# CSE 392: Matrix and Tensor Algorithms for Data 

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 14: Stochastic Trace Estimation

## Outline

(1) Implicit trace estimation
(2) Stochastic trace estimation
(3) Hutch++

## Matrix Trace

- Given a matrix $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ our goal is to compute the trace:

$$
\operatorname{Tr}(\boldsymbol{A})=\sum_{i=1}^{d} \boldsymbol{A}_{i i} .
$$

- In terms of the eigenvalues, if $\boldsymbol{A}=\boldsymbol{U} \Lambda \boldsymbol{U}^{\top}$ with $\Lambda=\operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{d}\right]$, we know:

$$
\operatorname{Tr}(\boldsymbol{A})=\sum_{i=1}^{d} \lambda_{i} .
$$

- In many situations, access to $\boldsymbol{A}$ available only implicitly through a matrix-vector multiplication oracle. Estimate the trace implicitly (also called matrix-free)?


## Spectral Sums

Given a symmetric positive semidefinite (PSD) matrix $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ with eigen-decompostion $\boldsymbol{A}=\boldsymbol{U} \Lambda \boldsymbol{U}^{T}$ and eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{d}$, and desired function $f(\cdot)$, compute the trace of the matrix function $f(\boldsymbol{A})=\boldsymbol{U} f(\Lambda) \boldsymbol{U}^{\top}$, i.e.,

$$
\operatorname{Tr}(f(\boldsymbol{A}))=\sum_{i=1}^{d} f\left(\lambda_{i}\right)
$$

- Popular examples: $\log$-determinant $(\log (x))$, numerical rank (step function), spectral density $\delta\left(x-\lambda_{i}\right)$, Schatten $p$-norms $\left(x^{p / 2}\right)$, von Neumann Entropy $(x \log (x))$, Estrada index $(\exp (x))$, trace of matrix inverse $\left(\frac{1}{x}\right)$.
- Applications: machine learning, graph signal processing, quantum algorithms, scientific computing, statistics, computational biology and physics.
- Naive approaches : Eigenvalue decomposition, Cholesky Decomposition, singular value decomposition (SVD).
Cost: $O\left(d^{3}\right)$ or [Theory: $O\left(d^{\omega}\right)$ and $\omega=2.373$ ].


## Implicit trace estimation

- Access to $\boldsymbol{A}$ implicitly through a matrix-vector multiplication oracle.
- Typically useful when $\boldsymbol{A}$ is not stored explicitly, but we have an efficient algorithm for multiplying $\boldsymbol{A}$ by a vector.
- Matrix-vector products (Matvecs) cost $O(\mathrm{nnz}(\boldsymbol{A}))$.
- Examples: Hessians in optimization, matrix functions as polynomials, structured matrices, etc.


How many matvecs $\boldsymbol{A} \boldsymbol{x}_{1}, \ldots, \boldsymbol{A} \boldsymbol{x}_{m}$ are needed to estimate the trace?

## A naive approach

- Set $\boldsymbol{x}_{l}=\boldsymbol{e}_{l}$ for $l=1, \ldots, d$.
- Return $\operatorname{Tr}(\boldsymbol{A})=\sum_{l=1}^{d} \boldsymbol{x}_{l}^{\top} \boldsymbol{A} \boldsymbol{x}_{l}$.
- Total computational cost $O(\mathrm{nnz}(\boldsymbol{A}) d)$.


Exact solution, but required $d$ matvecs. Can we approximately estimate the trace with $\ll d$ matvecs?

## Stochastic Trace Estimation

## Hutchinson's stochastic trace estimator

- Hutchinson [Hutchinson, 1990] proposed a method for implicit matrix trace estimation:

$$
\begin{equation*}
\operatorname{Tr}(A) \approx \frac{1}{m} \sum_{l=1}^{m} \boldsymbol{x}_{l}^{\top} A \boldsymbol{x}_{l} \tag{1}
\end{equation*}
$$

where $\boldsymbol{x}_{l}, l=1, \ldots, m$, are random vectors with i.i.d. random $\{+1,-1\}$ entries.

- Randomized method: Simple, powerful, and widely used method for trace estimation.
- Theoretical analyses were presented in [Avron, Toledo 2011], [Roosta, Ascher 2015].



## Stochastic trace estimator

## Theorem

Let $\boldsymbol{A}$ be an $d \times d$ symmetric positive semidefinite ( $P S D$ ) matrix and $\boldsymbol{x}_{l}, l=1, \ldots, m$ be random starting vectors with Radamacher distribution. Then, for $\tilde{\operatorname{Tr}}_{m}(\boldsymbol{A})=\frac{1}{m} \sum_{l=1}^{m} \boldsymbol{x}_{l}^{\top} \boldsymbol{A} \boldsymbol{x}_{l}$, with $m=O\left(\frac{\log (1 / \eta)}{\epsilon^{2}}\right)$, we have

$$
\operatorname{Pr}\left[\left|\tilde{\operatorname{Tr}}_{m}(\boldsymbol{A})-\operatorname{Tr}(\boldsymbol{A})\right| \leq \epsilon|\operatorname{Tr}(\boldsymbol{A})|\right] \geq 1-\eta
$$

Radamacher distribution: vectors with $\{ \pm 1\}$ entries with equal probabilities.


## Expected Value Analysis

## Hutchinson's Estimator:

- Draw $\boldsymbol{x}_{l}, l=1, \ldots, m$, vectors with i.i.d. random $\{+1,-1\}$ entries.
- Return $\tilde{\operatorname{Tr}}_{m}(\boldsymbol{A})=\frac{1}{m} \sum_{l=1}^{m} \boldsymbol{x}_{l}^{\top} \boldsymbol{A} \boldsymbol{x}_{l}$ as approximation to $\operatorname{Tr}(\boldsymbol{A})$.

Expected value analysis:
For a single random $\pm 1$ vector $\boldsymbol{x}$, we have

$$
\mathbb{E}\left[\tilde{\operatorname{Tr}}_{m}(\boldsymbol{A})\right]=\mathbb{E}\left[\boldsymbol{x}_{l}^{\top} \boldsymbol{A} \boldsymbol{x}_{l}\right]=\mathbb{E} \sum_{i=1}^{d} \sum_{j=1}^{d} x_{i} x_{j} \boldsymbol{A}_{i j}=\sum_{i=1}^{d} \sum_{j=1}^{d} \mathbb{E}\left[x_{i} x_{j} \boldsymbol{A}_{i j}\right]=\sum_{i=1}^{d} \boldsymbol{A}_{i i}
$$

So the estimator is correct in expectation:

$$
\mathbb{E}\left[\tilde{\operatorname{Tr}}_{m}(\boldsymbol{A})\right]=\operatorname{Tr}(\boldsymbol{A})
$$

## Variance Analysis

## Hutchinson's Estimator:

- Draw $\boldsymbol{x}_{l}, l=1, \ldots, m$, vectors with i.i.d. random $\{+1,-1\}$ entries.
- Return $\tilde{\operatorname{Tr}}_{m}(\boldsymbol{A})=\frac{1}{m} \sum_{l=1}^{m} \boldsymbol{x}_{l}^{\top} \boldsymbol{A} \boldsymbol{x}_{l}$ as approximation to $\operatorname{Tr}(\boldsymbol{A})$.


## Variance analysis:

$$
\begin{aligned}
\operatorname{Var}\left[\tilde{\operatorname{Tr}}_{m}(\boldsymbol{A})\right] & =\frac{1}{m} \operatorname{Var}\left[\boldsymbol{x}_{l}^{\top} \boldsymbol{A} \boldsymbol{x}_{l}\right]=\frac{1}{m}\left[\mathbb{E}\left[\left(\boldsymbol{x}_{l}^{\top} \boldsymbol{A} \boldsymbol{x}_{l}\right)^{2}\right]-\operatorname{Tr}(\boldsymbol{A})^{2}\right] \\
\mathbb{E}\left[\left(\boldsymbol{x}_{l}^{\top} \boldsymbol{A} \boldsymbol{x}_{l}\right)^{2}\right] & =\mathbb{E}\left[\left(\sum_{i, j} x_{i} x_{j} \boldsymbol{A}_{i j}\right)\left(\sum_{i^{\prime}, j^{\prime}} x_{i^{\prime}} x_{j^{\prime}} \boldsymbol{A}_{i^{\prime} j^{\prime}}\right)\right] \\
& =2 \sum_{i \neq j} \boldsymbol{A}_{i j}^{2}+\sum_{i \neq j} \boldsymbol{A}_{i i} \boldsymbol{A}_{j j}+\sum_{i} \boldsymbol{A}_{i i}^{2}
\end{aligned}
$$

We used that $x_{i} x_{j}$ and $x_{i^{\prime}} x_{j^{\prime}}$ are pairwise independent. Therefore,

$$
\operatorname{Var}\left[\tilde{\operatorname{Tr}}_{m}(\boldsymbol{A})\right]=\frac{2}{m} \sum_{i \neq j} \boldsymbol{A}_{i j}^{2} \leq \frac{2}{m}\|\boldsymbol{A}\|_{F}^{2}
$$

## Analysis

Chebyshev's inequality : $\operatorname{Pr}(|X-\mathbb{E}[X]| \geq \tau) \leq \frac{\operatorname{Var}(X)}{\tau^{2}}$.
We have $\mathbb{E}\left[\tilde{\operatorname{Tr}}_{m}(\boldsymbol{A})\right]=\operatorname{Tr}(\boldsymbol{A})$ and $\operatorname{Var}\left[\tilde{\operatorname{Tr}}_{m}(\boldsymbol{A})\right] \leq \frac{2}{m}\|\boldsymbol{A}\|_{F}^{2}$. Choosing $\tau=\epsilon \cdot \operatorname{Tr}(\boldsymbol{A})$ :

$$
\begin{aligned}
\operatorname{Pr}\left(\left(\left|\tilde{\operatorname{Tr}}_{m}(\boldsymbol{A})-\operatorname{Tr}(\boldsymbol{A})\right| \geq \epsilon \cdot \operatorname{Tr}(\boldsymbol{A})\right)\right. & \leq \frac{\operatorname{Var}\left(\tilde{\operatorname{Tr}}_{m}(\boldsymbol{A})\right)}{(\epsilon \cdot \operatorname{Tr}(\boldsymbol{A}))^{2}} \\
& \leq \frac{2}{m} \frac{\|\boldsymbol{A}\|_{F}^{2}}{(\epsilon \cdot \operatorname{Tr}(\boldsymbol{A}))^{2}}=\frac{2}{m \epsilon^{2}}
\end{aligned}
$$

For probability $\eta$, we can select $m \geq \frac{2}{\eta \epsilon^{2}}$.

Can improve this to $m=O\left(\frac{\log (1 / \eta)}{\epsilon^{2}}\right)$, using Hanson- Wright inequality.

## Improved Analysis

Hanson-Wright inequality [Hanson \& Wright, 1971] : Given a symmetric matrix $\boldsymbol{A}$ and random vector $\boldsymbol{x}$ with i.i.d sub-Gaussian entries, with constant sub-Gaussian parameter $C$, we have for $t \geq 0$ :

$$
\operatorname{Pr}\left(\left|\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}-\mathbb{E}\left[\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}\right]\right| \geq t\right) \leq 2 \exp \left(-c \cdot \min \left(\frac{t^{2}}{\|\boldsymbol{A}\|_{F}^{2}}, \frac{t}{\|\boldsymbol{A}\|_{2}}\right)\right)
$$

for some universal constant $c>0$ that only depending on $C$.

## Improved Analysis

Hanson-Wright inequality [Hanson \& Wright, 1971] : Given a symmetric matrix $\boldsymbol{A}$ and random vector $\boldsymbol{x}$ with i.i.d sub-Gaussian entries, with constant sub-Gaussian parameter $C$, we have for $t \geq 0$ :

$$
\operatorname{Pr}\left(\left|\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}-\mathbb{E}\left[\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}\right]\right| \geq t\right) \leq 2 \exp \left(-c \cdot \min \left(\frac{t^{2}}{\|\boldsymbol{A}\|_{F}^{2}}, \frac{t}{\|\boldsymbol{A}\|_{2}}\right)\right)
$$

for some universal constant $c>0$ that only depending on $C$.

## Markov's inequality :

$$
\operatorname{Pr}(|X-\mathbb{E}[X]| \geq \tau) \leq \frac{\mathbb{E}\left[X^{q}\right]}{\tau^{q}}
$$

Choose $\tau=\left(2 \epsilon-\epsilon^{2}\right) \cdot \operatorname{Tr}(\boldsymbol{A})$ and $q=\log (1 / \eta)$, then with some work we get the theorem with $m=O\left(\frac{\log (1 / \eta)}{\epsilon^{2}}\right)$.
Alternatively, can also use the Markov's inequality (the exponential version) and some recent results, see [Roosta, Ascher 2015].

## Trace Estimation

## Further Reading:

- Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix. by H. Avron and S. Toledo.
- Improved bounds on sample size for implicit matrix trace estimators by Roosta-Khorasani and Uri Ascher.


## Exercise:

- Would the proof using the Chebyshev inequality work if $\boldsymbol{x}_{l}$ 's are drawn from i.i.d Gaussian distribution $\mathcal{N}(0,1)$ ? What are the expectation and the variance of the estimate? (Hint: Note that $\boldsymbol{y}_{l}=\boldsymbol{U} \boldsymbol{x}_{l}$ are also Gaussian for unitary $\boldsymbol{U} . \chi^{2}$-distribution.)


## Hutch++

## Hutch++ : Improved trace estimator

- Hutchinson's estimator is powerful, and gives a nice rate of convergence. But requires $m=O\left(1 / \epsilon^{2}\right)$ random vectors and matvecs.
- Recent results by Meyer et al., 2021, showed we can improve this to $m=O(1 / \epsilon)$ matvecs.
- Idea of Hutch++ - Matrices might have decaying eigenvalues. Trace of a low rank approximation of the matrix is a good approximation to the matrix trace.
- Split the trace (spectrum) as sum of trace of top $k$ eigenvalues and bottom $n-k$ eigenvalues.

$$
\operatorname{Tr}(\boldsymbol{A})=\operatorname{Tr}\left(\boldsymbol{A}_{k}\right)+\operatorname{Tr}\left(\boldsymbol{A}-\boldsymbol{A}_{k}\right) .
$$

Meyer, Raphael A., et al. "Hutch++: Optimal stochastic trace estimation." Symposium on Simplicity in Algorithms (SOSA). Society for Industrial and Applied Mathematics, 2021.

## Hutch++



Explicitly estimate the top few eigenvalues of $\boldsymbol{A}$. Use Hutchinson's for the rest.

- Find a good rank- $k$ approximation $\tilde{\boldsymbol{A}}_{k}$.
- Observe $\operatorname{Tr}(\boldsymbol{A})=\operatorname{Tr}\left(\tilde{\boldsymbol{A}}_{k}\right)+\operatorname{Tr}\left(\boldsymbol{A}-\tilde{\boldsymbol{A}}_{k}\right)$.
- Compute $\operatorname{Tr}\left(\tilde{\boldsymbol{A}}_{k}\right)$ exactly.
- Return Hutch $\left.++(\boldsymbol{A})=\operatorname{Tr}\left(\tilde{\boldsymbol{A}}_{k}\right)+\tilde{\operatorname{Tr}}_{m}\left(\boldsymbol{A}-\tilde{\boldsymbol{A}}_{k}\right)\right)$.

If $k=m=O(1 / \epsilon)$, then $|\operatorname{Hutch}++(\boldsymbol{A})-\operatorname{Tr}(\boldsymbol{A})| \leq \epsilon \operatorname{Tr}(\boldsymbol{A})$.

## Good low rank approximation

Let $\boldsymbol{A}_{k}$ be the best rank- $k$ approximation of $\boldsymbol{A}$.

## Lemma (Woo14)

Let $\boldsymbol{S} \in \mathbb{R}^{d \times m}$ have i.i.d. random entries from $\mathcal{N}(0,1), \boldsymbol{Q}=\operatorname{orth}(\boldsymbol{A S})$ and $\tilde{\boldsymbol{A}}_{k}=\boldsymbol{Q} \boldsymbol{Q}^{T} \boldsymbol{A}$. Then if $m=O(k+\log (1 / \delta))$, with probability $1-\delta$,

$$
\left\|\boldsymbol{A}-\tilde{\boldsymbol{A}}_{k}\right\|_{F} \leq 2\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{F}
$$

We can compute $\operatorname{Tr}\left(\tilde{\boldsymbol{A}}_{k}\right)$ with $2 m$ matvecs with $\boldsymbol{A}$ and $O(m n)$ space:

$$
\operatorname{Tr}\left(\tilde{\boldsymbol{A}}_{k}\right)=\operatorname{Tr}\left(\boldsymbol{Q} \boldsymbol{Q}^{T} \boldsymbol{A}\right)=\operatorname{Tr}\left(\boldsymbol{Q}^{T}(\boldsymbol{A} \boldsymbol{Q})\right)
$$

## Hutch++ Algorithm

- Input: Number of matvecs $m$ and input matrix $\boldsymbol{A}$.
- Sample $\boldsymbol{S} \in \mathbb{R}^{d \times m / 3}$ and $\boldsymbol{G} \in \mathbb{R}^{d \times m / 3}$ with i.i.d. entries from $\mathcal{N}(0,1)$.
- Compute $\boldsymbol{Q}=\operatorname{orth}(\boldsymbol{A S})$.
- Return Hutch $++(\boldsymbol{A})=\operatorname{Tr}\left(\boldsymbol{Q}^{T}(\boldsymbol{A} \boldsymbol{Q})\right)+\frac{3}{m} \operatorname{Tr}\left(\boldsymbol{G}^{T}\left(I-\boldsymbol{Q} \boldsymbol{Q}^{T}\right) \boldsymbol{A}\left(I-\boldsymbol{Q} \boldsymbol{Q}^{T}\right) \boldsymbol{G}\right)$.

We have the following result:

## Lemma

Let $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ be a PSD matrix and $\boldsymbol{A}_{k}$ be its best rank- $k$ approximation. Then,

$$
\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{F} \leq \frac{1}{2 \sqrt{k}} \operatorname{Tr}(\boldsymbol{A})
$$

## Hutch++ mean and variance

## Theorem

Let $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ be a $P S D$ matrix, for fixed $k$ and $m$, construct $\boldsymbol{Q} \in \mathbb{R}^{d \times m}$ as before. Let Hutch $++(\boldsymbol{A})=\operatorname{Tr}\left(\boldsymbol{Q}^{T}(\boldsymbol{A} \boldsymbol{Q})\right)+\tilde{\operatorname{Tr}}_{m}\left(\left(I-\boldsymbol{Q} \boldsymbol{Q}^{T}\right) \boldsymbol{A}\right)$. Then,

$$
\begin{aligned}
\mathbb{E}[\text { Hutch }++(\boldsymbol{A})] & =\operatorname{Tr}(\boldsymbol{A}) \\
\operatorname{Var}[\text { Hutch }++(\boldsymbol{A})] & \leq \frac{1}{k m} \operatorname{Tr}^{2}(\boldsymbol{A})
\end{aligned}
$$

For the mean, we have $\mathbb{E}[$ Hutch $++(\boldsymbol{A})]=\mathbb{E}\left[\operatorname{Tr}\left(\boldsymbol{Q}^{T}(\boldsymbol{A} \boldsymbol{Q})\right)\right]+\mathbb{E}\left[\mathbb{E}\left[\tilde{\operatorname{Tr}}_{m}\left(\left(I-\boldsymbol{Q} \boldsymbol{Q}^{T}\right) \boldsymbol{A}\right) \mid \boldsymbol{Q}\right]\right]$.
For variance, we use the Conditional Variance Formula,

$$
\operatorname{Var}[H u t c h++(\boldsymbol{A})]=\mathbb{E}[\operatorname{Var}[\text { Hutch }++(\boldsymbol{A}) \mid \boldsymbol{Q}]]+\operatorname{Var}[\mathbb{E}[\text { Hutch }++(\boldsymbol{A}) \mid \boldsymbol{Q}]] .
$$

Can show $\operatorname{Var}[\mathbb{E}[$ Hutch $++(\boldsymbol{A}) \mid \boldsymbol{Q}]]=0$.

## Exercise

## Further Reading:

- Meyer, Raphael A., et al. "Hutch++: Optimal stochastic trace estimation." Symposium on Simplicity in Algorithms (SOSA). Society for Industrial and Applied Mathematics, 2021.
- https://ram900.hosting.nyu.edu/hutchplusplus/

Hints for Problem 4 in HW2: Write $\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{F}$ and $\operatorname{Tr}(\boldsymbol{A})$ in terms of eigenvalues. Next, use the Holder's inequality $\|v\|_{2}^{2} \leq\|v\|_{1}\|v\|_{\infty}$. Note the function $\gamma \rightarrow \frac{\sqrt{a \gamma}}{b+\gamma}$ is maximized at $\gamma=b$, so $\frac{\sqrt{a \gamma}}{b+\gamma} \leq \frac{\sqrt{a b}}{2 b}$. Choose appropriate $a$ and $b$ to bound the ratio $\frac{\left\|\boldsymbol{A}-\boldsymbol{A}_{\boldsymbol{k}}\right\|_{F}}{\operatorname{Tr}(\boldsymbol{A})}$.

## Matlab Demo

