CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

UT Austin CSE 392 Mar, 2024 2 / 30

Outline

Introduction

2 Tensor-Matrix Multiplication

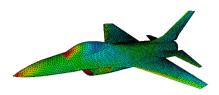
UT Austin CSE 392 Mar, 2024 3 / 30

Introduction - A Multi-Dimensional World

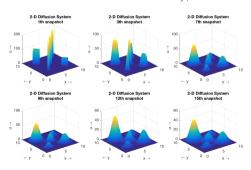
• Much of real-world data is inherently multidimensional

• and is easily stored in/accessed through **high dimensional** arrays

• Many operators and models are natively multi-way



• Simulated data (i.e. intermediate solutions can be), too



Motivation

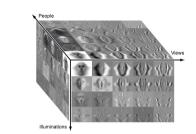
Tensor decompositions give us a way to analyze, compress, and otherwise manipulate operators and data that are far more useful/natural than "flattening" this multidimensional structure into a matrix and using matrix tools.

UT Austin CSE 392 Mar, 2024 6/30

Tensor Applications

• Machine vision: understanding the world in 3D, enable understanding phenomena such as perspective, occlusions, illumination

• Latent semantic tensor indexing: common terms vs. entries vs. parts, co-occurrence of terms

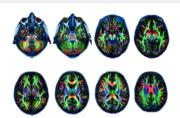


Tensor subspace Analysis for Viewpoint Recognition, Ivanov, Mathies, Vasilescu, ICCV, 2009

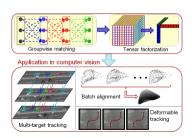
UT Austin CSE 392 Mar, 2024 7/30

Tensor Applications

• Medical imaging: naturally involves 3D (spatio) and 4D (spatio-temporal) correlations



• Video surveillance and motion signature: 2D images + 3rd dimension of time, 3D/4D motion trajectory



8 / 30

Shi, Ling, Hu, Yuan, Xing, Multi-target tracking with motion context in tensor power iteration, CVPR, 2014

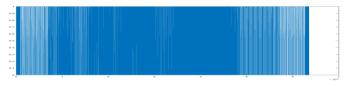
UT Austin CSE 392 Mar, 2024

The Power of Representation

- Traditional matrix-based methods assuming data vectorization are generally agnostic to possible high dimensional correlations
- What is that?

The Power of Representation

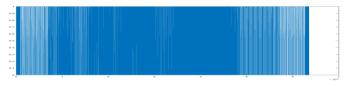
- Traditional matrix-based methods assuming data vectorization are generally agnostic to possible high dimensional correlations
- What is that?



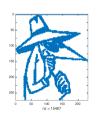
• Observe the same data but in a different (matrix rather than vector) representation

The Power of Representation

- Traditional matrix-based methods assuming data vectorization are generally agnostic to possible high dimensional correlations
- What is that?



• Observe the same data but in a different (matrix rather than vector) representation



• Representation matters! some correlations can only be realized in appropriate representation

Notation and Definition

Uppercase Script: A, is a 3rd order tensor.

Uppercase Bold: X, is a matrix.

Bold lowercase: \boldsymbol{y} , is a vector OR a $1 \times 1 \times n$ tensor.

Kronecker Product of an $m \times m$ with an $n \times n$:

$$m{A} := m{G} \otimes m{B} = egin{bmatrix} g_{11}m{B} & g_{12}m{B} & \cdots & g_{1m}m{B} \ g_{21}m{B} & \cdots & \cdots & g_{2m}m{B} \ dots & dots & dots & dots \ g_{m1}m{B} & \cdots & g_{m(m-1)}m{B} & g_{mm}m{B} \end{bmatrix}$$

Kronecker Products synonymous with notion of separability, computational and storage efficiency. These come up a lot in tensor decompositions.

UT Austin CSE 392 Mar, 2024 10 / 30

Data Organization Reveals Latent Structure

Suppose $\boldsymbol{y} \in \mathbb{R}^{mn}$

Reshape as $m \times n$ matrix,

$$\mathbf{Y} = \mathbf{u}\mathbf{v}^{ op} = \mathbf{u} \circ \mathbf{v}$$
 $\Rightarrow \mathbf{y} = \mathbf{v} \otimes \mathbf{u} = \begin{bmatrix} v_1 \mathbf{u} \\ v_2 \mathbf{u} \\ \vdots \\ v_n \mathbf{u} \end{bmatrix}$

Data Organization Reveals Latent Structure

Suppose $\boldsymbol{y} \in \mathbb{R}^{mn}$

Reshape as $m \times n$ matrix,

$$\mathbf{Y} = \mathbf{u}\mathbf{v}^{ op} = \mathbf{u} \circ \mathbf{v}$$

$$\Rightarrow \mathbf{y} = \mathbf{v} \otimes \mathbf{u} = \begin{bmatrix} v_1 \mathbf{u} \\ v_2 \mathbf{u} \\ \vdots \\ v_n \mathbf{u} \end{bmatrix}$$

Implies storage is reduced from mn to m+n numbers, reveals only 1 important direction.

Data Organization Reveals Latent Structure

Suppose $\boldsymbol{y} \in \mathbb{R}^{mn}$

Reshape as
$$m \times n$$
 matrix,

$$\mathbf{Y} = \mathbf{u}\mathbf{v}^{ op} = \mathbf{u} \circ \mathbf{v}$$

$$\Rightarrow \mathbf{y} = \mathbf{v} \otimes \mathbf{u} = \begin{bmatrix} v_1 \mathbf{u} \\ v_2 \mathbf{u} \\ \vdots \\ v_n \mathbf{u} \end{bmatrix}$$

Retaining the higher dimensional format reveals latent structure.

Tensors

- Notation : $\mathcal{A}^{n_1 \times n_2 \dots, \times n_d}$ d^{th} order tensor
 - $ightharpoonup 0^{th}$ order tensor scalar
 - $ightharpoonup 1^{st}$ order tensor vector

 $ightharpoonup 2^{nd}$ order tensor - matrix

 $ightharpoonup 3^{rd}$ order tensor ...

UT Austin CSE 392 Mar, 2024 12/30

Tensor Inner Product and Norm

Inner product:

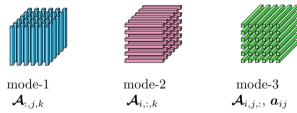
$$\langle \mathcal{A}, \mathcal{B} \rangle = \sum_{i_1=1}^{n_1} \sum_{i_2=1}^{n_2} \cdots \sum_{i_d=1}^{n_d} a_{i_1,\dots,i_d} b_{i_1,\dots,i_d}$$

Norm: Unless otherwise specified, norm refers to the Frobenius norm, which in *d*-dimensional tensorial setting takes the form:

$$\|\mathcal{A}\| = \sqrt{\sum_{i_1=1}^{n_1} \sum_{i_2=1}^{n_2} \cdots \sum_{i_d=1}^{n_d} |a_{i_1,\dots,i_d}|^2}$$

Inside the Box

• Fiber - a vector defined by fixing all but one index while varying the rest



• Slice - a matrix defined by fixing all but two indices while varying the rest

Accessing Entries

Let \mathcal{A} be the $4 \times 3 \times 2$ tensor with

$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 5 & -1 & 0 \\ 0 & 2 & -1 \\ -3 & 8 & -2 \\ 1 & 4 & .25 \end{bmatrix} \text{ and } \mathcal{A}_{:,:,2} = \begin{bmatrix} .5 & -2 & 0 \\ 6 & -5 & -1 \\ 7 & .5 & 3 \\ 1 & 0 & 1 \end{bmatrix}$$

Exercise: Find

- $A_{4,:,2}$
- A_{2.:.:}
- $A_{2,3,:}$
- $\|A\|^2$

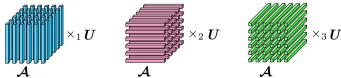
Tensor-Matrix Multiplication

Definition

- The k mode multiplication of a tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ with a matrix $U \in \mathbb{R}^{j \times n_k}$ is denoted by $\mathcal{A} \times_k U$ and is of size $n_1 \times \cdots \times n_{k-1} \times j \times n_{k+1} \times \cdots \times n_d$
- Element-wise

$$(\mathcal{A} \times_k U)_{i_1 \cdots i_{k-1} \mathbf{j} i_{k+1} \cdots i_d} = \sum_{i_k=1}^{n_k} a_{i_1 i_2 \cdots i_d} u_{\mathbf{j} i_k}$$

• Which view: k-mode multiplication



Matricization makes this concrete...

Unfolding - Matricization

A tensor "matricization" refers to (specific) mappings of the tensor to a matrix. Given $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$, the *m*th mode unfolding maps \mathcal{A} to \boldsymbol{A} via $(i_1, \ldots, i_d) \to (i_m, j)$, and

$$j = 1 + \sum_{k=1, k \neq m}^{d} (i_k - 1) \left(\prod_{l=1, l \neq m}^{k-1} n_l \right).$$

A graphical illustration is more illuminating...

Unfolding - Matricization

(a) Original \mathcal{A} .

(b) Mode-1 unfolding $\mathcal{A}_{(1)}$.

(c) Mode-2 unfolding $\mathcal{A}_{(2)}$.

(d) Mode-3 unfolding $\mathcal{A}_{(3)}$.

Graphics: Elizabeth Newman, Tufts Mathematics Ph.D. Thesis, "A Step in the Right Dimension", 2019

UT Austin CSE 392 Mar, 2024 17/30

$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 5 & -1 & 0 \\ 0 & 2 & -1 \\ -3 & 8 & -2 \\ 1 & 4 & .25 \end{bmatrix} \text{ and } \mathcal{A}_{:,:,2} = \begin{bmatrix} .5 & -2 & 0 \\ 6 & -5 & -1 \\ 7 & .5 & 3 \\ 1 & 0 & 1 \end{bmatrix}$$

Exercise: Find the dimensions of the mode-1, mode-2 and mode-3 unfoldings.

UT Austin CSE 392 Mar, 2024 18 / 30

$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 5 & -1 & 0 \\ 0 & 2 & -1 \\ -3 & 8 & -2 \\ 1 & 4 & .25 \end{bmatrix} \text{ and } \mathcal{A}_{:,:,2} = \begin{bmatrix} .5 & -2 & 0 \\ 6 & -5 & -1 \\ 7 & .5 & 3 \\ 1 & 0 & 1 \end{bmatrix}$$

Exercise: Find the dimensions of the mode-1, mode-2 and mode-3 unfoldings.

Mode 1: $4 \times (3 \cdot 2)$

UT Austin CSE 392 Mar, 2024 18 / 30

$$\mathcal{A}_{:,:,1} = egin{bmatrix} 5 & -1 & 0 \ 0 & 2 & -1 \ -3 & 8 & -2 \ 1 & 4 & .25 \end{bmatrix} \ ext{and} \ \mathcal{A}_{:,:,2} = egin{bmatrix} .5 & -2 & 0 \ 6 & -5 & -1 \ 7 & .5 & 3 \ 1 & 0 & 1 \end{bmatrix}$$

Exercise: Find the dimensions of the mode-1, mode-2 and mode-3 unfoldings.

Mode 2: $3 \times (2 \cdot 4)$

UT Austin CSE 392 Mar, 2024 18 / 30

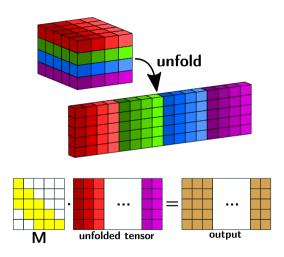
$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 5 & -1 & 0 \\ 0 & 2 & -1 \\ -3 & 8 & -2 \\ 1 & 4 & .25 \end{bmatrix} \text{ and } \mathcal{A}_{:,:,2} = \begin{bmatrix} .5 & -2 & 0 \\ 6 & -5 & -1 \\ 7 & .5 & 3 \\ 1 & 0 & 1 \end{bmatrix}$$

Exercise: Find the dimensions of the mode-1, mode-2 and mode-3 unfoldings.

Mode 3: Put the transposes of the lateral slices side by side, $2 \times (4 \cdot 3)$

UT Austin Mar. 2024 18 / 30

k-Mode Product



$$\mathcal{C} = \mathcal{A} \times_n \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)} = \mathbf{X} \mathbf{A}_{(n)}$$

Example:

$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}; \qquad \mathcal{A}_{:,:,2} = \begin{bmatrix} -1 & 4 \\ -3 & 0 \end{bmatrix} \text{ and } \boldsymbol{X} = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}.$$

 $\mathcal{A} \times_1 \boldsymbol{X}$:

$$C = A \times_n \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)} = \mathbf{X} A_{(n)}$$

Example:

$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}; \qquad \mathcal{A}_{:,:,2} = \begin{bmatrix} -1 & 4 \\ -3 & 0 \end{bmatrix} \text{ and } \mathbf{X} = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}.$$

 $\mathcal{A} \times_1 \boldsymbol{X}$:

Compute the matrix-matrix product

$$\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 & 4 \\ 3 & -2 & -3 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 4 & 2 & 4 \\ 6 & -4 & -6 & 0 \end{bmatrix}$$

$$C = A \times_n \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)} = \mathbf{X} A_{(n)}$$

Example:

$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}; \qquad \mathcal{A}_{:,:,2} = \begin{bmatrix} -1 & 4 \\ -3 & 0 \end{bmatrix} \text{ and } \boldsymbol{X} = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}.$$

$$\mathcal{A} \times_1 \boldsymbol{X}$$
:
Soln: $\mathcal{C}_{:,:,1} = \begin{bmatrix} -2 & 4 \\ 6 & -4 \end{bmatrix}$, $\mathcal{C}_{:,:,2} = \begin{bmatrix} 2 & 4 \\ -6 & 0 \end{bmatrix}$

$$C = A \times_n \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)} = \mathbf{X} A_{(n)}$$

Example:

$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}; \qquad \mathcal{A}_{:,:,2} = \begin{bmatrix} -1 & 4 \\ -3 & 0 \end{bmatrix} \text{ and } \mathbf{Y} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Class Exercise: Find $A \times_2 Y$. (In particular, which mode(dim) expands?)

Mar. 2024 21 / 30

$$C = A \times_n \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)} = \mathbf{X} A_{(n)}$$

Example:

$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}; \qquad \mathcal{A}_{:,:,2} = \begin{bmatrix} -1 & 4 \\ -3 & 0 \end{bmatrix} \text{ and } \mathbf{Y} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Soln: Form
$$\mathbf{Y}\mathbf{A}_{(2)} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & -3 \\ 2 & -2 & 4 & 0 \end{bmatrix}$$

$$C = A \times_n \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)} = \mathbf{X} A_{(n)}$$

Example:

$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}; \qquad \mathcal{A}_{:,:,2} = \begin{bmatrix} -1 & 4 \\ -3 & 0 \end{bmatrix} \text{ and } \mathbf{Y} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Soln: Result is $\begin{bmatrix} 1 & 3 & -1 & -3 \\ 2 & -2 & 4 & 0 \\ 3 & 1 & 3 & -3 \end{bmatrix}$

$$\mathcal{C} = \mathcal{A} \times_n \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)} = \mathbf{X} \mathbf{A}_{(n)}$$

Example:

$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}; \qquad \mathcal{A}_{:,:,2} = \begin{bmatrix} -1 & 4 \\ -3 & 0 \end{bmatrix} \text{ and } \mathbf{Y} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Soln: Reshape to get
$$C_{:,:,1} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \end{bmatrix}$$
, $C_{:,:,2} = \begin{bmatrix} -1 & 4 & 3 \\ -3 & 0 & -3 \end{bmatrix}$

UT Austin CSE 392 Mar, 2024 21/30

Tensor-Matrix Products – Contractions

Some tensor-matrix products result in **contraction** of a dimension.

Example: Let \mathcal{A} be size $5 \times 6 \times 7$, and compute $\mathcal{C} := \mathcal{A} \times_3 \mathbf{X}$ where \mathbf{X} is size 2×7 .

Solution:

Tensor-Matrix Products – Contractions

Some tensor-matrix products result in **contraction** of a dimension.

Example: Let \mathcal{A} be size $5 \times 6 \times 7$, and compute $\mathcal{C} := \mathcal{A} \times_3 \mathbf{X}$ where \mathbf{X} is size 2×7 .

Solution: Form $\mathbf{X}\mathcal{A}_{(3)}$, which is a 2×7 with a $7 \times (5 \cdot 6)$.

Tensor-Matrix Products – Contractions

Some tensor-matrix products result in **contraction** of a dimension.

Example: Let \mathcal{A} be size $5 \times 6 \times 7$, and compute $\mathcal{C} := \mathcal{A} \times_3 \mathbf{X}$ where \mathbf{X} is size 2×7 .

Solution: Form $XA_{(3)}$, which is a 2×7 with a $7 \times (5 \cdot 6)$.

Result is a $2 \times (5 \cdot 6)$ matrix.

Tensor-Matrix Products – Contractions

Some tensor-matrix products result in **contraction** of a dimension.

Example: Let \mathcal{A} be size $5 \times 6 \times 7$, and compute $\mathcal{C} := \mathcal{A} \times_3 \mathbf{X}$ where \mathbf{X} is size 2×7 .

Solution: Form $XA_{(3)}$, which is a 2×7 with a $7 \times (5 \cdot 6)$.

Result is a $2 \times (5 \cdot 6)$ matrix. $\Rightarrow C$ has dimensions $5 \times 6 \times 2$.

Exercises

$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 5 & -1 & 0 \\ 0 & 2 & -1 \\ -3 & 8 & -2 \\ 1 & 4 & .25 \end{bmatrix} \text{ and } \mathcal{A}_{:,:,2} = \begin{bmatrix} .5 & -2 & 0 \\ 6 & -5 & -1 \\ 7 & .5 & 3 \\ 1 & 0 & 1 \end{bmatrix}$$

Find

- $\mathcal{A} \times_2 \begin{bmatrix} 4 & 1 & 0 \end{bmatrix}$ $\mathcal{A} \times_3 \begin{bmatrix} 1 & 1 \end{bmatrix}$

The Kronecker Connection

Suppose C be $n_1 \times n_2 \times \cdots n_d$ and define $A := C \times_{j=1}^d X_j$, where the matrices X_j have n_j columns, respectively.

Then

$$\mathcal{A}_{(j)} = \mathbf{X}_{j} \mathcal{C}_{(j)} \left(\mathbf{X}_{d}^{\top} \otimes \mathbf{X}_{d-1}^{\top} \otimes \cdots \otimes \mathbf{X}_{j+1}^{\top} \otimes \mathbf{X}_{j-1}^{\top} \otimes \cdots \otimes \mathbf{X}_{1}^{\top} \right).$$

This makes clear the separability of the mode-wise matrix products. Note that one or more of the X_i could be identity matrices.

$$C = A \times_n \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)} = \mathbf{X} A_{(n)}$$

Note that, for example,

$$\mathcal{A} \times_m \mathbf{X} \times_n \mathbf{Y} = \mathcal{A} \times_n \mathbf{Y} \times_m \mathbf{X}.$$

Exercise: Prove the identity above!

Example: Let \mathcal{A} be third order. Then $\widetilde{\mathcal{A}} := \mathcal{A} \times_1 \mathbf{X} \times_2 \mathbf{Y} = \mathcal{A} \times_1 \mathbf{X} \times_2 \mathbf{Y} \times_3 \mathbf{I}$ can be understood as $\widetilde{\mathcal{A}}_{(1)} = \mathbf{X} \mathcal{A}_{(1)} (\mathbf{I} \otimes \mathbf{Y}^{\top})$, and folding.

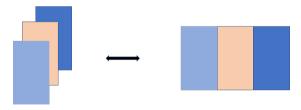
$$C = A \times_n \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)} = \mathbf{X} A_{(n)}$$

Note that, for example,

$$\mathcal{A} \times_m \mathbf{X} \times_n \mathbf{Y} = \mathcal{A} \times_n \mathbf{Y} \times_m \mathbf{X}.$$

Exercise: Prove the identity above!

Example: Let \mathcal{A} be third order. Then $\widetilde{\mathcal{A}} := \mathcal{A} \times_1 \mathbf{X} \times_2 \mathbf{Y} = \mathcal{A} \times_1 \mathbf{X} \times_2 \mathbf{Y} \times_3 \mathbf{I}$



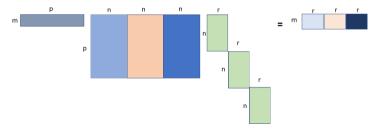
$$C = A \times_n \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)} = \mathbf{X} A_{(n)}$$

Note that, for example,

$$\mathcal{A} \times_m \mathbf{X} \times_n \mathbf{Y} = \mathcal{A} \times_n \mathbf{Y} \times_m \mathbf{X}.$$

Exercise: Prove the identity above!

Example: Let \mathcal{A} be third order. Then $\widetilde{\mathcal{A}} := \mathcal{A} \times_1 \mathbf{X} \times_2 \mathbf{Y} = \mathcal{A} \times_1 \mathbf{X} \times_2 \mathbf{Y} \times_3 \mathbf{I}$



$$C = A \times_n \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)} = \mathbf{X} A_{(n)}$$

Note that, for example,

$$\mathcal{A} \times_m \mathbf{X} \times_n \mathbf{Y} = \mathcal{A} \times_n \mathbf{Y} \times_m \mathbf{X}.$$

Exercise: Prove the identity above!

Example: Let \mathcal{A} be third order. Then $\widetilde{\mathcal{A}} := \mathcal{A} \times_1 \mathbf{X} \times_2 \mathbf{Y} = \mathcal{A} \times_1 \mathbf{X} \times_2 \mathbf{Y} \times_3 \mathbf{I}$

$$C = A \times_n \mathbf{X} \longleftrightarrow \mathbf{C}_{(n)} = \mathbf{X} A_{(n)}$$

Note that, for example,

$$\mathcal{A} \times_m \mathbf{X} \times_n \mathbf{Y} = \mathcal{A} \times_n \mathbf{Y} \times_m \mathbf{X}.$$

Exercise: Prove the identity above!

Example: Let \mathcal{A} be third order. Then $\widetilde{\mathcal{A}} := \mathcal{A} \times_1 \mathbf{X} \times_2 \mathbf{Y} = \mathcal{A} \times_1 \mathbf{X} \times_2 \mathbf{Y} \times_3 \mathbf{I}$ In particular, implies $\widetilde{\mathcal{A}}_{:,:,i} = \mathbf{X} \mathcal{A}_{:,:,i} \mathbf{Y}^{\top}$; in this example, contracting 2 of the 3 dimensions. So, \mathcal{A} is $p \times n \times 3$, $\widetilde{\mathcal{A}}$ is $m \times r \times 3$, where m < p, n < r.

Example 2

Let $A \in \mathbb{R}^{1 \times 1 \times n}$, that is, just a tube fiber.

Let **M** be an $n \times n$ matrix.

Class Exercise: What is the equivalent matrix-arithmetic operation to

$$\mathcal{A} \times_3 \mathbf{M}$$
?

Example 3

Let $A \in \mathbb{R}^{m \times p \times n}$, and let U, V, W be orthogonal $m \times m, p \times p, n \times n$ matrices, respectively.

Exercise: Show $\|\widehat{\mathcal{A}}\|_F = \|\mathcal{A}\|_F$, where

$$\widehat{\mathcal{A}} = \mathcal{A} \times_1 \boldsymbol{U}^{\top} \times_2 \boldsymbol{V}^{\top} \times_3 \boldsymbol{W}^{\top}.$$

Definition

Recall that $P \in \mathbb{R}^{n \times n}$ is called an orthogonal projection matrix if $P^T = P$ and $P^2 = P$.

Orthogonal projection matrices are not necessarily orthogonal – indeed, they are often not full rank: e.g. if \mathbf{v} has unit length then $\mathbf{P} := \mathbf{v}\mathbf{v}^T$ is an orthogonal projector onto span $\{\mathbf{v}\}$.

Example 4

Let $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, and let $\mathbf{P}_k, k = 1, 2, 3$ be $n_k \times n_k$ orthogonal projection matrices.

Exercise: Show that for any k = 1, 2, 3

$$\|\mathcal{A} - \mathcal{A} \times_k \mathbf{P}_k\|_F = \|\mathcal{A} \times_k (\mathbf{I} - \mathbf{P}_k)\|_F$$

Exercise: Show that $P_k \otimes I$, $I \otimes P_k$ are orthogonal projection matrices.

Exercise**: Now show

$$\|\mathcal{A} - \mathcal{A} \times_1 \mathbf{P}_1 \times_2 \mathbf{P}_2 \times_3 \mathbf{P}_3\|^2 = \|\mathcal{A} \times_1 (\mathbf{I} - \mathbf{P}_1)\|^2 + \|\mathcal{A} \times_1 \mathbf{P}_1 \times_2 (\mathbf{I} - \mathbf{P}_2)\|^2 + \|\mathcal{A} \times_1 \mathbf{P}_1 \times_2 \mathbf{P}_2 \times (\mathbf{I} - \mathbf{P}_3)\|^2.$$

 ${\bf Questions?}$