CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 13: Krylov subspace methods

Outline

(1) Krylov subspace methods

- Lanczos algorithm
- Block Krylov method
(2) Linear system solvers

Iterative methods

- Subspace iteration/ power method: multiple passes over the matrix \boldsymbol{A}.
- With q iterations, we can achieve:

$$
\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{z}_{q} \boldsymbol{z}_{q}^{\top}\right\|_{F} \leq(1+\epsilon)\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\top}\right\|_{F}
$$

- if $q=O\left(\frac{\log d / \epsilon}{\gamma}\right)$ (if gap is large) or
- $q=O\left(\frac{\log d / \epsilon}{\epsilon}\right)$ (if gap is too small or for gap independent analysis).

Krylov subspace methods

- Given a square matrix \boldsymbol{A} and a starting vector \boldsymbol{z}_{1}, the Krylov Subspace of dimension q is given by:

$$
\boldsymbol{K}_{q}\left(\boldsymbol{A}, \boldsymbol{z}_{1}\right)=\operatorname{span}\left\{\boldsymbol{z}_{1}, \boldsymbol{A} \boldsymbol{z}_{1}, \ldots, \boldsymbol{A}^{q} \boldsymbol{z}_{1}\right\}
$$

- Important class of projection methods for solving linear systems and for eigenvalue problems.
- Properties of \boldsymbol{K}_{q} :
$\boldsymbol{K}_{q}=\{\mathbf{p}(\boldsymbol{A}) \boldsymbol{z} \mid \mathbf{p}=$ polynomial of degree $\leq q\}$.
$\boldsymbol{K}_{q}=\boldsymbol{K}_{q_{1}}$ for all $q \geq q_{1}$. Moreover, $\boldsymbol{K}_{q_{1}}$ is invariant under \boldsymbol{A}.
- For square matrix \boldsymbol{A} : Arnoldi's Algorithm
- For symmetric matrix \boldsymbol{A} : Lanczos Algorithm
- For rectangular matrix $\boldsymbol{B} \in \mathbb{R}^{n \times d}$ and SVD, we consider $\boldsymbol{A}=\boldsymbol{B}^{\top} \boldsymbol{B}$.

Lanczos algorithm

- Given a symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ and a starting vector \boldsymbol{z}_{1}, compute an orthonormal basis \boldsymbol{Z}_{q} of $\boldsymbol{K}_{q}\left(\boldsymbol{A}, \boldsymbol{z}_{1}\right)$.

Lanczos algorithm

- Choose a starting vector \boldsymbol{z}_{1}, with unit norm. Set $\beta_{1}=0, \boldsymbol{z}_{0}=0$.
- For $l=1, \ldots, q-1$
$\boldsymbol{y}_{l}=\boldsymbol{A} \boldsymbol{z}_{l}-\beta_{l} \boldsymbol{z}_{l-1}$
$\alpha_{l}=\left\langle\boldsymbol{y}_{l}, \boldsymbol{z}_{l}\right\rangle$
$\boldsymbol{y}_{l}=\boldsymbol{y}_{l}-\alpha_{l} \boldsymbol{z}_{l}$
$\beta_{l+1}=\left\|\boldsymbol{y}_{l}\right\|_{2}$. If $\beta_{l+1}=0$ then stop
$\boldsymbol{z}_{l+1}=\boldsymbol{y}_{l} / \beta_{l+1}$
- Return $\boldsymbol{Z}_{q}=\left[\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{q}\right]$

In theory \boldsymbol{z}_{l} 's defined by 3 -term recurrence are orthogonal. But in practice, we need reorthogonalization.

Lanczos algorithm

- The Rayleigh Ritz-projection is given by:

$$
\boldsymbol{T}_{q}=\boldsymbol{Z}_{q}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q}
$$

- The Ritz matrix is a tridiagonal matrix:

$$
\boldsymbol{T}_{q}=\left[\begin{array}{cccccc}
\alpha_{1} & \beta_{2} & & & & \\
\beta_{2} & \alpha_{2} & \beta_{3} & & & \\
& \beta_{3} & \alpha_{3} & \beta_{4} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \cdot \\
& & & & \beta_{q} & \alpha_{q}
\end{array}\right]
$$

- Let \boldsymbol{u} be the top eigenvector of \boldsymbol{T}_{q}.
- Eigenvector estimate of \boldsymbol{A} will be $\boldsymbol{w}=\boldsymbol{Z}_{q} \boldsymbol{u}$.
- If non-symmetric, Arnoldi's algorithm. \boldsymbol{T}_{q} will be Upper Hessenberg matrix.

Convergence

Theorem (Lanczos algorithm Convergence)

Let $\gamma=\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}}$ be the gap between the first and second largest eigenvalues of a matrix $\boldsymbol{A} \in \mathbb{R}^{d \times d}$. If Lanczos algorithm is initialized with a random Gaussian vector then, with high probability, after $q=O\left(\frac{\log d / \epsilon}{\sqrt{\gamma}}\right)$ steps, we have for the estimate $\boldsymbol{w}=\boldsymbol{Z}_{q} \boldsymbol{u}$:

$$
\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{w} \boldsymbol{w}^{\top}\right\|_{F}^{2} \leq(1+\epsilon)\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\top}\right\|_{F}^{2} .
$$

- Gapless: For $q=O\left(\frac{\log d / \epsilon}{\sqrt{\epsilon}}\right)$ steps, we obtain a \boldsymbol{w} satisfying:

$$
\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{w} \boldsymbol{w}^{\top}\right\|_{F}^{2} \leq(1+\epsilon)\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\top}\right\|_{F}^{2}
$$

- Total runtime: $O(\mathrm{nnz}(\boldsymbol{A}) q)=O\left(\mathrm{nnz}(\boldsymbol{A}) \cdot \frac{\log d / \epsilon}{\sqrt{\epsilon}}\right)$.

Proof:

First, we have

Claim: Amongst all vectors in the span of the Krylov subspace (which are given by $\left.\boldsymbol{w}=\boldsymbol{Z}_{q} \boldsymbol{x}\right), \boldsymbol{w}=\boldsymbol{Z}_{q} \boldsymbol{u}$ minimizes the error $\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{w} \boldsymbol{w}^{\top}\right\|_{F}^{2}$.

Proof:

First, we have

Claim: Amongst all vectors in the span of the Krylov subspace (which are given by $\left.\boldsymbol{w}=\boldsymbol{Z}_{q} \boldsymbol{x}\right), \boldsymbol{w}=\boldsymbol{Z}_{q} \boldsymbol{u}$ minimizes the error $\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{w} \boldsymbol{w}^{\top}\right\|_{F}^{2}$.

We know that, this is equivalent to maximizing $\left\|\boldsymbol{A} \boldsymbol{w} \boldsymbol{w}^{\top}\right\|_{F}^{2}$. Next, \boldsymbol{u} is the top eigenvector of $\boldsymbol{T}_{q}=\boldsymbol{Z}_{q}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q}$.

Proof:

First, we have

Claim: Amongst all vectors in the span of the Krylov subspace (which are given by $\left.\boldsymbol{w}=\boldsymbol{Z}_{q} \boldsymbol{x}\right), \boldsymbol{w}=\boldsymbol{Z}_{q} \boldsymbol{u}$ minimizes the error $\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{w} \boldsymbol{w}^{\top}\right\|_{F}^{2}$.

We know that, this is equivalent to maximizing $\left\|\boldsymbol{A} \boldsymbol{w} \boldsymbol{w}^{\top}\right\|_{F}^{2}$.
Next, \boldsymbol{u} is the top eigenvector of $\boldsymbol{T}_{q}=\boldsymbol{Z}_{q}^{\top} \boldsymbol{A} \boldsymbol{Z}_{q}$.
Next, we show that, if we set $q=O\left(\frac{\log d / \epsilon}{\sqrt{\gamma}}\right)$ and compute \boldsymbol{Z}_{q}, then there a vector $\boldsymbol{w}=\boldsymbol{Z}_{q} \boldsymbol{x}$ such that $\left\langle\boldsymbol{v}_{1}, \boldsymbol{w}\right\rangle \geq 1-\epsilon$.
I.e., there is a \boldsymbol{w} in the Krylov subspace that has a large inner product with the top eigenvector \boldsymbol{v}_{1}.

The vector \boldsymbol{w} can be written as

$$
\boldsymbol{w}=p_{q}(\boldsymbol{A}) \boldsymbol{z}_{1}
$$

where $p_{q}(\cdot)$ is called the Lanczos polynomial and has degree q.
For any q degree polynomial p_{q}, there is some \boldsymbol{x} such that $\boldsymbol{Z}_{q} \boldsymbol{x}=p_{q}(\boldsymbol{A}) \boldsymbol{z}_{1}$, because any linear combinations of $\boldsymbol{z}_{1}, \boldsymbol{A} \boldsymbol{z}_{1}, \ldots, \boldsymbol{A}^{q} \boldsymbol{z}_{1}$ lie in the span of \boldsymbol{Z}_{q}.

The vector \boldsymbol{w} can be written as

$$
\boldsymbol{w}=p_{q}(\boldsymbol{A}) \boldsymbol{z}_{1}
$$

where $p_{q}(\cdot)$ is called the Lanczos polynomial and has degree q.
For any q degree polynomial p_{q}, there is some \boldsymbol{x} such that $\boldsymbol{Z}_{q} \boldsymbol{x}=p_{q}(\boldsymbol{A}) \boldsymbol{z}_{1}$, because any linear combinations of $\boldsymbol{z}_{1}, \boldsymbol{A} \boldsymbol{z}_{1}, \ldots, \boldsymbol{A}^{q} \boldsymbol{z}_{1}$ lie in the span of \boldsymbol{Z}_{q}.

Let us write $\boldsymbol{z}_{1}=\sum_{i=1}^{d} \mu_{i} \boldsymbol{v}_{i}$ and $p_{q}(\boldsymbol{A}) \boldsymbol{z}_{1}=\sum_{i=1}^{d} \rho_{i} \boldsymbol{v}_{i}$, then we have

$$
\rho_{i}=\mu_{i} p_{q}\left(\lambda_{i}\right)
$$

Claim: There is a $O\left(\sqrt{\frac{1}{\gamma}} \log \left(1 / \epsilon^{\prime}\right)\right)$ degree polynomial \hat{p} such that $\hat{p}(1)=1$ and $|\hat{p}(t)| \leq \epsilon^{\prime}$ for $0 \leq t \leq 1-\gamma$.

Polynomials

Plots are from https://www.chrismusco.com/amlds2023/notes/lecture11.html.

We set $p_{q}(t)=\hat{p}\left(t / \lambda_{1}\right)$, and we have $\rho_{i}=\mu_{i} p_{q}\left(\lambda_{i}\right)$.
We follow similar steps as the power method proof.

$$
\frac{\left|\rho_{j}\right|}{\left|\rho_{1}\right|}=\frac{p_{q}\left(\lambda_{i}\right)\left|\mu_{i}\right|}{p_{q}\left(\lambda_{1}\right)\left|\mu_{1}\right|}=\frac{\hat{p}_{q}\left(\lambda_{i} / \lambda_{1}\right)\left|\mu_{i}\right|}{\left|\mu_{1}\right|} \leq \sqrt{\epsilon / d} .
$$

For $O\left(\sqrt{\frac{1}{\gamma}} \log \left(1 / \epsilon^{\prime}\right)\right)$ with $\epsilon^{\prime}=\sqrt{\epsilon / d} / d^{3}$.

Block Krylov method

- For larger $k \geq 1$ (finding the top- k singular vectors/values).

Block Lanczos Method

- Choose $\boldsymbol{S} \in \mathbb{R}^{d \times k}$ a random Gaussian matrix .
- Set $\boldsymbol{K}=\left[\boldsymbol{S}, \boldsymbol{A} \boldsymbol{S}, \ldots, \boldsymbol{A}^{q-1} \boldsymbol{S}\right]$.
- $\boldsymbol{Z}=\operatorname{orth}(\boldsymbol{K})$
- Compute $\boldsymbol{T}=\boldsymbol{Z}^{\top} \boldsymbol{A} \boldsymbol{Z}$
- Set $\tilde{\boldsymbol{U}}_{k}$ to top k eigenvectors of \boldsymbol{T}
- Return $\boldsymbol{Z}_{q} \tilde{\boldsymbol{U}}_{k}$

Total runtime: $O(\mathrm{nnz}(\boldsymbol{A}) k q)$. With $q=O\left(\frac{\log d / \epsilon}{\sqrt{\epsilon}}\right)$.

Krylov methods

Further Reading:

- Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value Decomposition by Cameron Musco, Christopher Musco.
- Structural Convergence Results for Approximation of Dominant Subspaces from Block Krylov Spaces by Petros Drineas, Ilse Ipsen, Eugenia-Maria Kontopoulou, Malik Magdon-Ismail.
- https://www.chrismusco.com/amlds2022/lectures/lanczos_method.html

Linear system solvers

- Given a square matrix $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ and a vector $\boldsymbol{b} \in \mathbb{R}^{d}$, solve:

$$
A x=b .
$$

- Iterative methods: Solve for \boldsymbol{x} iteratively as:

$$
\boldsymbol{x}_{l+1}=\boldsymbol{x}_{l}+\alpha \boldsymbol{r}
$$

$\boldsymbol{r}=$ a certain direction given some starting vector \boldsymbol{x}_{0}.

- Minimum residual methods: $\boldsymbol{x}(\alpha)=\boldsymbol{x}+\alpha \boldsymbol{r}$, with $\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x} . \min _{\alpha}\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}(\alpha)\|_{2}$ with some orthogonal condition.
- Steepest Descent:

$$
\begin{aligned}
\boldsymbol{r}_{l} & =\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{l} \\
\alpha & =\left\langle\boldsymbol{r}_{l}, \boldsymbol{r}_{l}\right\rangle /\left\langle\boldsymbol{A} \boldsymbol{r}_{l}, \boldsymbol{r}_{l}\right\rangle \\
\boldsymbol{x}_{l+1} & =\boldsymbol{x}_{l}+\alpha \boldsymbol{r}_{l}
\end{aligned}
$$

Krylov subspace methods

- Lanczos Algorithm: For symmetric matrix \boldsymbol{A}, orthonormal basis \boldsymbol{Z}_{q} and tridiagonal matrix \boldsymbol{T}_{q}. (Arnoldi's method for non-symmetric)
- From Petrov-Galerkin condition, we get:

$$
\boldsymbol{x}_{q}=\boldsymbol{x}_{0}+\boldsymbol{Z}_{q} \boldsymbol{T}_{q}^{-1} \boldsymbol{Z}_{q}^{\top} \boldsymbol{r}_{0}
$$

- Select $\boldsymbol{z}_{1}=\boldsymbol{r}_{0} /\left\|\boldsymbol{r}_{0}\right\|$, then

$$
\boldsymbol{x}_{q}=\boldsymbol{x}_{0}+\boldsymbol{Z}_{q} \boldsymbol{T}_{q}^{-1} \boldsymbol{e}_{1}
$$

- Several algorithms mathematically equivalent/similar to this approach:

Full Orthogonalization method (FOM), Incomplete OM (IOM), GMRES, Orthmin, Axelsson's CGLS, Conjugate Gradient (CG), and others.

Lanczos Method

Lanczos Method for Linear Systems

- Compute $\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{0}, \beta_{1}=\left\|\boldsymbol{r}_{0}\right\|$ and, $\boldsymbol{z}_{1}=\boldsymbol{r}_{0} / \beta_{1}$.
- For $l=1, \ldots, q$

$$
\begin{aligned}
& \boldsymbol{y}_{l}=\boldsymbol{A} \boldsymbol{z}_{l}-\beta_{l} \boldsymbol{z}_{l-1} \\
& \alpha_{l}=\left\langle\boldsymbol{y}_{l}, \boldsymbol{z}_{l}\right\rangle \\
& \boldsymbol{y}_{l}=\boldsymbol{y}_{l}-\alpha_{l} \boldsymbol{z}_{l} \\
& \beta_{l+1}=\left\|\boldsymbol{y}_{l}\right\|_{2} . \text { If } \beta_{l+1}=0 \text { then stop } \\
& \boldsymbol{z}_{l+1}=\boldsymbol{y}_{l} / \beta_{l+1}
\end{aligned}
$$

- Set $\boldsymbol{Z}_{q}=\left[\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{q}\right]$ and $\boldsymbol{T}_{q}=\operatorname{tridiag}\left(\beta_{j}, \alpha_{j}, \beta_{j+1}\right)$.
- Compute $\boldsymbol{w}_{q}=\beta \boldsymbol{T}_{q}^{-1} \boldsymbol{e}_{1}$ and $\boldsymbol{x}_{q}=\boldsymbol{x}_{0}+\boldsymbol{Z}_{q} \boldsymbol{w}_{q}$.

Conjugate Gradient Method

Popular variant of the Krylov subspace methods when the input matrix is S.P.D.

Conjugate Gradient Algorithm

- Compute $\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{0}, \boldsymbol{p}_{0}=\boldsymbol{r}_{0}$.
- Iterate: Until Convergence

$$
\begin{aligned}
& \alpha_{l}=\left\langle\boldsymbol{r}_{l}, \boldsymbol{r}_{l}\right\rangle /\left\langle\boldsymbol{A} \boldsymbol{p}_{l}, \boldsymbol{p}_{l}\right\rangle \\
& \boldsymbol{x}_{l+1}=\boldsymbol{x}_{l}+\alpha_{l} \boldsymbol{p}_{l} \\
& \boldsymbol{r}_{l+1}=\boldsymbol{r}_{l}-\alpha_{l} \boldsymbol{A \boldsymbol { p } _ { l }} \\
& \beta_{l}=\left\langle\boldsymbol{r}_{l+1}, \boldsymbol{r}_{l+1}\right\rangle /\left\langle\boldsymbol{r}_{l}, \boldsymbol{r}_{l}\right\rangle \\
& \boldsymbol{p}_{l+1}=\boldsymbol{r}_{l+1}+\beta_{l} \boldsymbol{p}_{l}
\end{aligned}
$$

The \boldsymbol{p}_{l} 's are \boldsymbol{A}-conjugate with $\left\langle\boldsymbol{A} \boldsymbol{p}_{l}, \boldsymbol{p}_{j}\right\rangle=0$ for $l \neq j$.
Convergence: with condition number $\kappa=\lambda_{\text {max }} / \lambda_{\text {min }}$.

$$
\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{q}\right\|_{\boldsymbol{A}} \leq 2\left[\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right]^{q}\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right\|_{\boldsymbol{A}}
$$

Iterative methods

Further Reading:

- Iterative methods for sparse linear systems by Yousef Saad.
- Numerical Methods for Large Eigenvalue Problems by Yousef Saad.
- Iterative Methods for Optimization by C.T. Kelly.

Matlab Demo

