CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 13: Krylov subspace methods

Outline

(1) Krylov subspace methods

- Lanczos algorithm
- Block Krylov method

2 Linear system solvers

Iterative methods

- Subspace iteration/ power method: multiple passes over the matrix A.
- With q iterations, we can achieve:

$$\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{z}_q\boldsymbol{z}_q^{\top}\|_F \leq (1+\epsilon)\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{v}_1\boldsymbol{v}_1^{\top}\|_F.$$

• if
$$q = O\left(\frac{\log d/\epsilon}{\gamma}\right)$$
 (if gap is large) or
• $q = O\left(\frac{\log d/\epsilon}{\epsilon}\right)$ (if gap is too small or for gap independent analysis).

Krylov subspace methods

• Given a square matrix A and a starting vector z_1 , the *Krylov Subspace* of dimension q is given by:

$$oldsymbol{K}_q(oldsymbol{A},oldsymbol{z}_1) = ext{span}\{oldsymbol{z}_1,oldsymbol{A}oldsymbol{z}_1,\dots,oldsymbol{A}^qoldsymbol{z}_1\}$$

- Important class of projection methods for solving linear systems and for eigenvalue problems.
- Properties of K_q : $K_q = \{\mathbf{p}(A)\mathbf{z} | \mathbf{p} = \text{polynomial of degree} \le q\}.$ $K_q = K_{q_1}$ for all $q \ge q_1$. Moreover, K_{q_1} is invariant under A.
- \bullet For square matrix ${\boldsymbol A}$: Arnoldi's Algorithm
- \bullet For symmetric matrix \boldsymbol{A} : Lanczos Algorithm
- For rectangular matrix $B \in \mathbb{R}^{n \times d}$ and SVD, we consider $A = B^{\top}B$.

Lanczos algorithm

• Given a symmetric matrix $A \in \mathbb{R}^{d \times d}$ and a starting vector z_1 , compute an orthonormal basis Z_q of $K_q(A, z_1)$.

Lanczos algorithm

• Choose a starting vector \boldsymbol{z}_1 , with unit norm. Set $\beta_1 = 0, \boldsymbol{z}_0 = 0$.

• For
$$l = 1, \dots, q - 1$$

• $\mathbf{y}_l = \mathbf{A}\mathbf{z}_l - \beta_l \mathbf{z}_{l-1}$
• $\alpha_l = \langle \mathbf{y}_l, \mathbf{z}_l \rangle$
• $\mathbf{y}_l = \mathbf{y}_l - \alpha_l \mathbf{z}_l$
• $\beta_{l+1} = ||\mathbf{y}_l||_2$. If $\beta_{l+1} = 0$ then stop
• $\mathbf{z}_{l+1} = \mathbf{y}_l / \beta_{l+1}$
• Return $\mathbf{Z}_q = [\mathbf{z}_1, \dots, \mathbf{z}_q]$

In theory z_l 's defined by 3-term recurrence are orthogonal. But in practice, we need reorthogonalization.

UT Austin

Lanczos algorithm

• The Rayleigh Ritz-projection is given by:

$$T_q = Z_q^\top A Z_q.$$

• The Ritz matrix is a tridiagonal matrix:

- Let u be the top eigenvector of T_q .
- Eigenvector estimate of A will be $w = Z_q u$.
- \bullet If non-symmetric, Arnoldi's algorithm. ${\it T}_q$ will be Upper Hessenberg matrix.

UT Austin

Convergence

Theorem (Lanczos algorithm Convergence)

Let $\gamma = \frac{\lambda_1 - \lambda_2}{\lambda_1}$ be the gap between the first and second largest eigenvalues of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$. If Lanczos algorithm is initialized with a random Gaussian vector then, with high probability, after $q = O\left(\frac{\log d/\epsilon}{\sqrt{\gamma}}\right)$ steps, we have for the estimate $\mathbf{w} = \mathbf{Z}_q \mathbf{u}$:

$$\|\boldsymbol{A} - \boldsymbol{A} \boldsymbol{w} \boldsymbol{w}^{\top}\|_{F}^{2} \leq (1+\epsilon) \|\boldsymbol{A} - \boldsymbol{A} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\top}\|_{F}^{2}.$$

• Gapless: For
$$q = O\left(\frac{\log d/\epsilon}{\sqrt{\epsilon}}\right)$$
 steps, we obtain a \boldsymbol{w} satisfying:

$$\|\boldsymbol{A} - \boldsymbol{A} \boldsymbol{w} \boldsymbol{w}^{\top}\|_{F}^{2} \leq (1+\epsilon) \|\boldsymbol{A} - \boldsymbol{A} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\top}\|_{F}^{2}.$$

• Total runtime: $O(\operatorname{nnz}(\boldsymbol{A})q) = O\left(\operatorname{nnz}(\boldsymbol{A}) \cdot \frac{\log d/\epsilon}{\sqrt{\epsilon}}\right).$

Proof:

First, we have

Claim: Amongst all vectors in the span of the Krylov subspace (which are given by $w = Z_q x$), $w = Z_q u$ minimizes the error $||A - Aww^{\top}||_F^2$.

Proof:

First, we have

Claim: Amongst all vectors in the span of the Krylov subspace (which are given by $\boldsymbol{w} = \boldsymbol{Z}_q \boldsymbol{x}$), $\boldsymbol{w} = \boldsymbol{Z}_q \boldsymbol{u}$ minimizes the error $\|\boldsymbol{A} - \boldsymbol{A} \boldsymbol{w} \boldsymbol{w}^{\top}\|_F^2$.

We know that, this is equivalent to maximizing $\|Aww^{\top}\|_{F}^{2}$. Next, u is the top eigenvector of $T_{q} = Z_{q}^{\top}AZ_{q}$.

Proof:

First, we have

Claim: Amongst all vectors in the span of the Krylov subspace (which are given by $\boldsymbol{w} = \boldsymbol{Z}_q \boldsymbol{x}$), $\boldsymbol{w} = \boldsymbol{Z}_q \boldsymbol{u}$ minimizes the error $\|\boldsymbol{A} - \boldsymbol{A} \boldsymbol{w} \boldsymbol{w}^{\top}\|_F^2$.

We know that, this is equivalent to maximizing $\|\boldsymbol{A}\boldsymbol{w}\boldsymbol{w}^{\top}\|_{F}^{2}$. Next, \boldsymbol{u} is the top eigenvector of $\boldsymbol{T}_{q} = \boldsymbol{Z}_{q}^{\top}\boldsymbol{A}\boldsymbol{Z}_{q}$.

Next, we show that, if we set $q = O\left(\frac{\log d/\epsilon}{\sqrt{\gamma}}\right)$ and compute \mathbf{Z}_q , then there a vector $\mathbf{w} = \mathbf{Z}_q \mathbf{x}$ such that $\langle \mathbf{v}_1, \mathbf{w} \rangle \ge 1 - \epsilon$. I.e., there is a \mathbf{w} in the Krylov subspace that has a large inner product with the top eigenvector \mathbf{v}_1 . The vector \boldsymbol{w} can be written as

$$\boldsymbol{w} = p_q(\boldsymbol{A})\boldsymbol{z}_1,$$

where $p_q(\cdot)$ is called the Lanczos polynomial and has degree q. For any q degree polynomial p_q , there is some \boldsymbol{x} such that $\boldsymbol{Z}_q \boldsymbol{x} = p_q(\boldsymbol{A})\boldsymbol{z}_1$, because any linear combinations of $\boldsymbol{z}_1, \boldsymbol{A}\boldsymbol{z}_1, \ldots, \boldsymbol{A}^q \boldsymbol{z}_1$ lie in the span of \boldsymbol{Z}_q . The vector \boldsymbol{w} can be written as

$$\boldsymbol{w} = p_q(\boldsymbol{A})\boldsymbol{z}_1,$$

where $p_q(\cdot)$ is called the Lanczos polynomial and has degree q. For any q degree polynomial p_q , there is some \boldsymbol{x} such that $\boldsymbol{Z}_q \boldsymbol{x} = p_q(\boldsymbol{A})\boldsymbol{z}_1$, because any linear combinations of $\boldsymbol{z}_1, \boldsymbol{A}\boldsymbol{z}_1, \ldots, \boldsymbol{A}^q \boldsymbol{z}_1$ lie in the span of \boldsymbol{Z}_q .

Let us write $\boldsymbol{z}_1 = \sum_{i=1}^d \mu_i \boldsymbol{v}_i$ and $p_q(\boldsymbol{A}) \boldsymbol{z}_1 = \sum_{i=1}^d \rho_i \boldsymbol{v}_i$, then we have

 $\rho_i = \mu_i p_q(\lambda_i)$

Claim: There is a $O\left(\sqrt{\frac{1}{\gamma}}\log(1/\epsilon')\right)$ degree polynomial \hat{p} such that $\hat{p}(1) = 1$ and $|\hat{p}(t)| \le \epsilon'$ for $0 \le t \le 1 - \gamma$.

Polynomials

Plots are from https://www.chrismusco.com/amlds2023/notes/lecture11.html.

We set $p_q(t) = \hat{p}(t/\lambda_1)$, and we have $\rho_i = \mu_i p_q(\lambda_i)$. We follow similar steps as the power method proof.

$$\frac{|\rho_j|}{|\rho_1|} = \frac{p_q(\lambda_i)|\mu_i|}{p_q(\lambda_1)|\mu_1|} = \frac{\hat{p}_q(\lambda_i/\lambda_1)|\mu_i|}{|\mu_1|} \le \sqrt{\epsilon/d}.$$

For $O\left(\sqrt{\frac{1}{\gamma}}\log(1/\epsilon')\right)$ with $\epsilon' = \sqrt{\epsilon/d}/d^3$.

Block Krylov method

• For larger $k \ge 1$ (finding the top-k singular vectors/values).

Block Lanczos Method

- Choose $\boldsymbol{S} \in \mathbb{R}^{d \times k}$ a random Gaussian matrix .
- Set $\boldsymbol{K} = [\boldsymbol{S}, \boldsymbol{A}\boldsymbol{S}, \dots, \boldsymbol{A}^{q-1}\boldsymbol{S}].$
- $\boldsymbol{Z} = \operatorname{orth}(\boldsymbol{K})$
- Compute $T = Z^{\top}AZ$
- Set \tilde{U}_k to top k eigenvectors of T
- Return $\boldsymbol{Z}_q \tilde{\boldsymbol{U}}_k$

Total runtime: $O(\operatorname{nnz}(A)kq)$. With $q = O\left(\frac{\log d/\epsilon}{\sqrt{\epsilon}}\right)$.

Krylov methods

Further Reading:

- Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value Decomposition by Cameron Musco, Christopher Musco.
- Structural Convergence Results for Approximation of Dominant Subspaces from Block Krylov Spaces by Petros Drineas, Ilse Ipsen, Eugenia-Maria Kontopoulou, Malik Magdon-Ismail.
- https://www.chrismusco.com/amlds2022/lectures/lanczos_method.html

Linear system solvers

• Given a square matrix $A \in \mathbb{R}^{d \times d}$ and a vector $b \in \mathbb{R}^d$, solve:

$$Ax = b.$$

• Iterative methods: Solve for \boldsymbol{x} iteratively as:

$$\boldsymbol{x}_{l+1} = \boldsymbol{x}_l + \alpha \boldsymbol{r}$$

- r = a certain direction given some starting vector x_0 .
- Minimum residual methods: $\boldsymbol{x}(\alpha) = \boldsymbol{x} + \alpha \boldsymbol{r}$, with $\boldsymbol{r} = \boldsymbol{b} \boldsymbol{A}\boldsymbol{x}$. $\min_{\alpha} \|\boldsymbol{b} \boldsymbol{A}\boldsymbol{x}(\alpha)\|_2$ with some orthogonal condition.
- Steepest Descent:

 $egin{array}{r_l} &= & m{b} - m{A}m{x}_l \ lpha &= & \langlem{r}_l,m{r}_l
angle/\langlem{A}m{r}_l,m{r}_l
angle \ m{x}_{l+1} &= & m{x}_l + lpham{r}_l \end{array}$

UT Austin

Krylov subspace methods

- Lanczos Algorithm: For symmetric matrix A, orthonormal basis Z_q and tridiagonal matrix T_q . (Arnoldi's method for non-symmetric)
- From Petrov-Galerkin condition, we get:

$$oldsymbol{x}_q = oldsymbol{x}_0 + oldsymbol{Z}_q oldsymbol{T}_q^{-1} oldsymbol{Z}_q^{ op} oldsymbol{r}_0$$

• Select $\boldsymbol{z}_1 = \boldsymbol{r}_0 / \| \boldsymbol{r}_0 \|$, then

$$oldsymbol{x}_q = oldsymbol{x}_0 + oldsymbol{Z}_q oldsymbol{T}_q^{-1} oldsymbol{e}_1$$

• Several algorithms mathematically equivalent/similar to this approach: Full Orthogonalization method (FOM), Incomplete OM (IOM), GMRES, Orthmin, Axelsson's CGLS, Conjugate Gradient (CG), and others.

Lanczos Method

Lanczos Method for Linear Systems

- Compute $\boldsymbol{r}_0 = \boldsymbol{b} \boldsymbol{A} \boldsymbol{x}_0, \beta_1 = \|\boldsymbol{r}_0\|$ and $, \, \boldsymbol{z}_1 = \boldsymbol{r}_0/\beta_1.$
- For $l = 1, \ldots, q$
 - $\begin{array}{l} \boldsymbol{y}_{l} = \boldsymbol{A}\boldsymbol{z}_{l} \beta_{l}\boldsymbol{z}_{l-1} \\ \boldsymbol{\alpha}_{l} = \langle \boldsymbol{y}_{l}, \boldsymbol{z}_{l} \rangle \\ \boldsymbol{y}_{l} = \boldsymbol{y}_{l} \alpha_{l}\boldsymbol{z}_{l} \\ \boldsymbol{\beta}_{l+1} = \|\boldsymbol{y}_{l}\|_{2}. \text{ If } \beta_{l+1} = 0 \text{ then stop} \\ \boldsymbol{z}_{l+1} = \boldsymbol{y}_{l} / \beta_{l+1} \end{array}$
- Set $Z_q = [z_1, \ldots, z_q]$ and $T_q = \operatorname{tridiag}(\beta_j, \alpha_j, \beta_{j+1})$.

• Compute
$$\boldsymbol{w}_q = \beta \boldsymbol{T}_q^{-1} \boldsymbol{e}_1$$
 and $\boldsymbol{x}_q = \boldsymbol{x}_0 + \boldsymbol{Z}_q \boldsymbol{w}_q$

Conjugate Gradient Method

Popular variant of the Krylov subspace methods when the input matrix is S.P.D.

Conjugate Gradient Algorithm

- Compute $\boldsymbol{r}_0 = \boldsymbol{b} \boldsymbol{A} \boldsymbol{x}_0, \boldsymbol{p}_0 = \boldsymbol{r}_0.$
- Iterate: Until Convergence
 - $\begin{array}{l} \alpha_l = \langle \boldsymbol{r}_l, \boldsymbol{r}_l \rangle / \langle \boldsymbol{A} \boldsymbol{p}_l, \boldsymbol{p}_l \rangle \\ \boldsymbol{x}_{l+1} = \boldsymbol{x}_l + \alpha_l \boldsymbol{p}_l \\ \boldsymbol{r}_{l+1} = \boldsymbol{r}_l \alpha_l \boldsymbol{A} \boldsymbol{p}_l \\ \boldsymbol{\beta}_l = \langle \boldsymbol{r}_{l+1}, \boldsymbol{r}_{l+1} \rangle / \langle \boldsymbol{r}_l, \boldsymbol{r}_l \rangle \\ \boldsymbol{p}_{l+1} = \boldsymbol{r}_{l+1} + \beta_l \boldsymbol{p}_l \end{array}$

The p_l 's are *A*-conjugate with $\langle Ap_l, p_j \rangle = 0$ for $l \neq j$. Convergence: with condition number $\kappa = \lambda_{\max}/\lambda_{\min}$.

$$\| \boldsymbol{x}^* - \boldsymbol{x}_q \|_{\boldsymbol{A}} \le 2 \left[\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right]^q \| \boldsymbol{x}^* - \boldsymbol{x}_0 \|_{\boldsymbol{A}}$$

UT Austin

Iterative methods

Further Reading:

- Iterative methods for sparse linear systems by Yousef Saad.
- Numerical Methods for Large Eigenvalue Problems by Yousef Saad.
- Iterative Methods for Optimization by C.T. Kelly.

Matlab Demo