p;, and
all x; are independent. Let p = E(S) = > | p;. Then

2
e Upper Tail:. Pr(S > (1+0)pu) < e~ 2 for all § > 0;
2
e Lower Tail: Pr(S < (1—-0)u) < e~ Th for all 0 < § < 1;

Idea of proof:

Based on applying Markov’s inequality to moment generating function E[et|s _E[S”].
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Bernstein Inequality

Bernstein Inequality

Let x1,...,x, be independent random variables with each x; € [—1,1]. Let E[x;] = u; and
Var[x;] = 7. Let = >, pt; and 0% = Y, 0. Then, for k < 10,5 = 3", x; satisfies

Pr[|S — pu| > k- o] < 2e7F/4,

Idea of proof:

Based on applying Markov’s inequality to e*2=i*i for suitable choice of the parameter
A > 0.
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Hoeffding Inequality

Hoeftding Inequality

Let x1,...,x, be independent random variables with each x; € [a;, b;]. Let E[x;] = u; and
Var[x;) = 02. Let u =, p; and 02 =Y, 02. Then, for and a > 0,5 = ", x; satisfies

2

_ 2a
Pr[|S — p| > a] < 2e Tilai=b)?,

Idea of proof: Similar to Chernoff bounds. We use that for a real random variable
X € [a, b] almost surely,

E [es(x—E[X])] < exp (%32(1) _ a)Q) .
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Example

Coin flip application

We are given a biased coin which lands heads with probability p. How many k times
should we flip to ensure

Pr[|#heads —p - k| > ek] < 6.

Setup: Let x; = 1[i*" flip is heads]. We want bound probability that S = Zle X;
deviates from the expectation.

Using Chebyshev: k > 7
Using Chernoff: k> 7
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Reference

Recommended reading:

A good reference for introduction and proofs of the various concentration inequalities, see
Dr. Karthik Sridharan’s article:

A Gentle Introduction to Concentration Inequalities.
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https://www.cs.cornell.edu/~sridharan/concentration.pdf

Questions?
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