CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 15: Introduction to tensors, tensor-matrix products.

Outline

(1) Introduction
(2) Tensor-Matrix Multiplication

Introduction - A Multi-Dimensional World

- Much of real-world data is inherently multidimensional

- and is easily stored in/accessed through high dimensional arrays

- Many operators and models are natively multi-way

- Simulated data (i.e. intermediate solutions can be), too

Motivation

Tensor decompositions give us a way to analyze, compress, and otherwise manipulate operators and data that are far more useful/natural than "flattening" this multidimensional structure into a matrix and using matrix tools.

Tensor Applications

- Machine vision: understanding the world in 3D, enable understanding phenomena such as perspective, occlusions, illumination
- Latent semantic tensor indexing: common terms vs. entries vs. parts, co-occurrence of terms

Tensor Applications

- Medical imaging: naturally involves 3D (spatio) and 4D (spatio-temporal) correlations

- Video surveillance and motion signature: 2 D images $+3^{r d}$ dimension of time, $3 \mathrm{D} / 4 \mathrm{D}$ motion trajectory

Application in computer vision

The Power of Representation

- Traditional matrix-based methods assuming data vectorization are generally agnostic to possible high dimensional correlations
- What is that ?

The Power of Representation

- Traditional matrix-based methods assuming data vectorization are generally agnostic to possible high dimensional correlations
- What is that?

- Observe the same data but in a different (matrix rather than vector) representation

The Power of Representation

- Traditional matrix-based methods assuming data vectorization are generally agnostic to possible high dimensional correlations
- What is that ?

- Observe the same data but in a different (matrix rather than vector) representation

- Representation matters! some correlations can only be realized in appropriate representation

Notation and Definition

Uppercase Script: \mathcal{A}, is a 3 rd order tensor.
Uppercase Bold: \boldsymbol{X}, is a matrix.
Bold lowercase: \boldsymbol{y}, is a vector OR a $1 \times 1 \times n$ tensor.
Kronecker Product of an $m \times m$ with an $n \times n$:

$$
\boldsymbol{A}:=\boldsymbol{G} \otimes \boldsymbol{B}=\left[\begin{array}{cccc}
g_{11} \boldsymbol{B} & g_{12} \boldsymbol{B} & \cdots & g_{1 m} \boldsymbol{B} \\
g_{21} \boldsymbol{B} & \cdots & \cdots & g_{2 m} \boldsymbol{B} \\
\vdots & \vdots & \vdots & \vdots \\
g_{m 1} \boldsymbol{B} & \cdots & g_{m(m-1)} \boldsymbol{B} & g_{m m} \boldsymbol{B}
\end{array}\right]
$$

Kronecker Products synonymous with notion of separability, computational and storage efficiency. These come up a lot in tensor decompositions.

Data Organization Reveals Latent Structure

Suppose $\boldsymbol{y} \in \mathbb{R}^{m n}$

Reshape as $m \times n$ matrix, $\mathbf{Y}=\mathbf{u v}^{\top}=\mathbf{u} \circ \mathbf{v}$
$\Rightarrow \mathbf{y}=\mathbf{v} \otimes \mathbf{u}=\left[\begin{array}{c}v_{1} \boldsymbol{u} \\ v_{2} \boldsymbol{u} \\ \vdots \\ v_{n} \boldsymbol{u}\end{array}\right]$

Data Organization Reveals Latent Structure

Suppose $\boldsymbol{y} \in \mathbb{R}^{m n}$

$$
\begin{aligned}
& \text { Reshape as } m \times n \text { matrix, } \\
& \mathbf{Y}=\mathbf{u v}^{\top}=\mathbf{u} \circ \mathbf{v} \\
& \Rightarrow \mathbf{y}=\mathbf{v} \otimes \mathbf{u}=\left[\begin{array}{c}
v_{1} \boldsymbol{u} \\
v_{2} \boldsymbol{u} \\
\vdots \\
v_{n} \boldsymbol{u}
\end{array}\right]
\end{aligned}
$$

Implies storage is reduced from $m n$ to $m+n$ numbers, reveals only 1 important direction.

Data Organization Reveals Latent Structure

Suppose $\boldsymbol{y} \in \mathbb{R}^{m n}$

$$
\begin{aligned}
& \text { Reshape as } m \times n \text { matrix, } \\
& \mathbf{Y}=\mathbf{u v}^{\top}=\mathbf{u} \circ \mathbf{v} \\
& \Rightarrow \mathbf{y}=\mathbf{v} \otimes \mathbf{u}=\left[\begin{array}{c}
v_{1} \boldsymbol{u} \\
v_{2} \boldsymbol{u} \\
\vdots \\
v_{n} \boldsymbol{u}
\end{array}\right]
\end{aligned}
$$

Retaining the higher dimensional format reveals latent structure.

Tensors

- Notation : $\mathcal{A}^{n_{1} \times n_{2} \ldots, \times n_{d}}-d^{\text {th }}$ order tensor
- $0^{\text {th }}$ order tensor - scalar
- $1^{\text {st }}$ order tensor - vector

- $2^{\text {nd }}$ order tensor - matrix

- $3^{\text {rd }}$ order tensor ...

Tensor Inner Product and Norm

Inner product:

$$
\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \cdots \sum_{i_{d}=1}^{n_{d}} a_{i_{1}, \ldots, i_{d}} b_{i_{1}, \ldots, i_{d}}
$$

Norm: Unless otherwise specified, norm refers to the Frobenius norm, which in d-dimensional tensorial setting takes the form:

$$
\|\mathcal{A}\|=\sqrt{\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \cdots \sum_{i_{d}=1}^{n_{d}}\left|a_{i_{1}, \ldots, i_{d}}\right|^{2}}
$$

Inside the Box

- Fiber - a vector defined by fixing all but one index while varying the rest

- Slice - a matrix defined by fixing all but two indices while varying the rest

Accessing Entries

Let \mathcal{A} be the $4 \times 3 \times 2$ tensor with

$$
\mathcal{A}_{:,,, 1}=\left[\begin{array}{ccc}
5 & -1 & 0 \\
0 & 2 & -1 \\
-3 & 8 & -2 \\
1 & 4 & .25
\end{array}\right] \text { and } \mathcal{A}_{: ;,, 2}=\left[\begin{array}{ccc}
.5 & -2 & 0 \\
6 & -5 & -1 \\
7 & .5 & 3 \\
1 & 0 & 1
\end{array}\right]
$$

Exercise: Find

- $\mathcal{A}_{4,, 2}$
- $\mathcal{A}_{2,, ;}$,
- $\mathcal{A}_{2,3,}$
- $\|\mathcal{A}\|^{2}$

Tensor-Matrix Multiplication

Definition

- The k - mode multiplication of a tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ with a matrix $U \in \mathbb{R}^{j \times n_{k}}$ is denoted by $\mathcal{A} \times{ }_{k} U$ and is of size $n_{1} \times \cdots \times n_{k-1} \times j \times n_{k+1} \times \cdots \times n_{d}$
- Element-wise

$$
\left(\mathcal{A} \times{ }_{k} U\right)_{i_{1} \cdots i_{k-1} j i_{k+1} \cdots i_{d}}=\sum_{i_{k}=1}^{n_{k}} a_{i_{1} i_{2} \cdots i_{d}} u_{j i_{k}}
$$

- Which view: k-mode multiplication

Matricization makes this concrete...

Unfolding - Matricization

A tensor "matricization" refers to (specific) mappings of the tensor to a matrix. Given $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$, the m th mode unfolding maps \mathcal{A} to \boldsymbol{A} via $\left(i_{1}, \ldots, i_{d}\right) \rightarrow\left(i_{m}, j\right)$, and

$$
j=1+\sum_{k=1, k \neq m}^{d}\left(i_{k}-1\right)\left(\prod_{l=1, l \neq m}^{k-1} n_{l}\right) .
$$

A graphical illustration is more illuminating...

Unfolding - Matricization

(a) Original \mathcal{A}.

(b) Mode-1 unfolding $\mathcal{A}_{(1)}$.

(c) Mode-2 unfolding $\mathcal{A}_{(2)}$.

(d) Mode-3 unfolding $\mathcal{A}_{(3)}$.

Graphics: Elizabeth Newman, Tufts Mathematics Ph.D. Thesis, "A Step in the Right Dimension", 2019

Unfold Example

$$
\mathcal{A}_{:,,, 1}=\left[\begin{array}{ccc}
5 & -1 & 0 \\
0 & 2 & -1 \\
-3 & 8 & -2 \\
1 & 4 & .25
\end{array}\right] \text { and } \mathcal{A}_{:,:, 2}=\left[\begin{array}{ccc}
.5 & -2 & 0 \\
6 & -5 & -1 \\
7 & .5 & 3 \\
1 & 0 & 1
\end{array}\right]
$$

Exercise: Find the dimensions of the mode-1, mode-2 and mode-3 unfoldings.

Unfold Example

$$
\mathcal{A}_{:,:, 1}=\left[\begin{array}{ccc}
5 & -1 & 0 \\
0 & 2 & -1 \\
-3 & 8 & -2 \\
1 & 4 & .25
\end{array}\right] \text { and } \mathcal{A}_{:,,, 2}=\left[\begin{array}{ccc}
.5 & -2 & 0 \\
6 & -5 & -1 \\
7 & .5 & 3 \\
1 & 0 & 1
\end{array}\right]
$$

Exercise: Find the dimensions of the mode-1, mode-2 and mode-3 unfoldings. Mode 1: $4 \times(3 \cdot 2)$

Unfold Example

$$
\mathcal{A}_{:,:, 1}=\left[\begin{array}{ccc}
5 & -1 & 0 \\
0 & 2 & -1 \\
-3 & 8 & -2 \\
1 & 4 & .25
\end{array}\right] \text { and } \mathcal{A}_{:,,, 2}=\left[\begin{array}{ccc}
.5 & -2 & 0 \\
6 & -5 & -1 \\
7 & .5 & 3 \\
1 & 0 & 1
\end{array}\right]
$$

Exercise: Find the dimensions of the mode-1, mode-2 and mode-3 unfoldings. Mode 2: $3 \times(2 \cdot 4)$

Unfold Example

$$
\mathcal{A}_{:,:, 1}=\left[\begin{array}{ccc}
5 & -1 & 0 \\
0 & 2 & -1 \\
-3 & 8 & -2 \\
1 & 4 & .25
\end{array}\right] \text { and } \mathcal{A}_{:,:, 2}=\left[\begin{array}{ccc}
.5 & -2 & 0 \\
6 & -5 & -1 \\
7 & .5 & 3 \\
1 & 0 & 1
\end{array}\right]
$$

Exercise: Find the dimensions of the mode-1, mode-2 and mode-3 unfoldings. Mode 3: Put the transposes of the lateral slices side by side, $2 \times(4 \cdot 3)$

Tensor-Matrix Products

$$
\mathcal{C}=\mathcal{A} \times_{n} \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)}=\mathbf{X} \boldsymbol{A}_{(n)}
$$

Example:

$$
\mathcal{A}_{:,:, 1}=\left[\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right] ; \quad \mathcal{A}_{:,:, 2}=\left[\begin{array}{cc}
-1 & 4 \\
-3 & 0
\end{array}\right] \quad \text { and } \boldsymbol{X}=\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right] .
$$

$\mathcal{A} \times{ }_{1} \boldsymbol{X}:$

Tensor-Matrix Products

$$
\mathcal{C}=\mathcal{A} \times_{n} \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)}=\mathbf{X} \boldsymbol{A}_{(n)}
$$

Example:

$$
\mathcal{A}_{:, ;, 1}=\left[\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right] ; \quad \mathcal{A}_{:,:, 2}=\left[\begin{array}{cc}
-1 & 4 \\
-3 & 0
\end{array}\right] \quad \text { and } \boldsymbol{X}=\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right] .
$$

$\mathcal{A} \times_{1} \boldsymbol{X}:$
Compute the matrix-matrix product

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{cccc}
1 & 2 & -1 & 4 \\
3 & -2 & -3 & 0
\end{array}\right]=\left[\begin{array}{cccc}
-2 & 4 & 2 & 4 \\
6 & -4 & -6 & 0
\end{array}\right]
$$

Tensor-Matrix Products

$$
\mathcal{C}=\mathcal{A} \times_{n} \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)}=\mathbf{X} \boldsymbol{A}_{(n)}
$$

Example:

$$
\mathcal{A}_{:,,, 1}=\left[\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right] ; \quad \mathcal{A}_{:,,, 2}=\left[\begin{array}{cc}
-1 & 4 \\
-3 & 0
\end{array}\right] \quad \text { and } \boldsymbol{X}=\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right] .
$$

$\mathcal{A} \times{ }_{1} \boldsymbol{X}:$
Soln: $\mathcal{C}_{:,:, 1}=\left[\begin{array}{cc}-2 & 4 \\ 6 & -4\end{array}\right], \quad \mathcal{C}_{:,:, 2}=\left[\begin{array}{cc}2 & 4 \\ -6 & 0\end{array}\right]$

Tensor-Matrix Products

$$
\mathcal{C}=\mathcal{A} \times_{n} \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)}=\mathbf{X} \boldsymbol{A}_{(n)}
$$

Example:

$$
\mathcal{A}_{:,:, 1}=\left[\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right] ; \quad \mathcal{A}_{:,:, 2}=\left[\begin{array}{cc}
-1 & 4 \\
-3 & 0
\end{array}\right] \quad \text { and } \mathbf{Y}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]
$$

Class Exercise: Find $\mathcal{A} \times{ }_{2} \mathbf{Y}$. (In particular, which mode(dim) expands ?)

Tensor-Matrix Products

$$
\mathcal{C}=\mathcal{A} \times_{n} \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)}=\mathbf{X} \boldsymbol{A}_{(n)}
$$

Example:

$$
\mathcal{A}_{:,:, 1}=\left[\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right] ; \quad \mathcal{A}_{:,:, 2}=\left[\begin{array}{cc}
-1 & 4 \\
-3 & 0
\end{array}\right] \quad \text { and } \mathbf{Y}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]
$$

Soln: Form $\boldsymbol{Y} \boldsymbol{A}_{(2)}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 3 & -1 & -3 \\ 2 & -2 & 4 & 0\end{array}\right]$

Tensor-Matrix Products

$$
\mathcal{C}=\mathcal{A} \times_{n} \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)}=\mathbf{X} \boldsymbol{A}_{(n)}
$$

Example:

$$
\mathcal{A}_{:,,, 1}=\left[\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right] ; \quad \mathcal{A}_{:,,, 2}=\left[\begin{array}{cc}
-1 & 4 \\
-3 & 0
\end{array}\right] \quad \text { and } \mathbf{Y}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]
$$

Soln: Result is $\left[\begin{array}{cccc}1 & 3 & -1 & -3 \\ 2 & -2 & 4 & 0 \\ 3 & 1 & 3 & -3\end{array}\right]$

Tensor-Matrix Products

$$
\mathcal{C}=\mathcal{A} \times_{n} \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)}=\mathbf{X} \boldsymbol{A}_{(n)}
$$

Example:

$$
\mathcal{A}_{:,,, 1}=\left[\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right] ; \quad \mathcal{A}_{:,:, 2}=\left[\begin{array}{cc}
-1 & 4 \\
-3 & 0
\end{array}\right] \quad \text { and } \mathbf{Y}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]
$$

Soln: Reshape to get $\mathcal{C}_{:,,, 1}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1\end{array}\right], \quad \mathcal{C}_{:,,, 2}=\left[\begin{array}{ccc}-1 & 4 & 3 \\ -3 & 0 & -3\end{array}\right]$

Tensor-Matrix Products - Contractions

Some tensor-matrix products result in contraction of a dimension.
Example: Let \mathcal{A} be size $5 \times 6 \times 7$, and compute $\mathcal{C}:=\mathcal{A} \times{ }_{3} \mathbf{X}$ where \mathbf{X} is size 2×7.

Solution:

Tensor-Matrix Products - Contractions

Some tensor-matrix products result in contraction of a dimension.
Example: Let \mathcal{A} be size $5 \times 6 \times 7$, and compute $\mathcal{C}:=\mathcal{A} \times{ }_{3} \mathbf{X}$ where \mathbf{X} is size 2×7.

Solution: Form $\mathbf{X} \mathcal{A}_{(3)}$, which is a 2×7 with a $7 \times(5 \cdot 6)$.

Tensor-Matrix Products - Contractions

Some tensor-matrix products result in contraction of a dimension.
Example: Let \mathcal{A} be size $5 \times 6 \times 7$, and compute $\mathcal{C}:=\mathcal{A} \times{ }_{3} \mathbf{X}$ where \mathbf{X} is size 2×7.

Solution: Form $\mathbf{X} \mathcal{A}_{(3)}$, which is a 2×7 with a $7 \times(5 \cdot 6)$.
Result is a $2 \times(5 \cdot 6)$ matrix.

Tensor-Matrix Products - Contractions

Some tensor-matrix products result in contraction of a dimension.
Example: Let \mathcal{A} be size $5 \times 6 \times 7$, and compute $\mathcal{C}:=\mathcal{A} \times{ }_{3} \mathbf{X}$ where \mathbf{X} is size 2×7.

Solution: Form $\mathbf{X} \mathcal{A}_{(3)}$, which is a 2×7 with a $7 \times(5 \cdot 6)$.
Result is a $2 \times(5 \cdot 6)$ matrix. $\Rightarrow \mathcal{C}$ has dimensions $5 \times 6 \times 2$.

Exercises

$$
\mathcal{A}_{:,:, 1}=\left[\begin{array}{ccc}
5 & -1 & 0 \\
0 & 2 & -1 \\
-3 & 8 & -2 \\
1 & 4 & .25
\end{array}\right] \text { and } \mathcal{A}_{:,:, 2}=\left[\begin{array}{ccc}
.5 & -2 & 0 \\
6 & -5 & -1 \\
7 & .5 & 3 \\
1 & 0 & 1
\end{array}\right]
$$

Find

- $\mathcal{A} \times{ }_{2}\left[\begin{array}{lll}4 & 1 & 0\end{array}\right]$
- $\mathcal{A} \times 3\left[\begin{array}{ll}1 & 1\end{array}\right]$

The Kronecker Connection

Suppose \mathcal{C} be $n_{1} \times n_{2} \times \cdots n_{d}$ and define $\mathcal{A}:=\mathcal{C} \times{ }_{j=1}^{d} \boldsymbol{X}_{j}$, where the matrices \boldsymbol{X}_{j} have n_{j} columns, respectively.

Then

$$
\mathcal{A}_{(j)}=\boldsymbol{X}_{j} \mathcal{C}_{(j)}\left(\boldsymbol{X}_{d}^{\top} \otimes \boldsymbol{X}_{d-1}^{\top} \otimes \cdots \otimes \boldsymbol{X}_{j+1}^{\top} \otimes \boldsymbol{X}_{j-1}^{\top} \otimes \cdots \otimes \boldsymbol{X}_{1}^{\top}\right) .
$$

This makes clear the separability of the mode-wise matrix products. Note that one or more of the \boldsymbol{X}_{j} could be identity matrices.

Tensor-Matrix Products

$$
\mathcal{C}=\mathcal{A} \times_{n} \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)}=\mathbf{X} \boldsymbol{A}_{(n)}
$$

Note that, for example,

$$
\mathcal{A} \times_{m} \mathbf{X} \times_{n} \mathbf{Y}=\mathcal{A} \times_{n} \mathbf{Y} \times_{m} \mathbf{X}
$$

Exercise: Prove the identity above!

Example: Let \mathcal{A} be third order. Then $\widetilde{\mathcal{A}}:=\mathcal{A} \times{ }_{1} \boldsymbol{X} \times_{2} \mathbf{Y}=\mathcal{A} \times_{1} \boldsymbol{X} \times_{2} \mathbf{Y} \times_{3} \mathbf{I}$ can be understood as $\widetilde{\mathcal{A}}_{(1)}=\boldsymbol{X} \mathcal{A}_{(1)}\left(\mathbf{I} \otimes \mathbf{Y}^{\top}\right)$, and folding.

Tensor-Matrix Products

$$
\mathcal{C}=\mathcal{A} \times_{n} \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)}=\mathbf{X} \boldsymbol{A}_{(n)}
$$

Note that, for example,

$$
\mathcal{A} \times_{m} \mathbf{X} \times_{n} \mathbf{Y}=\mathcal{A} \times_{n} \mathbf{Y} \times_{m} \mathbf{X}
$$

Exercise: Prove the identity above!
$\underline{\text { Example: }}$ Let \mathcal{A} be third order. Then $\widetilde{\mathcal{A}}:=\mathcal{A} \times{ }_{1} \boldsymbol{X} \times_{2} \mathbf{Y}=\mathcal{A} \times{ }_{1} \boldsymbol{X} \times_{2} \mathbf{Y} \times_{3} \mathbf{I}$

Tensor-Matrix Products

$$
\mathcal{C}=\mathcal{A} \times_{n} \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)}=\mathbf{X} \boldsymbol{A}_{(n)}
$$

Note that, for example,

$$
\mathcal{A} \times_{m} \mathbf{X} \times_{n} \mathbf{Y}=\mathcal{A} \times_{n} \mathbf{Y} \times_{m} \mathbf{X}
$$

Exercise: Prove the identity above!
Example: Let \mathcal{A} be third order. Then $\widetilde{\mathcal{A}}:=\mathcal{A} \times{ }_{1} \boldsymbol{X} \times_{2} \mathbf{Y}=\mathcal{A} \times_{1} \boldsymbol{X} \times_{2} \mathbf{Y} \times_{3} \mathbf{I}$

Tensor-Matrix Products

$$
\mathcal{C}=\mathcal{A} \times_{n} \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)}=\mathbf{X} \boldsymbol{A}_{(n)}
$$

Note that, for example,

$$
\mathcal{A} \times_{m} \mathbf{X} \times{ }_{n} \mathbf{Y}=\mathcal{A} \times_{n} \mathbf{Y} \times_{m} \mathbf{X} .
$$

Exercise: Prove the identity above!
Example: Let \mathcal{A} be third order. Then $\tilde{\mathcal{A}}:=\mathcal{A} \times{ }_{1} \boldsymbol{X} \times 2 \mathbf{Y}=\mathcal{A} \times{ }_{1} \boldsymbol{X} \times{ }_{2} \mathbf{Y} \times{ }_{3} \mathbf{I}$

Tensor-Matrix Products

$$
\mathcal{C}=\mathcal{A} \times_{n} \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)}=\mathbf{X} \boldsymbol{A}_{(n)}
$$

Note that, for example,

$$
\mathcal{A} \times_{m} \mathbf{X} \times_{n} \mathbf{Y}=\mathcal{A} \times_{n} \mathbf{Y} \times_{m} \mathbf{X}
$$

Exercise: Prove the identity above!
Example: Let \mathcal{A} be third order. Then $\widetilde{\mathcal{A}}:=\mathcal{A} \times{ }_{1} \boldsymbol{X} \times_{2} \mathbf{Y}=\mathcal{A} \times{ }_{1} \boldsymbol{X} \times_{2} \mathbf{Y} \times{ }_{3} \mathbf{I}$ In particular, implies $\widetilde{\mathcal{A}}_{:,:, i}=\boldsymbol{X} \mathcal{A}_{:,,, i} \mathbf{Y}^{\top}$; in this example, contracting 2 of the 3 dimensions. So, \mathcal{A} is $p \times n \times 3, \tilde{\mathcal{A}}$ is $m \times r \times 3$, where $m<p, n<r$.

Example 2

Let $\mathcal{A} \in \mathbb{R}^{1 \times 1 \times n}$, that is, just a tube fiber.

Let \mathbf{M} be an $n \times n$ matrix.
Class Exercise: What is the equivalent matrix-arithmetic operation to

$$
\mathcal{A} \times{ }_{3} \mathbf{M} ?
$$

Example 3

Let $\mathcal{A} \in \mathbb{R}^{m \times p \times n}$, and let $\boldsymbol{U}, \boldsymbol{V}, \boldsymbol{W}$ be orthogonal $m \times m, p \times p, n \times n$ matrices, respectively.

Exercise: Show $\|\widehat{\mathcal{A}}\|_{F}=\|\mathcal{A}\|_{F}$, where

$$
\widehat{\mathcal{A}}=\mathcal{A} \times_{1} \boldsymbol{U}^{\top} \times_{2} \boldsymbol{V}^{\top} \times_{3} \boldsymbol{W}^{\top} .
$$

Definition

Recall that $\boldsymbol{P} \in \mathbb{R}^{n \times n}$ is called an orthogonal projection matrix if $\boldsymbol{P}^{T}=\boldsymbol{P}$ and $\boldsymbol{P}^{2}=\boldsymbol{P}$.
Orthogonal projection matrices are not necessarily orthogonal - indeed, they are often not full rank: e.g. if \mathbf{v} has unit length then $\boldsymbol{P}:=\mathbf{v} \mathbf{v}^{T}$ is an orthogonal projector onto span $\{\mathbf{v}\}$.

Example 4

Let $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$, and let $\mathbf{P}_{k}, k=1,2,3$ be $n_{k} \times n_{k}$ orthogonal projection matrices.
Exercise: Show that for any $k=1,2,3$

$$
\left\|\mathcal{A}-\mathcal{A} \times_{k} \mathbf{P}_{k}\right\|_{F}=\left\|\mathcal{A} \times_{k}\left(\mathbf{I}-\mathbf{P}_{k}\right)\right\|_{F}
$$

Exercise: Show that $\boldsymbol{P}_{k} \otimes \mathbf{I}, \mathbf{I} \otimes \boldsymbol{P}_{k}$ are orthogonal projection matrices.
Exercise ${ }^{* *}$: Now show
$\left\|\mathcal{A}-\mathcal{A} \times{ }_{1} \mathbf{P}_{1} \times{ }_{2} \boldsymbol{P}_{2} \times{ }_{3} \boldsymbol{P}_{3}\right\|^{2}=\left\|\mathcal{A} \times{ }_{1}\left(\mathbf{I}-\boldsymbol{P}_{1}\right)\right\|^{2}+\left\|\mathcal{A} \times{ }_{1} \mathbf{P}_{1} \times 2\left(\mathbf{I}-\mathbf{P}_{2}\right)\right\|^{2}+\left\|\mathcal{A} \times{ }_{1} \mathbf{P}_{1} \times{ }_{2} \mathbf{P}_{2} \times\left(\mathbf{I}-\mathbf{P}_{3}\right)\right\|^{2}$.

Questions?

