CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 12: Subspace iteration (power) method

Outline

(1) Iterative methods
(2) Subspace iteration methods

- Power method
- Block power method

Covered so far:

- Linear least squares regression and Low rank approximation.
- Linear Regression: Given a data matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ and a column vector $\boldsymbol{b} \in \mathbb{R}^{n}$, least-squares regression solves:

$$
\begin{equation*}
\boldsymbol{x}^{*}=\arg \min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2} . \tag{1}
\end{equation*}
$$

- Low rank approximation: Given a data matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ and integer k, find a rank- k approximation of \boldsymbol{A}, such that.

$$
\begin{equation*}
\boldsymbol{A}_{k}=\arg \min _{\boldsymbol{W}: \operatorname{rank}(\boldsymbol{W})=k}\|\boldsymbol{A}-\boldsymbol{W}\|_{F} . \tag{2}
\end{equation*}
$$

Covered so far: Sketching

SKETCH AND SOLVE

Generic scheme using sketching:

```
generate sketching matrix }\mathbf{S}\in\mp@subsup{\mathbb{R}}{}{m\timesn}\mathrm{ ,
compute SA and Sb
return \tilde{\mathbf{x}}:=\mp@subsup{\operatorname{argmin}}{\mathbf{x}\in\mp@subsup{\mathbf{R}}{}{d}}{|}|\mathbf{S}(\mathbf{Ax}-\mathbf{b})|
```


- Oblivious sketching - subspace embedding property.
- $\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b}\| \leq(1+\epsilon)\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|$.
- Similarly for low rank approximation: Suppose $\tilde{\boldsymbol{A}}_{k}$ is rank k approximation obtained using sketching $\boldsymbol{A S}$, then

$$
\left\|\boldsymbol{A}-\tilde{\boldsymbol{A}}_{k}\right\|_{F} \leq(1+\epsilon)\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{F} .
$$

- Skylark project: open source library for distributed randomized numerical linear algebra, funded through XDATA program by DARPA and Air Force Research Laboratory.

Iterative methods

- Sketching methods : Single pass over data. Advantageous when data is too large to fit in memory. Streaming settings.
- Sketch size: For rank- k approximation, for dense input matrices - Gaussian - $O\left(\frac{k}{\epsilon}\right)$ or SRFT/SRHT - $O\left(\frac{k \log (k / \epsilon)}{\epsilon}\right)$.
Sparse matrices - Countsketch - $O\left(\frac{k^{2}}{\epsilon}\right)$.

Iterative methods

- Sketching methods : Single pass over data. Advantageous when data is too large to fit in memory. Streaming settings.
- Sketch size: For rank- k approximation, for dense input matrices - Gaussian - $O\left(\frac{k}{\epsilon}\right)$ or SRFT/SRHT - $O\left(\frac{k \log (k / \epsilon)}{\epsilon}\right)$.
Sparse matrices - Countsketch - $O\left(\frac{k^{2}}{\epsilon}\right)$.
- Iterative methods - Multiple passes over data. Improved numerical results. Predate sketching methods.
- In numerous fields (system solvers, optimization, control systems, PDE solvers, scientific computing, NLP, etc.) and many industry (oil refineries, auto modeling, electronics, Google and Twitter (X?) and many more.)
- Partial SVD - compute top k singular vectors/values.
(1) Subspace iteration or block power method.
(2) Krylov subspace method.

Recall : PageRank

- PageRank value of a page is given as:

$$
P R\left(p_{i}\right)=\frac{1-d}{N}+d \sum_{p_{j} \in M\left(p_{i}\right)} \frac{P R\left(p_{j}\right)}{L\left(p_{j}\right)}
$$

$p_{1}, p_{2}, \ldots, p_{N}$ are the pages, $M\left(p_{i}\right)=$ set of pages that link to $p_{i}, L\left(p_{j}\right)=$ number of outbound links on page $p_{j}, N=$ total number of pages, and $d=$ damping factor.

- The values are the entries of the dominant right eigenvector of the modified adjacency matrix rescaled so that each column adds up to one.

$$
\mathbf{r}=\left[\begin{array}{c}
P R\left(p_{1}\right) \\
P R\left(p_{2}\right) \\
\vdots \\
P R\left(p_{N}\right)
\end{array}\right]
$$

- \mathbf{r} is the solution of the equation

$$
\mathbf{r}=\left[\begin{array}{c}
(1-d) / N \\
(1-d) / N \\
\vdots \\
(1-d) / N
\end{array}\right]+d\left[\begin{array}{cccc}
\ell\left(p_{1}, p_{1}\right) & \ell\left(p_{1}, p_{2}\right) & \ldots & \ell\left(p_{1}, p_{N}\right) \\
\ell\left(p_{2}, p_{1}\right) & \ddots & & \vdots \\
\vdots & & \ell\left(p_{i}, p_{j}\right) & \\
\ell\left(p_{N}, p_{1}\right) & \cdots & & \ell\left(p_{N}, p_{N}\right)
\end{array}\right] \mathbf{r}
$$

the adjacency function $\ell\left(p_{i}, p_{j}\right)$ is the ratio between number of links outbound from page j to page i to the total number of outbound links of page j.
-

$$
\sum_{i=1}^{N} \ell\left(p_{i}, p_{j}\right)=1
$$

The matrix is a stochastic matrix. Closely related to the problem of finding the stationary points of Markov processes. It is also a variant of the eigenvector centrality measure used commonly in network analysis.

Subspace iteration methods

Questions

- Given a symmetric matrix \boldsymbol{A} with eigen-decomposition $\boldsymbol{A}=\boldsymbol{U} \Lambda \boldsymbol{U}^{\top}$, then
(1) What are the eigenvalues/eigenvectors of \boldsymbol{A}^{q} for a given integer power q ?
(2) If \boldsymbol{A} is nonsingular what are the eigenvalues/eigenvectors of \boldsymbol{A}^{-1} ?
(3) What are the eigenvalues/eigenvectors of $p(\boldsymbol{A})$ for a polynomial $p(\cdot)$?
- If the matrix \boldsymbol{A} has a certain spectral gap $\left|\lambda_{1}-\lambda_{2}\right|$, what can we say about the spectral gap of \boldsymbol{A}^{2} ? Does it increase, decrease or remain the same in general?
- Similarly, for a general matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, with $\operatorname{SVD} \boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\top}$, what are the singular/eigen-values of $\boldsymbol{A}^{\top} \boldsymbol{A}$?

Power Method

- Let us start with $k=1$ (finding the top singular vector/value).
- Given a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, with $\operatorname{SVD} \boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\top}$, find a vector $\boldsymbol{z} \approx \boldsymbol{v}_{1}$.

Power Method

- Choose a random vector \boldsymbol{z}_{0}, E.g., $\boldsymbol{z}_{0} \sim \mathcal{N}(0,1)$.
- $z_{0}=\boldsymbol{z}_{0} /\left\|z_{0}\right\|_{2}$
- For $l=1, \ldots, q$

$$
\begin{aligned}
& \boldsymbol{z}_{l}=\boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{z}_{l-1}\right) \\
& \boldsymbol{z}_{l}=\boldsymbol{z}_{l} /\left\|\boldsymbol{z}_{l}\right\|_{2}
\end{aligned}
$$

- Return \boldsymbol{z}_{q}

Runtime $=$?

2 iterations

Convergence

Theorem (Power Method Convergence)

Let $\gamma=\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}}$ be parameter capturing the gap between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector with $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ then, with high probability, after $q=O\left(\frac{\log d / \epsilon}{\gamma}\right)$ steps, we have:

$$
\left\|\boldsymbol{v}_{1}-\boldsymbol{z}_{q}\right\|_{2} \leq \epsilon
$$

Total runtime: $O(\mathrm{nnz}(\boldsymbol{A}) q)=O\left(\mathrm{nnz}(\boldsymbol{A}) \cdot \frac{\log d / \epsilon}{\gamma}\right)$.
Above also implies, $\left\|\boldsymbol{A} \boldsymbol{z}_{q} \boldsymbol{z}_{q}^{\top}\right\|_{F}^{2} \geq(1-\epsilon)^{2}\left\|\boldsymbol{A} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\top}\right\|_{F}^{2}$.

Proof

- Let us write $\boldsymbol{z}_{0}=\sum_{i=1}^{d} \mu_{i} \boldsymbol{v}_{i}$ in terms of the right singular vector basis.
- If $\boldsymbol{\mu}=\left[\mu_{1}, \ldots, \mu_{d}\right]$, we have $\boldsymbol{\mu}=\boldsymbol{V}^{\top} \boldsymbol{g} /\|\boldsymbol{g}\|_{2}$ for random Gaussian \boldsymbol{g}.
- Since \boldsymbol{V} is orthogonal, we have $\|\boldsymbol{\mu}\|^{2}=1$.
- With high probability,

$$
1 / \operatorname{poly}(d) \leq\left|\mu_{i}\right| \leq 1 \quad i=1, \ldots, d
$$

Note that $\boldsymbol{\mu}$ is Gaussian. We can show that $\operatorname{poly}(d) \approx d^{3}$ with high probability.

- After q steps, we have $\boldsymbol{z}_{q}=c\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{q} \boldsymbol{z}_{0}$ for some scaling c.
- If we write $\boldsymbol{z}_{q}=\sum_{i=1}^{d} \rho_{i} \boldsymbol{v}_{i}$, we have

$$
\rho_{i}=c \sigma_{i}^{2 q} \mu_{i} .
$$

Since $\boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{V} \Sigma^{2} \boldsymbol{V}^{\top}$.

- After q steps, we have $\boldsymbol{z}_{q}=c\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{q} \boldsymbol{z}_{0}$ for some scaling c.
- If we write $\boldsymbol{z}_{q}=\sum_{i=1}^{d} \rho_{i} \boldsymbol{v}_{i}$, we have

$$
\rho_{i}=c \sigma_{i}^{2 q} \mu_{i}
$$

Since $\boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{V} \Sigma^{2} \boldsymbol{V}^{\top}$.

- If the gap parameter is $\gamma=\frac{\sigma_{1}-\sigma_{2}}{\sigma_{1}}$, we can show that, for all $j \geq 2$:

$$
\frac{\sigma_{j}}{\sigma_{1}} \leq(1-\gamma)
$$

- For all $j \geq 2$,

$$
\frac{\left|\rho_{j}\right|}{\left|\rho_{1}\right|} \leq(1-\gamma)^{2 q} \frac{\left|\mu_{i}\right|}{\left|\mu_{1}\right|} \leq(1-\gamma)^{2 q} \operatorname{poly}(d) .
$$

- For any $0<x \leq 1$, we can show that $(1-x)^{\frac{q}{x}} \leq e^{-q}$. (Hint: use Taylor series for $\log (1-x)$).
- If we set $q=\frac{\log (\text { poly }(d) \sqrt{d / \epsilon})}{\gamma}=O\left(\frac{\log d / \epsilon}{\gamma}\right)$, then we get $\frac{\left|\rho_{j}\right|}{\left|\rho_{1}\right|} \leq \sqrt{\epsilon / d}$.
- Since \boldsymbol{z}_{q} is a unit vector, we have $\sum_{i} \rho_{i}^{2}=1$, and $\left|\rho_{1}\right| \leq 1$, hence

$$
\rho_{1}^{2} \geq 1-d(\sqrt{\epsilon / d})^{2} \Longrightarrow\left|\rho_{1}\right| \geq 1-\epsilon
$$

Therefore,

$$
\left\|\boldsymbol{v}_{1}-\boldsymbol{z}_{q}\right\|_{2}=2-2\left\langle\boldsymbol{v}_{1}, \boldsymbol{z}_{q}\right\rangle \leq 2 \epsilon
$$

Analysis without gap

Theorem (Gapless Power Method Convergence)

If Power Method is initialized with a random Gaussian vector then, with high probability, after $q=O\left(\frac{\log d / \epsilon}{\epsilon}\right)$ steps, we obtain a \boldsymbol{z}_{q} satisfying:

$$
\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{z}_{q} \boldsymbol{z}_{q}^{\top}\right\|_{F}^{2} \leq(1+\epsilon)\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\top}\right\|_{F}^{2}
$$

Gap γ might be too small. Then, we do not care to find \boldsymbol{v}_{1}. Say, $\sigma_{1}=\sigma_{2}$, then \boldsymbol{v}_{2} is as good as \boldsymbol{v}_{1}.

Proof:

We know that $\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{z}_{q} \boldsymbol{z}_{q}^{T}\right\|_{F}^{2}=\|\boldsymbol{A}\|_{F}^{2}-\left\|\boldsymbol{A} \boldsymbol{z}_{q} \boldsymbol{z}_{q}^{T}\right\|_{F}^{2}$.
So, to prove the above, we need to show $\left\|\boldsymbol{A} \boldsymbol{z}_{q}\right\|_{2}^{2} \geq(1-\epsilon)^{2} \sigma_{1}^{2}$.
We have,

$$
\left\|\boldsymbol{A} \boldsymbol{z}_{q}\right\|_{2}^{2}=\boldsymbol{z}_{q}^{T} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{z}_{q}=\sum_{i=1}^{d} \rho_{i}^{2} \sigma_{i}^{2}
$$

where $\rho_{i}=\boldsymbol{v}_{i}^{T} \boldsymbol{z}_{q}$.

Proof:

We know that $\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{z}_{q} \boldsymbol{z}_{q}^{T}\right\|_{F}^{2}=\|\boldsymbol{A}\|_{F}^{2}-\left\|\boldsymbol{A} \boldsymbol{z}_{q} \boldsymbol{z}_{q}^{T}\right\|_{F}^{2}$.
So, to prove the above, we need to show $\left\|\boldsymbol{A} \boldsymbol{z}_{q}\right\|_{2}^{2} \geq(1-\epsilon)^{2} \sigma_{1}^{2}$.
We have,

$$
\left\|\boldsymbol{A} \boldsymbol{z}_{q}\right\|_{2}^{2}=\boldsymbol{z}_{q}^{T} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{z}_{q}=\sum_{i=1}^{d} \rho_{i}^{2} \sigma_{i}^{2}
$$

where $\rho_{i}=\boldsymbol{v}_{i}^{T} \boldsymbol{z}_{q}$.
For $q=O\left(\frac{\log d / \epsilon}{\epsilon}\right)$, from our previous analysis we have $\rho_{1} \geq(1-\epsilon)$. Hence,

$$
\left\|\boldsymbol{A} \boldsymbol{z}_{q}\right\|_{2}^{2}=\sum_{i=1}^{d} \rho_{i}^{2} \sigma_{i}^{2} \geq \rho_{1}^{2} \sigma_{1}^{2} \geq(1-\epsilon)^{2} \sigma_{1}^{2}
$$

Subspace iteration

- For larger $k \geq 1$ (finding the top- k singular vectors/values).
- Block Power Method aka Simultaneous Iteration aka Subspace Iteration aka Orthogonal Iteration.

Block Power Method

- Choose $\boldsymbol{S} \in \mathbb{R}^{d \times k}$ a random Gaussian matrix .
- $\boldsymbol{Z}_{0}=\operatorname{orth}(\boldsymbol{S})$
- For $l=1, \ldots, q$
$\boldsymbol{Z}_{l}=\boldsymbol{A}^{\top}\left(\boldsymbol{A} \boldsymbol{Z}_{l-1}\right)$
$\boldsymbol{Z}_{l}=\operatorname{orth}\left(\boldsymbol{Z}_{l}\right)$.
- Return \boldsymbol{Z}_{q}

Total runtime: $O(\mathrm{nnz}(\boldsymbol{A}) k q)$.

Subspace iteration

- Equivalent to sketching with input $\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{q}$.
- With $q=O\left(\frac{\log d / \epsilon}{\epsilon}\right)$, we obtain a nearly optimal low-rank approximation:

$$
\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{Z} \boldsymbol{Z}^{\top}\right\|_{F}^{2} \leq(1+\epsilon)\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{V}_{k} \boldsymbol{V}_{k}^{\top}\right\|_{F}^{2}
$$

- For $q=O\left(\frac{\log (n d)}{\epsilon}\right)$, we have

$$
\left\|\boldsymbol{A}-\boldsymbol{A} \boldsymbol{Z} \boldsymbol{Z}^{\top}\right\|_{2} \leq(1+\epsilon)\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{2}
$$

Subspace iteration

Further Reading:

- Sketching as a Tool for Numerical Linear Algebra by David Woodruff.
- Subspace iteration randomization and singular value problems by Ming Gu.
- Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions by N Halko, P. Martinsson and J. Tropp.

Matlab Demo

