CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 19: Tucker decomposition, HOSVD.

Outline

(1) Tucker Decompostion
(2) HOSVD

- Truncated HOSVD
- ST-HOSVD

CP-Decomposition

- Find the best tensor rank-r fit:

$$
\min _{\mathbf{a}_{i}, \mathbf{b}_{i}, \mathbf{c}_{i}}\left\|\mathcal{X}-\sum_{i=1}^{r} \sigma_{i} \cdot \mathbf{a}_{i} \circ \mathbf{b}_{i} \circ \mathbf{c}_{i}\right\|_{F}
$$

- Extension of matrix rank
- Interpretable
- Summing r factors is sub-optimal
- Determining rank is NP-hard

CP Decomposition - Existence and Ill-Posedness

- For a problem to be well-posed, the following conditions are required from its solution :
- Existence
- Uniqueness
- Stability

- If either criterion is not satisfied, the problem is rendered ill-posed ${ }^{1}$
- Often, existence is taken for granted and an ill-posedness refers to either the lack of uniqueness or stability in the solution
- For CP, ill-posedness is more acute, as the existence of a solution is in question ${ }^{2}$
- The set of tensors of a given size that do not have a best rank- k approximation has positive volume (i.e., positive Lebesgue measure) for at least some values of k, which implies that lack of best approximation is rather common.

[^0]
CP - Uniqueness

- $\mathcal{M}=\llbracket \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket$ is essentially unique if

$$
\operatorname{rank}_{k}(\boldsymbol{A})+\operatorname{rank}_{k}(\boldsymbol{B})+\operatorname{rank}_{k}(\boldsymbol{C}) \geq 2 r+2
$$

- $\operatorname{rank}_{k}(\boldsymbol{A})=$ maximum value of k such that any k columns of \boldsymbol{A} are linearly independent.
- Matrix factorization does not share this property! Usually need orthogonality constraint.

Inconsistencies with Tensor Rank

- Rank of real-valued tensor may be different over \mathbb{R} or \mathbb{C}
- Determining rank of tensor is NP-hard
- Eckart-Young does not hold
- The best rank-k approximation may not exist

Best approximation is on the boundary of the space of rank-2 and rank-3 tensors. Since the space of rank-2 tensors is not closed, the sequence may converge to a tensor \mathcal{X}^{*} of rank other than 2

Kruskal, Harshman, Lundy, How 3-MFA can cause degenerate PARAFAC solutions, among other relationships, in Multiway Data Analysis, Coppi, Bolasco, eds., North-Holland, Amsterdam, 1989

Kolda and Bader, Tensor decompositions and applications, SIAM, 2009

Tucker Decomposition ${ }^{3}$

- Find the best multi-linear rank- $\left(k_{1}, k_{2}, k_{3}\right)$ fit:

$$
\min _{\mathbf{A}_{k_{1}}, \mathbf{B}_{k_{2}}, \mathbf{C}_{k_{3}}}\left\|\mathcal{X}-\mathcal{G} \times_{1} \mathbf{A}_{k_{1}} \times{ }_{2} \mathbf{B}_{k_{2}} \times{ }_{3} \mathrm{C}_{k_{3}}\right\|_{F}
$$

- Higher-order PCA
- Compressible
- Truncation of full orth. sub-optimal
- Hard to interpret

[^1]
Tucker Decomposition - notation

- The Tucker decomposition of a three-mode tensor $\mathcal{X} \in \mathbb{R}^{m \times n \times p}$ is given by:

$$
\mathcal{X} \approx \mathcal{G} \times_{1} \boldsymbol{A} \times_{2} \boldsymbol{B} \times_{3} \boldsymbol{C}=: \llbracket \mathcal{G} ; \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C} \rrbracket,
$$

where $\mathcal{G} \in \mathbb{R}^{k_{1} \times k_{2} \times k_{3}}$ is called the core tensor and $\boldsymbol{A} \in \mathbb{R}^{m \times k_{1}}, \boldsymbol{B} \in \mathbb{R}^{n \times k_{2}}$ and $\boldsymbol{C} \in \mathbb{R}^{p \times k_{3}}$ are factor matrices.

- Elementwise:

$$
x_{i j \ell} \approx \sum_{q=1}^{k_{1}} \sum_{r=1}^{k_{2}} \sum_{s=1}^{k_{3}} g_{q r s} d_{i q} b_{j r} c_{\ell s} \text { for } i \in[m], j \in[n], \ell \in[p]
$$

Tucker Decomposition - matricized forms

- The matricized forms (one per mode) of Tucker decomposition are:

$$
\begin{aligned}
\mathcal{X}_{(1)} & \approx \boldsymbol{A} \boldsymbol{G}_{(1)}(\boldsymbol{C} \otimes \boldsymbol{B})^{\top}, \\
\mathcal{X}_{(2)} & \approx \boldsymbol{B} \boldsymbol{G}_{(2)}(\boldsymbol{C} \otimes \boldsymbol{A})^{\top}, \\
\mathcal{X}_{(3)} & \approx \boldsymbol{C} \boldsymbol{G}_{(3)}(\boldsymbol{B} \otimes \boldsymbol{A})^{\top}
\end{aligned}
$$

TUCKER-ALS algorithm

- Minimize the objective function:

$$
F(\mathcal{G}, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})=\|\mathcal{X}-\llbracket \mathcal{G} ; \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C} \rrbracket\|_{F}^{2}
$$

- The canonical TUCKER-ALS - repeatedly solve until convergence:
- $\boldsymbol{A}_{t+1}=\arg \min _{\boldsymbol{A}} F\left(\mathcal{G}_{t}, \boldsymbol{A}, \boldsymbol{B}_{t}, \boldsymbol{C}_{t}\right)$

$$
=\arg \min _{\boldsymbol{A}}\left\|\left(\boldsymbol{C}_{t} \otimes \boldsymbol{B}_{t}\right) \boldsymbol{G}_{(1), t}^{\top} \boldsymbol{A}^{\top}-\boldsymbol{X}_{(1)}^{\top}\right\|_{F}^{2}
$$

- $\boldsymbol{B}_{t+1}=\arg \min _{\boldsymbol{B}} F\left(\mathcal{G}_{t}, \boldsymbol{A}_{t+1}, \boldsymbol{B}, \boldsymbol{C}_{t}\right)=\arg \min _{\boldsymbol{B}}\left\|\left(\boldsymbol{C}_{t} \otimes \boldsymbol{A}_{t+1}\right) \boldsymbol{G}_{(2), t}^{\top} \boldsymbol{B}^{\top}-\boldsymbol{X}_{(2)}^{\top}\right\|_{F}^{2}$
- $\boldsymbol{C}_{t+1}=\arg \min _{\boldsymbol{C}} F\left(\mathcal{G}_{t}, \boldsymbol{A}_{t+1}, \boldsymbol{B}_{t+1}, \boldsymbol{C}\right)=\arg \min _{\boldsymbol{C}}\left\|\left(\boldsymbol{B}_{t+1} \otimes \boldsymbol{A}_{t+1}\right) \boldsymbol{G}_{(3), t}^{\top} \boldsymbol{C}^{\top}-\boldsymbol{X}_{(3)}^{\top}\right\|_{F}^{2}$
- $\mathcal{G}_{t+1}=\arg \min _{\mathcal{G}}\left\|\left(\boldsymbol{C}_{t+1} \otimes \boldsymbol{B}_{t+1} \otimes \boldsymbol{A}_{t+1}\right) \boldsymbol{g}_{(:)}-\boldsymbol{x}_{(:)}\right\|_{2}^{2}$

Tucker Decompositions - Non-Uniqueness

- Consider the three-way Tucker decomposition of \mathcal{X}, also denoted $\llbracket \mathcal{G} ; \mathbf{A}, \mathrm{B}, \mathrm{C} \rrbracket$
- Let $\mathbf{U} \in \mathbb{R}^{k_{1} \times k_{1}}, \mathbf{V} \in \mathbb{R}^{k_{2} \times k_{2}}$, and $\mathbf{W} \in \mathbb{R}^{k_{3} \times k_{3}}$ be non-singular. Then

$$
\llbracket \mathcal{G} ; \mathbf{A}, \mathbf{B}, \mathrm{C} \rrbracket=\llbracket \widetilde{\mathcal{G}} ; \mathbf{A} \mathbf{U}^{-1}, \mathbf{B} \mathbf{V}^{-1}, \mathbf{C} \mathbf{W}^{-1} \rrbracket
$$

where $\widetilde{\mathcal{G}}:=\mathcal{G} \times{ }_{1} \mathbf{U} \times{ }_{2} \mathbf{V} \times{ }_{3} \mathbf{W}$

- The core \mathcal{G} can be modified without affecting the overall fit as long as an inverse modification is applied to the factor matrices
- Offers freedom to choose transformations that simplify the core structure in some way so that most of the elements of \mathcal{G} are zero.

Towards the HOSVD

Recall: Let \mathbf{A} be an $m \times n$ real-valued matrix, then \mathbf{A} has a singular value decomposition:

$$
\boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\top}
$$

where \mathbf{U} is $m \times m$ orthogonal, \mathbf{V} is $n \times n$ orthogonal, and Σ is $m \times n$ diagonal with diagonal elements the singular values $\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{r}>0$

The matrix \boldsymbol{U} contains the left singular vectors

HOSVD

Use left singular vectors of the SVDs of the matricizations (assuming ranks r_{1}, r_{2}, r_{3}):

- Compute $\boldsymbol{U}^{(1)}$ from SVD of $\boldsymbol{A}_{(1)}$, keep first r_{1} cols
- Compute $\boldsymbol{U}^{(2)}$ from SVD of $\boldsymbol{A}_{(2)}$, keep first r_{2} cols.
- Compute $\boldsymbol{U}^{(3)}$ from SVD of $\boldsymbol{A}_{(3)}$, keep first r_{3} cols.
- $\mathcal{G}:=\mathcal{A} \times_{1}\left(\boldsymbol{U}^{(1)}\right)^{\top} \times_{2}\left(\boldsymbol{U}^{(2)}\right)^{\top} \times_{3}\left(\boldsymbol{U}^{(3)}\right)^{\top}$ which means, e.g.,

$$
\mathcal{G}_{(1)}=\left(\boldsymbol{U}^{(1)}\right)^{\top} \mathcal{A}_{(1)}\left(\boldsymbol{U}^{(3)} \otimes \boldsymbol{U}^{(2)}\right)
$$

Now \mathcal{G} is $r_{1} \times r_{2} \times r_{3}$ and this is an EXACT representation:

$$
\mathcal{A}=\mathcal{G} \times{ }_{1} \boldsymbol{U}^{(1)} \times_{2} \boldsymbol{U}^{(2)} \times_{3} \boldsymbol{U}^{(3)} .
$$

Three SVDs, independent of one another
Another notation $\mathcal{A}=\llbracket \mathcal{G} ; \mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \mathbf{U}^{(3)} \rrbracket$

HOSVD Algorithm

Inputs: Tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$, ranks $\left\{r_{1}, \ldots, r_{d}\right\} \in \mathbb{N}$.
(1) for $\ell=1, \ldots, d$ do
(2) $\boldsymbol{U}^{(\ell)} \leftarrow r_{\ell}$ leading left singular vectors of $\boldsymbol{A}_{(\ell)}$
(3) end for
(1) $\mathcal{G}=\mathcal{A} \times{ }_{1} \boldsymbol{U}^{(1) \top} \times_{2} \boldsymbol{U}^{(2) \top} \cdots \times_{d} \boldsymbol{U}^{(d) \top}$
© return $\mathcal{G}, \boldsymbol{U}^{(1)}, \boldsymbol{U}^{(2)}, \cdots, \boldsymbol{U}^{(d)}$

HOOI Algorithm

Inputs: Tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$, ranks $\left\{r_{1}, \ldots, r_{d}\right\} \in \mathbb{N}$.
(1) Initialize $\boldsymbol{U}^{(\ell)} \in \mathbb{R}^{n_{\ell} \times r_{\ell}}$ for all $\ell \in[d]$
(2) repeat
(3) for $\ell=1, \ldots, d$ do
(1) $\mathcal{Y}=\mathcal{A} \times_{1} \boldsymbol{U}^{(1) \top} \cdots \times_{\ell-1} \boldsymbol{U}^{(\ell-1) \top} \times_{\ell+1} \boldsymbol{U}^{(\ell+1) \top} \cdots \times_{d} \boldsymbol{U}^{(d) \top}$
(0) $\boldsymbol{U}^{(\ell)} \leftarrow r_{\ell}$ leading left singular vectors of $\boldsymbol{Y}_{(\ell)}$
(6) end for
(3) until fit ceases to improve or maximum iterations exhausted
(8) $\mathcal{G}=\mathcal{A} \times{ }_{1} \boldsymbol{U}^{(1) \top} \times{ }_{2} \boldsymbol{U}^{(2) \top} \cdots \times_{d} \boldsymbol{U}^{(d) \top}$
© return $\mathcal{G}, \boldsymbol{U}^{(1)}, \boldsymbol{U}^{(2)}, \cdots, \boldsymbol{U}^{(d)}$

Truncated HOSVD

Use left singular vectors of the SVDs of the matricizations:

- Compute $\boldsymbol{U}^{(1)}$ from SVD of $\mathcal{A}_{(1)}$, truncate to $k_{1} \leq r_{1}$ cols.
- Compute $\boldsymbol{U}^{(2)}$ from SVD of $\mathcal{A}_{(2)}$, truncate to $k_{2} \leq r_{2}$ cols.
- Compute $\boldsymbol{U}^{(3)}$ from SVD of $\mathcal{A}_{(3)}$, truncate to $k_{3} \leq r_{3}$ cols.
- $\mathcal{C}:=\mathcal{A} \times_{1}\left(\boldsymbol{U}^{(1)}\right)^{\top} \times_{2}\left(\boldsymbol{U}^{(2)}\right)^{\top} \times_{3}\left(\boldsymbol{U}^{(3)}\right)^{\top}$ which means, e.g.,

$$
\mathcal{C}_{(1)}=\left(\boldsymbol{U}^{(1)}\right)^{\top} \mathcal{A}_{(1)}\left(\boldsymbol{U}^{(3)} \otimes \boldsymbol{U}^{(2)}\right)
$$

so $\mathcal{A} \approx \widehat{\mathcal{A}}:=\mathcal{C} \times{ }_{1} \boldsymbol{U}^{(1)} \times{ }_{2} \boldsymbol{U}^{(2)} \times{ }_{3} \boldsymbol{U}^{(3)}$
where \mathcal{C} is now $k_{1} \times k_{2} \times k_{3}$
Truncating $\boldsymbol{U}^{(1)}, \boldsymbol{U}^{(2)}, \boldsymbol{U}^{(3)}$ to k_{1}, k_{2}, k_{3} columns, resp, is not optimal, but can give a compressed representation that is "reasonable".

Worst Case Error Bound

Theorem (Vannieuwenhoven et al, 2012)

Let $\widehat{\mathcal{A}}=\llbracket \mathcal{C} ; \boldsymbol{U}^{(1)}, \ldots, \boldsymbol{U}^{(d)} \rrbracket$ where $\boldsymbol{U}^{(i)}$ was truncated to k_{i} columns (i.e. the rank-($k_{1}, k_{2}, \ldots, k_{d}$) approximation to the dth order tensor), then

$$
\left.\|\mathcal{A}-\widehat{\mathcal{A}}\|_{F}^{2} \leq \sum_{j=1}^{d} \| \mathcal{A} \times_{j}\left(\mathbf{I}-\boldsymbol{U}^{(j)}\left(\boldsymbol{U}^{(j)}\right)^{\top}\right)\right) \|_{F}^{2}=\sum_{j=1}^{d} \sum_{k_{j}+1}^{n_{j}} \sigma_{i}^{2}\left(\mathcal{A}_{(j)}\right) .
$$

That is, the squared approximation error is bounded by the sum of the approximation errors on each mode unfolding.

tr-HOSVD Illustration

A-priori selection of the truncation bounds is difficult - cannot afford time/space to compute the full and then use the error to truncate.

As an example, consider hyperspectral image data - 2 spatial dimensions, and wavelength. For each spatial location, the wavelength 'signature' tells the composition.

commons.wikimedia.org/wiki/File:HyperspectralCube.jpg, NASA, 2007.

tr-HOSVD Example: Hyperspectral Imaging

191 flyover images of the Washington DC mall. Downsampled images to 320×307. HOSVD is orientation independent. Chose tensor as $320 \times 307 \times 191$.
D. Landgrebe and L. Biehl, An introduction and reference for multispec., March 2019.

tr-HOSVD Example

In the absence of any other information, arbitrarily chose to reduce each dimension by about 80% (i.e. core is $64 \times 62 \times 39$).

$$
\frac{\|\mathcal{A}-\widehat{\mathcal{A}}\|_{F}}{\|\mathcal{A}\|_{F}}=.18
$$

Exercise: What percent of the original storage is required by the new (truncated) one ?

tr-HOSVD Example

Difference in one wavelength:

Angles between spectral signatures at each of the 320×307 spatial positions.

Variations on tr-HOSVD

Computing individual/independent full (or partial) SVDs can be costly. What if we give up the independence of the actions, and project as we go?

Sequential Truncated HOSVD (ST-HOSVD)

- Choose an ordering in which to visit the modes
- Once left singular vectors for a mode are computed, immediately project. Then only operate on the projected core result
- Example (ordering $1,2,3$ and truncation $\left(k_{1}, k_{2}, k_{3}\right)$):
- Compute $\boldsymbol{U}^{(1)}$ from SVD of $\mathcal{A}_{(1)}$
- Compute $\boldsymbol{U}^{(2)}$ from SVD of $\widehat{\mathcal{C}}:=\mathcal{A} \times 1\left(\boldsymbol{U}^{(1)}\right)^{\top}$
- Compute $\boldsymbol{U}^{(3)}$ from SVD of $\tilde{\mathcal{C}}:=\widehat{\mathcal{C}} \times{ }_{2}\left(\boldsymbol{U}^{(2)}\right)^{\top}$
- $\mathcal{C}=\tilde{\mathcal{C}} \times{ }_{3}\left(\boldsymbol{U}^{(3)}\right)^{\top}$
- Now let $\mathcal{A} \approx\left[\mathcal{C} ; \mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \mathbf{U}^{(3)}\right]$. Worst case error bound is same as for tr-HOSVD.
- Computing on successively smaller objects, more efficient; often near-comparable, or better, behavior than tr-HOSVD!

Best Approximation?

- Let $\mathcal{S}=\left\{\mathcal{Y} \in \mathbb{R}^{n_{1} \times \cdots n_{d}} \mid \mathcal{Y}_{(j)}\right.$ has rank $\left.r_{j} \leq n_{j}\right\}$
- Define $\mathcal{A}_{\text {opt }}:=\arg \min \mathcal{Y}_{\mathcal{S}}\|\mathcal{A}-\mathcal{Y}\|_{F}$
- Existence of $\mathcal{A}_{\text {opt }}$ is guaranteed ${ }^{4}$ but not unique since Tucker representations are not unique (see previous slides)
- Generally, computing $\mathcal{A}_{\text {opt }}$ requires solving an optimization problem via iteration
- High Order Orthogonal Iteration (HOOI) attempts to find it, iterates by cycling, but expensive
- HOOI offer quasi-optimality ${ }^{4}$

$$
\|\mathcal{A}-\widehat{\mathcal{A}}\|_{F} \leq \sqrt{d}\left\|\mathcal{A}-\mathcal{A}_{\text {opt }}\right\|_{F}
$$

[^2]
Hierarchical Tucker

Storage for truncated HOSVD on an $m \times n \times p$ tensor \mathcal{A} :

- The $m \times k_{1}, n \times k_{2}$ and $p \times k_{3}$ factor matrices
- The $k_{1} \times k_{2} \times k_{3}$ core tensor.

If we repeat the factorization/truncation process on the core tensor, we get a hierarchical Tucker approach.

Matlab Demo

[^0]: ${ }^{1}$ Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin. 1902
 ${ }^{2}$ de Silva, Lim, Tensor rank and ill-posedness of the best low-rank approximation problem, 2008

[^1]: ${ }^{3}$ Tucker, Problems in Measuring Change, 1963

[^2]: ${ }^{4}$ Hackbusch, 2012

