CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 16: Canonical Polyadic (CP) decomposition

Outline

(1) Introduction to CP
(2) Khatri Rao Product (KRP)
(3) CP-ALS

Books in preparation by Dr. Tamara Kolda

Learning $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ Graphics:

 TikZ/PGF and PGFPLOTS

Tamara G. Kolda

Tensor Decomposition

- Datasets (tensors) can be typically large in size.
- Tensor Decomposition:
- Compression and storage.
- Denoising.
- Hidden multi-dimensional correlations and patterns.
- Different types of tensor decompositions.
- Pros and cons.
- Application dependent.

Tensor Factorization

Two views of Matrix Factorization

1) Sum of rank-1 matrices

Ex: SVD, EVD, PCA, Sparse SVD, NMF
2) Compression via subspaces

Ex: SVD, CUR

Two views of Tensor Factorization

1) Sum of rank-1 tensors

Ex: CANDECOMP/PARAFAC (CP)
2) Compression via subspaces

Matrix Factorization

Examples include singular value decomposition, nonnegative matrix factorization, etc.

Data

$m \times n$

$m \times n$

$$
\mathbf{M}=\mathbf{A B}^{\top}
$$

Sum of r Outer Products

Factor Matrices

Step Back to the Matrix SVD

Traditional workhorse, dim reduction/feature extraction: matrix SVD

- PCA - directions of most variability; projections in 'dominant' directions allows for dim reduction/relative comparison
- Compression (reduce near redundancies) via truncated SVD expansion is optimal (Eckart-Young Theorem)

$$
\mathbf{A}=\mathbf{U S V}^{\top}=\sum_{i=1}^{r} \sigma_{i}\left(\mathbf{u}_{i} \circ \mathbf{v}_{i}\right), \sigma_{1} \geq \sigma_{2} \geq \cdots \geq 0
$$

$$
\mathbf{B}=\sum_{i=1}^{k} \sigma_{i}\left(\mathbf{u}_{i} \circ \mathbf{v}_{i}\right) \quad \text { solves }
$$

$$
\min \|\mathbf{A}-\mathbf{B}\|_{F} \quad \text { s.t. } \mathbf{B} \text { has rank } k \leq r
$$

Step Back to the Matrix SVD

Traditional workhorse, dim reduction/feature extraction: matrix SVD

- PCA - directions of most variability; projections in 'dominant' directions allows for dim reduction/relative comparison
- Compression (reduce near redundancies) via truncated SVD expansion is optimal (Eckart-Young Theorem)

$$
\mathbf{A}=\mathbf{U S V}^{\top}=\sum_{i=1}^{r} \sigma_{i}\left(\mathbf{u}_{i} \circ \mathbf{v}_{i}\right), \sigma_{1} \geq \sigma_{2} \geq \cdots \geq 0
$$

$$
\begin{gathered}
\mathbf{B}=\sum_{i=1}^{k} \sigma_{i}\left(\mathbf{u}_{i} \circ \mathbf{v}_{i}\right) \quad \text { solves } \\
\min \|\mathbf{A}-\mathbf{B}\|_{F} \quad \text { s.t. } \mathbf{B} \text { has rank } k \leq r
\end{gathered}
$$

Implicit storage: for an $m \times n, k(n+m)$ numbers stored, vs $m n$.

Step Back to the Matrix SVD

Traditional workhorse, dim reduction/feature extraction: matrix SVD

- PCA - directions of most variability; projections in 'dominant' directions allows for dim reduction/relative comparison
- Compression (reduce near redundancies) via truncated SVD expansion is optimal (Eckart-Young Theorem)

$$
\mathbf{A}=\mathbf{U S V}^{\top}=\sum_{i=1}^{r} \sigma_{i}\left(\mathbf{u}_{i} \circ \mathbf{v}_{i}\right), \sigma_{1} \geq \sigma_{2} \geq \cdots \geq 0
$$

$$
\mathbf{B}=\sum_{i=1}^{k} \sigma_{i}\left(\mathbf{u}_{i} \circ \mathbf{v}_{i}\right) \quad \text { solves }
$$

$$
\min \|\mathbf{A}-\mathbf{B}\|_{F} \quad \text { s.t. } \mathbf{B} \text { has rank } k \leq r
$$

Question: What's the right high-dimensional analogue? (history, see Kolda \& Bader)

Rank-1 Tensor

Idea 1 (Hitchcock, 1927): Like SVD, try to decompose as a sum of rank-1 tensors.

$$
\mathcal{X}=\mathbf{a} \circ \mathbf{b} \circ \mathbf{c} \Rightarrow \mathcal{X}_{i, j, k}=a_{i} b_{j} c_{k}
$$

Note that $\operatorname{vec}(\mathcal{X})=\boldsymbol{c} \otimes \boldsymbol{b} \otimes \boldsymbol{a}$.
Thus, some papers use Kronecker in place of outer-product notation.

Canonical Polyadic (CP) Tensor Decomposition

Also known as Parallel Factors (PARAFAC) or Canonical Decomposition (CANDECOMP).

Data

$\mathcal{M}=\llbracket \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket$ $\operatorname{rank}(\mathcal{M}) \leq r$

Sum of r Outer Product Tensors

$$
\mathcal{M}=\sum_{\ell=1}^{r} \mathbf{a}_{\ell} \bigcirc \mathbf{b}_{\ell} \bigcirc \mathbf{c}_{\ell} \quad m_{i j k}=\sum_{\ell=1}^{r} a_{i \ell} b_{j \ell} c_{k \ell}
$$

$$
\min _{\mathbf{A}, \mathbf{B}, \mathbf{C}} \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{p}\left(x_{i j k}-m_{i j k}\right)^{2}
$$

Hitchcock (1927), Carroll \& Chang (1970), Harshman (1970)

CP Tensor Decomposition (d way)

Kruskal Notation

Kruskal notation: $\llbracket \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket$ or, if unit-normalized $\llbracket \lambda ; \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket$.

Recall : Matrix Kronecker Product

$(\boldsymbol{B} \otimes \boldsymbol{A})_{i+(m-1) j, k+(p-1) \ell}=b_{j \ell} a_{i k}$

Key properties

- $(\boldsymbol{C} \otimes \boldsymbol{B}) \otimes \boldsymbol{A}=\boldsymbol{C} \otimes(\boldsymbol{B} \otimes \boldsymbol{A})$
- $(\boldsymbol{B} \otimes \boldsymbol{A})^{\top}=\boldsymbol{B}^{\top} \otimes \boldsymbol{A}^{\top}$
- $(\boldsymbol{B} \otimes \boldsymbol{A})(\boldsymbol{D} \otimes \boldsymbol{C})=(\boldsymbol{B} \boldsymbol{D}) \otimes(\boldsymbol{A C})$
- $\operatorname{vec}\left(\boldsymbol{A X} \boldsymbol{B}^{\top}\right)=(\boldsymbol{B} \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{X})$
- $(\boldsymbol{B} \otimes \boldsymbol{A})^{-1}=\boldsymbol{B}^{-1} \otimes \boldsymbol{A}^{-1}$

Vector Outer \& Kronecker Products

A vector outer product for vectors $\mathbf{a} \in \mathbb{R}^{m}, \mathbf{b} \in \mathbb{R}^{n}, \mathbf{c} \in \mathbb{R}^{p}$ is denoted $\mathbf{a} \bigcirc \mathbf{b} \bigcirc \mathbf{c}$ produces an $m \times n \times p$ tensor such that element (i, j, k) equals $a_{i} b_{j} c_{k}$, i.e.,

A vector Kronecker product for vectors $\mathbf{a} \in \mathbb{R}^{m}, \mathbf{b} \in \mathbb{R}^{n}, \mathbf{c} \in \mathbb{R}^{p}$ is denoted $\mathbf{c} \otimes \mathbf{b} \otimes \mathbf{a}$ produces a vector or length $m n p$ such that element

$$
\ell=\mathbb{L}(i, j, k) \text { equals } a_{i} b_{j} c_{k}, \text { i.e. }
$$

$$
\mathbf{x}=\mathbf{c} \otimes \mathbf{b} \otimes \mathbf{a} \quad \Leftrightarrow \quad x_{\mathbb{L}(i, j, k)}=a_{i} b_{j} c_{k}
$$

$$
\mathbb{L}(i, j, k)=i+(j-1) m+(k-1) m n
$$

Matrix KhatriRao Product (KRP)

$\mathrm{KRP}=$ columnwise $_{r}$ Kronecker product

$$
(\boldsymbol{B} \odot \boldsymbol{A})_{* j}=\boldsymbol{B}_{* j} \otimes \boldsymbol{A}_{* j}
$$

Key properties

- $\boldsymbol{C} \odot(\boldsymbol{B} \odot \boldsymbol{A})=(\boldsymbol{C} \odot \boldsymbol{B}) \odot \boldsymbol{A}$
- $(\boldsymbol{B} \odot \boldsymbol{A})^{\top}(\boldsymbol{B} \odot \boldsymbol{A})=\boldsymbol{B}^{\top} \boldsymbol{B} * \boldsymbol{A}^{\top} \boldsymbol{A}$
- $(\boldsymbol{B} \otimes \boldsymbol{A})(\boldsymbol{D} \odot \boldsymbol{C})=(\boldsymbol{B} \boldsymbol{D}) \odot(\boldsymbol{A C})$

Kruskal Tensor

Sum of r Outer Product Tensors.

$$
\begin{aligned}
\boldsymbol{M}_{(1)} & =\sum_{\ell=1}^{r} \boldsymbol{a}_{\ell}\left(\boldsymbol{c}_{\ell} \otimes \boldsymbol{b}_{\ell}\right)^{\top} \\
& =\left[\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}\right]\left[\boldsymbol{c}_{1} \otimes \boldsymbol{b}_{1}, \ldots, \boldsymbol{c}_{r} \otimes \boldsymbol{b}_{r}\right]^{\top} \\
& =\boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^{\top}
\end{aligned}
$$

Matricized Tensor Times KRP (MTTKRP)

Three way tensor:

$$
\mathcal{X} \in \mathbb{R}^{m \times n \times p}, \boldsymbol{A} \in \mathbb{R}^{m \times r}, \boldsymbol{B} \in \mathbb{R}^{n \times r}, \boldsymbol{C} \in \mathbb{R}^{p \times r}
$$

Then, we can define

$$
\boldsymbol{X}_{(1)}(\boldsymbol{C} \odot \boldsymbol{B}), \quad \boldsymbol{X}_{(2)}(\boldsymbol{C} \odot \boldsymbol{A}), \quad \boldsymbol{X}_{(3)}(\boldsymbol{B} \odot \boldsymbol{A})
$$

Matricized Tensor Times KRP (MTTKRP)

Three way tensor:

$$
\mathcal{X} \in \mathbb{R}^{m \times n \times p}, \boldsymbol{A} \in \mathbb{R}^{m \times r}, \boldsymbol{B} \in \mathbb{R}^{n \times r}, \boldsymbol{C} \in \mathbb{R}^{p \times r}
$$

Then, we can define

$$
\boldsymbol{X}_{(1)}(\boldsymbol{C} \odot \boldsymbol{B}), \quad \boldsymbol{X}_{(2)}(\boldsymbol{C} \odot \boldsymbol{A}), \quad \boldsymbol{X}_{(3)}(\boldsymbol{B} \odot \boldsymbol{A})
$$

For general d-way tensor, say $\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ and $\boldsymbol{A}_{k} \in \mathbb{R}^{n_{k} \times r}$ for all $k \in[d]$, the mode- k matricized tensor times KRP (MTTKRP) is

$$
\boldsymbol{V}=\boldsymbol{X}_{(k)}\left(\boldsymbol{A}_{d} \odot \cdots \odot \boldsymbol{A}_{k+1} \odot \boldsymbol{A}_{k-1} \odot \cdots \odot \boldsymbol{A}_{1}\right) \in \mathbb{R}^{n_{k} \times r}
$$

CP Tensor Decomposition

- Find the best tensor rank-r fit:

$$
\min _{\mathbf{a}_{\ell}, \mathbf{b}_{\ell}, \mathbf{c}_{\ell}}\left\|\mathcal{X}-\sum_{\ell=1}^{r} \sigma_{\ell} \cdot \mathbf{a}_{\ell} \circ \mathbf{b}_{\ell} \circ \mathbf{c}_{\ell}\right\|_{F}
$$

CP Properties

- If equality \& r minimal, then r is called the rank of the tensor
- Not generally orthogonal
- Not based on a 'product based factorization'
- Finding the rank is NP hard!
- No perfect procedure for fitting CP model to k terms

CP - Uniqueness

- $\mathcal{M}=\llbracket \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket$ is essentially unique if

$$
\operatorname{rank}_{k}(\boldsymbol{A})+\operatorname{rank}_{k}(\boldsymbol{B})+\operatorname{rank}_{k}(\boldsymbol{C}) \geq 2 r+2
$$

- $\operatorname{rank}_{k}(\boldsymbol{A})=$ maximum value of k such that any k columns of \boldsymbol{A} are linearly independent.
- Matrix factorization does not share this property! Usually need orthogonality constraint.

Alternating Least Squares (CP-ALS)

General Idea: solve for ONE matrix, holding the others fixed.

- CP-ALS: Repeat until converged...
- Solve for \boldsymbol{A} (with \boldsymbol{B} and \boldsymbol{C} fixed)
- Solve for \boldsymbol{B} (with \boldsymbol{A} and \boldsymbol{C} fixed)
- Solve for \boldsymbol{C} (with \boldsymbol{A} and \boldsymbol{B} fixed)

Special Structure of Least Squares Problem

$$
\min _{\boldsymbol{A}}\left\|\boldsymbol{X}_{(1)}-\boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^{\top}\right\|_{F}^{2}
$$

Special Structure of Least Squares Problem

$$
\begin{aligned}
& \min _{\boldsymbol{A}}\left\|\boldsymbol{X}_{(1)}-\boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^{\top}\right\|_{F}^{2} \\
& \min _{\boldsymbol{A}}\left\|(\boldsymbol{C} \odot \boldsymbol{B}) \boldsymbol{A}^{\top}-\boldsymbol{X}_{(1)}^{\top}\right\|_{F}^{2}
\end{aligned}
$$

Special Structure of Least Squares Problem

$$
\begin{aligned}
& \min _{\boldsymbol{A}}\left\|\boldsymbol{X}_{(1)}-\boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^{\top}\right\|_{F}^{2} \\
& \min _{\boldsymbol{A}}\left\|(\boldsymbol{C} \odot \boldsymbol{B}) \boldsymbol{A}^{\top}-\boldsymbol{X}_{(1)}^{\top}\right\|_{F}^{2}
\end{aligned}
$$

By normal equations:

$$
\begin{gathered}
(\boldsymbol{C} \odot \boldsymbol{B})^{\top}(\boldsymbol{C} \odot \boldsymbol{B}) \boldsymbol{A}^{\top}=(\boldsymbol{C} \odot \boldsymbol{B})^{\top} \boldsymbol{X}_{(1)}^{\top} \\
\left(\boldsymbol{C}^{\top} \boldsymbol{C} * \boldsymbol{B}^{\top} \boldsymbol{B}\right) \boldsymbol{A}^{\top}=(\boldsymbol{C} \odot \boldsymbol{B})^{\top} \boldsymbol{X}_{(1)}^{\top}
\end{gathered}
$$

Special Structure of Least Squares Problem

$$
\begin{aligned}
& \min _{\boldsymbol{A}}\left\|\boldsymbol{X}_{(1)}-\boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^{\top}\right\|_{F}^{2} \\
& \min _{\boldsymbol{A}}\left\|(\boldsymbol{C} \odot \boldsymbol{B}) \boldsymbol{A}^{\top}-\boldsymbol{X}_{(1)}^{\top}\right\|_{F}^{2}
\end{aligned}
$$

By normal equations:

$$
\begin{gathered}
(\boldsymbol{C} \odot \boldsymbol{B})^{\top}(\boldsymbol{C} \odot \boldsymbol{B}) \boldsymbol{A}^{\top}=(\boldsymbol{C} \odot \boldsymbol{B})^{\top} \boldsymbol{X}_{(1)}^{\top} \\
\left(\boldsymbol{C}^{\top} \boldsymbol{C} * \boldsymbol{B}^{\top} \boldsymbol{B}\right) \boldsymbol{A}^{\top}=(\boldsymbol{C} \odot \boldsymbol{B})^{\top} \boldsymbol{X}_{(1)}^{\top} \\
\boldsymbol{A}^{\top}=\left(\boldsymbol{C}^{\top} \boldsymbol{C} * \boldsymbol{B}^{\top} \boldsymbol{B}\right)^{-1}(\boldsymbol{C} \odot \boldsymbol{B})^{\top} \boldsymbol{X}_{(1)}^{\top} \\
\boldsymbol{A}=\boldsymbol{X}_{(1)}(\boldsymbol{C} \odot \boldsymbol{B})\left(\boldsymbol{C}^{\top} \boldsymbol{C} * \boldsymbol{B}^{\top} \boldsymbol{B}\right)^{-1}
\end{gathered}
$$

Special Structure of Least Squares Problem (d-way)

$$
\begin{gathered}
\min _{\boldsymbol{A}_{k}}\|\boldsymbol{X}_{(k)}-\boldsymbol{A}_{k}(\underbrace{\boldsymbol{A}_{d} \odot \cdots \odot \boldsymbol{A}_{k+1} \odot \boldsymbol{A}_{k-1} \odot \cdots \odot \boldsymbol{A}_{1}}_{\boldsymbol{Z}_{k}})^{\top}\|_{F}^{2} \\
\min _{\boldsymbol{A}_{k}} \| \boldsymbol{Z}_{k} \boldsymbol{A}_{k}^{\top}-\left.\boldsymbol{X}_{(k)}^{\top}\right|_{F} ^{2} \\
\boldsymbol{Z}_{k}^{\top} \boldsymbol{Z}_{k} \boldsymbol{A}_{k}^{\top}=\boldsymbol{Z}_{k}^{\top} \boldsymbol{X}_{(k)}^{\top} \\
(\underbrace{\boldsymbol{A}_{d}^{\top} \boldsymbol{A}_{d} * \cdots * \boldsymbol{A}_{k+1}^{\top} \boldsymbol{A}_{k+1} * \boldsymbol{A}_{k-1}^{\top} \boldsymbol{A}_{k-1} \cdots * \boldsymbol{A}_{1}^{\top} \boldsymbol{A}_{1}}_{\boldsymbol{V}_{k}^{\top}}) \boldsymbol{A}_{k}^{\top}=\boldsymbol{Z}_{k}^{\top} \boldsymbol{X}_{(k)}^{\top} \\
\boldsymbol{A}_{k}=\boldsymbol{X}_{(k)} \boldsymbol{Z}_{k} \boldsymbol{V}_{k}^{-1}
\end{gathered}
$$

CP-ALS Full Algorithm

Inputs: Tensor $\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$, desired rank $r \in \mathbb{N}$.
(1) Initialize $\boldsymbol{A}_{k} \in \mathbb{R}^{n_{k} \times r}$ for all $k \in[d]$
(2) repeat
(3) for $k=1, \ldots, d$ do
(1) $\quad \boldsymbol{Z}_{k} \leftarrow \boldsymbol{A}_{d} \odot \cdots \odot \boldsymbol{A}_{k+1} \odot \boldsymbol{A}_{k-1} \odot \cdots \odot \boldsymbol{A}_{1}$
($\boldsymbol{A}_{k} \leftarrow \arg \min _{\boldsymbol{B}}\left\|\boldsymbol{Z}_{k} \boldsymbol{B}^{\top}-\boldsymbol{X}_{(k)}^{\top}\right\|_{F}^{2}$
(-) end
(1) until $\left\|\mathcal{X}-\llbracket \mathbf{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{d} \rrbracket\right\|_{F}^{2}$ ceases to decrease

Matlab Demo

