CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 10: Sampling and preconditioning for least squares

Outline

(1) Sketch and solve - Proof
(2) Sampling for least squares
(3) Preconditioning for least squares

Sketch and solve

Recall:

- Generate a sketching matrix $\boldsymbol{S} \in \mathbb{R}^{m \times n}$.
- Compute sketches $\boldsymbol{S A}$ and $\boldsymbol{S b}$.
- Solve:

$$
\tilde{\boldsymbol{x}}=\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{S} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{S} \boldsymbol{b}\|_{2}^{2} .
$$

- Typically, $m=\operatorname{poly}(d / \epsilon)$.

Subspace embedding for sketch and solve

Sketch and solve

Suppose $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ is a subspace ϵ-embedding for $\operatorname{span}([\boldsymbol{A} b])$.
Let,

$$
\begin{aligned}
\boldsymbol{x}^{*} & =\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2} \\
\tilde{\boldsymbol{x}} & =\min _{\boldsymbol{x} \in \mathbb{R}^{d}}\|\boldsymbol{S}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})\|_{2},
\end{aligned}
$$

for $\epsilon \leq 1 / 3$, we have

$$
\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b}\|_{2} \leq(1+3 \epsilon)\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}
$$

Implies, we have $O\left(1 / \epsilon^{2}\right)$ dependency on the error tolerance.

Alternate proof

Sketch and solve

If $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ is a Countsketch matrix with $m=O\left(d^{2} / \epsilon\right)$ or SRHT with $m=O(d \log d / \epsilon)$, or Gaussian sketch with $m=O(d / \epsilon)$, then

$$
\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b}\|_{2} \leq(1+\epsilon)\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}
$$

Alternate proof

Sketch and solve

If $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ is a Countsketch matrix with $m=O\left(d^{2} / \epsilon\right)$ or SRHT with $m=O(d \log d / \epsilon)$, or Gaussian sketch with $m=O(d / \epsilon)$, then

$$
\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b}\|_{2} \leq(1+\epsilon)\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}
$$

Proof: Let us consider an orthonormal basis \boldsymbol{U} for \boldsymbol{A}.
Let, $\boldsymbol{U} \tilde{\boldsymbol{y}}=\boldsymbol{A} \tilde{\boldsymbol{x}}$ and $\boldsymbol{U} \boldsymbol{y}^{*}=\boldsymbol{A} \boldsymbol{x}^{*}$. Then,

$$
\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b}\|_{2}^{2}=\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}^{2}+\left\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{A} \boldsymbol{x}^{*}\right\|_{2}^{2}
$$

and

$$
\|\boldsymbol{U} \tilde{\boldsymbol{y}}-\boldsymbol{b}\|_{2}^{2}=\left\|\boldsymbol{U} \boldsymbol{y}^{*}-\boldsymbol{b}\right\|_{2}^{2}+\left\|\boldsymbol{U} \tilde{\boldsymbol{y}}-\boldsymbol{U} \boldsymbol{y}^{*}\right\|_{2}^{2}
$$

Need to show that $\left\|\boldsymbol{U}\left(\tilde{\boldsymbol{y}}-\boldsymbol{y}^{*}\right)\right\|_{2}^{2}=\left\|\tilde{\boldsymbol{y}}-\boldsymbol{y}^{*}\right\|_{2}^{2}=O(\epsilon)\left\|\boldsymbol{U} \boldsymbol{y}^{*}-\boldsymbol{b}\right\|_{2}^{2}$.

For a subspace embedding \boldsymbol{S}, we have

$$
\left\|\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U}-\boldsymbol{I}\right\|_{2} \leq \frac{1}{2}
$$

Hence,

$$
\left\|\tilde{\boldsymbol{y}}-\boldsymbol{y}^{*}\right\|_{2} \leq
$$

For a subspace embedding \boldsymbol{S}, we have

$$
\left\|\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U}-\boldsymbol{I}\right\|_{2} \leq \frac{1}{2}
$$

Hence,
$\left\|\tilde{\boldsymbol{y}}-\boldsymbol{y}^{*}\right\|_{2} \leq$
By normal equation, we have

$$
\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U} \tilde{\boldsymbol{y}}=\boldsymbol{U} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{b}
$$

so,

$$
\left\|\tilde{\boldsymbol{y}}-\boldsymbol{y}^{*}\right\|_{2} \leq 2\left\|\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S}\left(\boldsymbol{U} \boldsymbol{y}^{*}-\boldsymbol{b}\right)\right\|_{2}
$$

For a subspace embedding \boldsymbol{S}, we have

$$
\left\|\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U}-\boldsymbol{I}\right\|_{2} \leq \frac{1}{2}
$$

Hence,
$\left\|\tilde{\boldsymbol{y}}-\boldsymbol{y}^{*}\right\|_{2} \leq$
By normal equation, we have

$$
\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U} \tilde{\boldsymbol{y}}=\boldsymbol{U} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{b}
$$

so,

$$
\left\|\tilde{\boldsymbol{y}}-\boldsymbol{y}^{*}\right\|_{2} \leq 2\left\|\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S}\left(\boldsymbol{U} \boldsymbol{y}^{*}-\boldsymbol{b}\right)\right\|_{2}
$$

For \boldsymbol{S} with the choice of m, we have

$$
\operatorname{Pr}\left[\left\|\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S}\left(\boldsymbol{U} \boldsymbol{y}^{*}-\boldsymbol{b}\right)\right\|_{F} \geq 3 \frac{\sqrt{\epsilon}}{d}\|\boldsymbol{U}\|_{F}\left\|\boldsymbol{U} \boldsymbol{y}^{*}-\boldsymbol{b}\right\|_{F}\right] \leq \delta
$$

Sampling for least squares

- We can consider sampling rows of $[\boldsymbol{A} \boldsymbol{b}]$.
- Recall leverage scores.

Leverage scores

Given $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, and an orthonormal basis \boldsymbol{U} for $\operatorname{span}(\boldsymbol{A})$, for $i \in[n]$, the i th leverage score

$$
\ell_{i}(\boldsymbol{A})=\sup _{\boldsymbol{x}} \frac{\left(\boldsymbol{A}_{i *} \boldsymbol{x}\right)^{2}}{\|\boldsymbol{A} \boldsymbol{x}\|^{2}}=\left\|\boldsymbol{U}_{i *}\right\|^{2}
$$

Sampling for least squares

Algorithm:

- Compute the row-leverage scores of $\boldsymbol{A}, \ell_{i}, i=1, \ldots, n$.
- Pick m rows of \boldsymbol{A} and the corresponding elements of \boldsymbol{b} with respect to the probabilities $p_{i}=\ell_{i} / d$ to $i \in[n]$.
- Rescale sampled rows of \boldsymbol{A} and sampled elements of \boldsymbol{b} by $1 / \sqrt{m p_{i}}$.
- Solve the induced problem.

Leverage score sampling is subspace embedding

Let $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ with $r=\operatorname{rank}(\boldsymbol{A})$, and $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ be a sampling matrix with probabilities $p_{i}=\ell_{i} / r$, and $\boldsymbol{S}_{i *}=\boldsymbol{e}_{j} / \sqrt{m p_{j}}$ with $\operatorname{Pr}(j=i)=p_{i}$. If $m=O\left(r \log (r / \delta) / \epsilon^{2}\right)$, then \boldsymbol{S} is ϵ-subspace embedding of $\operatorname{span}(\boldsymbol{A})$ with probability $1-\delta$.

Leverage score sampling is subspace embedding

Let $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ with $r=\operatorname{rank}(\boldsymbol{A})$, and $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ be a sampling matrix with probabilities $p_{i}=\ell_{i} / r$, and $\boldsymbol{S}_{i *}=\boldsymbol{e}_{j} / \sqrt{m p_{j}}$ with $\operatorname{Pr}(j=i)=p_{i}$. If $m=O\left(r \log (r / \delta) / \epsilon^{2}\right)$, then \boldsymbol{S} is ϵ-subspace embedding of $\operatorname{span}(\boldsymbol{A})$ with probability $1-\delta$.

Proof: Let $\boldsymbol{U} \in \mathbb{R}^{n \times r}$ be orthonormal with $\operatorname{span}(\boldsymbol{U})=\operatorname{span}(\boldsymbol{A})$.
For $k \in[m]$, let $\boldsymbol{X}_{k}=m \boldsymbol{U}^{\top}\left[\boldsymbol{S}_{k *}\right]^{\top} \boldsymbol{S}_{k *} \boldsymbol{U}-\boldsymbol{I}$, so

$$
\frac{1}{m} \sum_{k} \boldsymbol{X}_{k}=\boldsymbol{U}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{U}-\boldsymbol{I}
$$

and for ϵ-embedding, we need to bound its spectral norm.

Matrix Chernoff

Let \boldsymbol{X}_{k} for $k \in[m]$ be i.i.d copies of symmetric random $\boldsymbol{X} \in \mathbb{R}^{r \times r}$ with $\gamma, \sigma^{2}>0$, $\mathbb{E}[\boldsymbol{X}]=0,\|\boldsymbol{X}\|_{2} \leq \gamma$, and $\left\|\mathbb{E}\left[\boldsymbol{X}^{2}\right]\right\|_{2} \leq \sigma^{2}$. Then for $\epsilon>0$,

$$
\operatorname{Pr}\left(\left\|\frac{1}{m} \sum_{k} \boldsymbol{X}_{k}\right\|_{2} \geq \epsilon\right) \leq 2 r \exp \left(-m \epsilon^{2} /\left(\sigma^{2}+\gamma \epsilon / 3\right)\right)
$$

Apply to

$$
\boldsymbol{X}=\frac{1}{p_{j}}\left[\boldsymbol{U}_{j *}\right]^{\top} \boldsymbol{U}_{j *}-\boldsymbol{I} \text { with } \operatorname{Pr}(j=i)=p_{i}=\ell_{i} / r=\left\|\boldsymbol{U}_{i *}\right\|_{2}^{2} / r .
$$

We have
$\mathbb{E}[\boldsymbol{X}]=$
$\|\boldsymbol{X}\|_{2} \leq$
$\mathbb{E}\left[\boldsymbol{X}^{2}\right]=$

Matrix Chernoff

Let \boldsymbol{X}_{k} for $k \in[m]$ be i.i.d copies of symmetric random $\boldsymbol{X} \in \mathbb{R}^{r \times r}$ with $\gamma, \sigma^{2}>0$, $\mathbb{E}[\boldsymbol{X}]=0,\|\boldsymbol{X}\|_{2} \leq \gamma$, and $\left\|\mathbb{E}\left[\boldsymbol{X}^{2}\right]\right\|_{2} \leq \sigma^{2}$. Then for $\epsilon>0$,

$$
\operatorname{Pr}\left(\left\|\frac{1}{m} \sum_{k} \boldsymbol{X}_{k}\right\|_{2} \geq \epsilon\right) \leq 2 r \exp \left(-m \epsilon^{2} /\left(\sigma^{2}+\gamma \epsilon / 3\right)\right)
$$

Apply to

$$
\boldsymbol{X}=\frac{1}{p_{j}}\left[\boldsymbol{U}_{j *}\right]^{\top} \boldsymbol{U}_{j *}-\boldsymbol{I} \text { with } \operatorname{Pr}(j=i)=p_{i}=\ell_{i} / r=\left\|\boldsymbol{U}_{i *}\right\|_{2}^{2} / r .
$$

We have
$\mathbb{E}[\boldsymbol{X}]=$
$\|\boldsymbol{X}\|_{2} \leq$
$\mathbb{E}\left[\boldsymbol{X}^{2}\right]=$
so, $\left\|\mathbb{E}\left[\boldsymbol{X}^{2}\right]\right\|_{2} \leq r-1$.

Computing the leverage scores

- To compute the leverage scores exactly, we need \boldsymbol{U}, i.e., compute the SVD of \boldsymbol{A}.
- Naive cost $O\left(n d^{2}\right)$.
- Can be approximately estimated in $O\left(n n z(\boldsymbol{A}) \log n+d^{3}\right)$ time.

Algorithm:

Given $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, a subspace ϵ-embedding $\boldsymbol{S}_{1} \in \mathbb{R}^{m \times n}$ for \boldsymbol{A}, and a JL matrix $\boldsymbol{S}_{2} \in \mathbb{R}^{d \times m^{\prime}}$. so that $\left\|\boldsymbol{x}^{\top} \boldsymbol{S}_{2}\right\|=(1 \pm \epsilon)\|\boldsymbol{x}\|$ for n vectors, so $m^{\prime}=O\left(\log (n) / \epsilon^{2}\right)$, then:
(1) $\boldsymbol{W}=\boldsymbol{S}_{1} \boldsymbol{A} ; \quad / /$ compute sketch
(2) $[\boldsymbol{Q}, \boldsymbol{R}]=q r(\boldsymbol{W}) ; \quad / /$ change of basis
(3) $\boldsymbol{Z}=\boldsymbol{A}\left(\boldsymbol{R}^{-1} \boldsymbol{S}_{2}\right) ; \quad / /$ sketch of $\boldsymbol{A} \boldsymbol{R}^{-1}$
(1) return $\left\|\boldsymbol{Z}_{i *}\right\|_{2}^{2}$ for $i \in[n]$

Correctness

- $\boldsymbol{A} \boldsymbol{R}^{-1}$ has singular values in $[1-\epsilon, 1+\epsilon]$.

For all $\boldsymbol{x},\left\|\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}\right\|=(1 \pm \epsilon)\left\|\boldsymbol{S}_{1} \boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}\right\|=(1 \pm \epsilon)\|\boldsymbol{Q} \boldsymbol{x}\|=(1 \pm \epsilon)\|\boldsymbol{x}\|$

- Let \boldsymbol{U} be orthonormal with $\operatorname{span}(\boldsymbol{U})=\operatorname{span}(\boldsymbol{A})$.
- $\boldsymbol{A} \boldsymbol{R}^{-1}$ is like \boldsymbol{U}.

Correctness

- $\boldsymbol{A} \boldsymbol{R}^{-1}$ has singular values in $[1-\epsilon, 1+\epsilon]$.

For all $\boldsymbol{x},\left\|\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}\right\|=(1 \pm \epsilon)\left\|\boldsymbol{S}_{1} \boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}\right\|=(1 \pm \epsilon)\|\boldsymbol{Q} \boldsymbol{x}\|=(1 \pm \epsilon)\|\boldsymbol{x}\|$

- Let \boldsymbol{U} be orthonormal with $\operatorname{span}(\boldsymbol{U})=\operatorname{span}(\boldsymbol{A})$.
- $\boldsymbol{A} \boldsymbol{R}^{-1}$ is like \boldsymbol{U}.
- Pick \boldsymbol{T} such that $\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{T}=\boldsymbol{U}$.
- \boldsymbol{T} has singular values $(1 \pm \epsilon)$.

Correctness

- $\boldsymbol{A} \boldsymbol{R}^{-1}$ has singular values in $[1-\epsilon, 1+\epsilon]$.

For all $\boldsymbol{x},\left\|\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}\right\|=(1 \pm \epsilon)\left\|\boldsymbol{S}_{1} \boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}\right\|=(1 \pm \epsilon)\|\boldsymbol{Q} \boldsymbol{x}\|=(1 \pm \epsilon)\|\boldsymbol{x}\|$

- Let \boldsymbol{U} be orthonormal with $\operatorname{span}(\boldsymbol{U})=\operatorname{span}(\boldsymbol{A})$.
- $\boldsymbol{A R} \boldsymbol{R}^{-1}$ is like \boldsymbol{U}.
- Pick \boldsymbol{T} such that $\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{T}=\boldsymbol{U}$.
- \boldsymbol{T} has singular values $(1 \pm \epsilon)$.

For all \boldsymbol{x},

$$
\|\boldsymbol{T} \boldsymbol{x}\|=\|\boldsymbol{Q} \boldsymbol{T} \boldsymbol{x}\|=\left\|\boldsymbol{S}_{1} \boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{T} \boldsymbol{x}\right\|=(1 \pm \epsilon)\left\|\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{T} \boldsymbol{x}\right\|=(1 \pm \epsilon)\|\boldsymbol{U} \boldsymbol{x}\|=(1 \pm \epsilon)\|\boldsymbol{x}\|
$$

- Then \boldsymbol{T}^{-1} has singular values ($1 \pm 2 \epsilon$) for $\epsilon<1 / 2$.

Correctness

- $\boldsymbol{A} \boldsymbol{R}^{-1}$ has singular values in $[1-\epsilon, 1+\epsilon]$.

For all $\boldsymbol{x},\left\|\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}\right\|=(1 \pm \epsilon)\left\|\boldsymbol{S}_{1} \boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}\right\|=(1 \pm \epsilon)\|\boldsymbol{Q} \boldsymbol{x}\|=(1 \pm \epsilon)\|\boldsymbol{x}\|$

- Let \boldsymbol{U} be orthonormal with $\operatorname{span}(\boldsymbol{U})=\operatorname{span}(\boldsymbol{A})$.
- $\boldsymbol{A} \boldsymbol{R}^{-1}$ is like \boldsymbol{U}.
- Pick \boldsymbol{T} such that $\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{T}=\boldsymbol{U}$.
- \boldsymbol{T} has singular values $(1 \pm \epsilon)$.

For all \boldsymbol{x},

$$
\|\boldsymbol{T} \boldsymbol{x}\|=\|\boldsymbol{Q} \boldsymbol{T} \boldsymbol{x}\|=\left\|\boldsymbol{S}_{1} \boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{T} \boldsymbol{x}\right\|=(1 \pm \epsilon)\left\|\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{T} \boldsymbol{x}\right\|=(1 \pm \epsilon)\|\boldsymbol{U} \boldsymbol{x}\|=(1 \pm \epsilon)\|\boldsymbol{x}\|
$$

- Then \boldsymbol{T}^{-1} has singular values $(1 \pm 2 \epsilon)$ for $\epsilon<1 / 2$.
- Hence, our output $\left\|\boldsymbol{e}_{i}^{\top} \boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{S}_{2}\right\|^{2}=(1 \pm O(\epsilon))\left\|\boldsymbol{e}_{i}^{\top} \boldsymbol{U}\right\|^{2}$.

Correctness

- $\boldsymbol{A} \boldsymbol{R}^{-1}$ has singular values in $[1-\epsilon, 1+\epsilon]$.

For all $\boldsymbol{x},\left\|\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}\right\|=(1 \pm \epsilon)\left\|\boldsymbol{S}_{1} \boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}\right\|=(1 \pm \epsilon)\|\boldsymbol{Q} \boldsymbol{x}\|=(1 \pm \epsilon)\|\boldsymbol{x}\|$

- Let \boldsymbol{U} be orthonormal with $\operatorname{span}(\boldsymbol{U})=\operatorname{span}(\boldsymbol{A})$.
- $\boldsymbol{A} \boldsymbol{R}^{-1}$ is like \boldsymbol{U}.
- Pick \boldsymbol{T} such that $\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{T}=\boldsymbol{U}$.
- \boldsymbol{T} has singular values $(1 \pm \epsilon)$.

For all \boldsymbol{x},

$$
\|\boldsymbol{T} \boldsymbol{x}\|=\|\boldsymbol{Q} \boldsymbol{T} \boldsymbol{x}\|=\left\|\boldsymbol{S}_{1} \boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{T} \boldsymbol{x}\right\|=(1 \pm \epsilon)\left\|\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{T} \boldsymbol{x}\right\|=(1 \pm \epsilon)\|\boldsymbol{U} \boldsymbol{x}\|=(1 \pm \epsilon)\|\boldsymbol{x}\|
$$

- Then \boldsymbol{T}^{-1} has singular values $(1 \pm 2 \epsilon)$ for $\epsilon<1 / 2$.
- Hence, our output $\left\|\boldsymbol{e}_{i}^{\top} \boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{S}_{2}\right\|^{2}=(1 \pm O(\epsilon))\left\|\boldsymbol{e}_{i}^{\top} \boldsymbol{U}\right\|^{2}$.

$$
\begin{aligned}
\left\|\boldsymbol{e}_{i}^{\top} \boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{S}_{2}\right\|^{2} & =(1 \pm \epsilon)\left\|\boldsymbol{e}_{i}^{\top} \boldsymbol{A} \boldsymbol{R}^{-1}\right\|^{2}=(1 \pm \epsilon)\left\|\boldsymbol{e}_{i}^{\top} \boldsymbol{U} \boldsymbol{T}^{-1}\right\|^{2} \\
& =(1 \pm \epsilon)(1 \pm 2 \epsilon)\left\|\boldsymbol{e}_{i}^{\top} \boldsymbol{U}\right\|^{2}
\end{aligned}
$$

Computational cost

- $\boldsymbol{W}=\boldsymbol{S}_{1} \boldsymbol{A} ; \quad / / O(n n z(\boldsymbol{A}) s$
(0) $[\boldsymbol{Q}, \boldsymbol{R}]=q r(\boldsymbol{W}) ; \quad / / O\left(d^{2} m\right)$
- $\boldsymbol{Z}=\boldsymbol{A}\left(\boldsymbol{R}^{-1} \boldsymbol{S}_{2}\right) ; \quad / / O\left(d^{2} m^{\prime}+n n z(\boldsymbol{A}) m^{\prime}\right)$
- return $\left\|\boldsymbol{Z}_{i *}\right\|_{2}^{2}$ for $i \in[n] / / O\left(n m^{\prime}\right)$

Computational cost

(1) $\boldsymbol{W}=\boldsymbol{S}_{1} \boldsymbol{A} ; \quad / / O(n n z(\boldsymbol{A}) s$
(0) $[\boldsymbol{Q}, \boldsymbol{R}]=q r(\boldsymbol{W}) ; \quad / / O\left(d^{2} m\right)$

- $\boldsymbol{Z}=\boldsymbol{A}\left(\boldsymbol{R}^{-1} \boldsymbol{S}_{2}\right) ; \quad / / O\left(d^{2} m^{\prime}+n n z(\boldsymbol{A}) m^{\prime}\right)$
© return $\left\|\boldsymbol{Z}_{i *}\right\|_{2}^{2}$ for $i \in[n] / / O\left(n m^{\prime}\right)$
If \boldsymbol{A} is dense, we use SRHT and fast JL.
If \boldsymbol{A} is sparse, we can use OSNAP.
Total cost is :

$$
O\left(n n z(\boldsymbol{A})\left(m^{\prime}+s\right)+d^{2}\left(m+m^{\prime}\right)=O\left(\left(n n z(\boldsymbol{A}) \log n+d^{3} \log d\right) / \epsilon^{2}\right) .\right.
$$

Further Reading:

Drineas, Petros, et al. "Fast approximation of matrix coherence and statistical leverage." The Journal of Machine Learning Research 13.1 (2012): 3475-3506.

Preconditioning for least squares

- Solving least squares regression exactly requires $O\left(n d^{2}+d^{3}\right)$ cost.
- Using sketching or sampling : $O\left(\left(n n z(\boldsymbol{A}) \log n+d^{3} \log d\right) / \epsilon\right)$.
- However, we only get an approximate solution:

$$
\|\boldsymbol{A} \tilde{\boldsymbol{x}}-\boldsymbol{b}\|_{2} \leq(1+\epsilon)\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}
$$

- For machine precision regression, we need reduce the dependence on ϵ to logarithmic.
- With iterative methods, such as the general class of Krylov or conjugate-gradient type algorithms :

$$
\frac{\left\|\boldsymbol{A}\left(\boldsymbol{x}^{(m)}-\boldsymbol{x}^{*}\right)\right\|^{2}}{\left\|\boldsymbol{A}\left(\boldsymbol{x}^{(0)}-\boldsymbol{x}^{*}\right)\right\|^{2}} \leq 2\left(\frac{\sqrt{\kappa\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)}-1}{\sqrt{\kappa\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)}+1}\right)^{m}
$$

So, need $m=O(\kappa(\boldsymbol{A}) \log (1 / \epsilon))$ to get an ϵ error.

Preconditioning for least squares

- Pre-conditioning reduces the number of iterations needed for a given accuracy.
- Find a non-singular matrix \boldsymbol{R}, such that $\kappa\left(\left(\boldsymbol{A} \boldsymbol{R}^{-1}\right)^{\top} \boldsymbol{A} \boldsymbol{R}^{-1}\right)$ is small.
- Applying CG method to $\boldsymbol{A} \boldsymbol{R}^{-1}$ would converge quickly.

Preconditioning for least squares

- Pre-conditioning reduces the number of iterations needed for a given accuracy.
- Find a non-singular matrix \boldsymbol{R}, such that $\kappa\left(\left(\boldsymbol{A} \boldsymbol{R}^{-1}\right)^{\top} \boldsymbol{A} \boldsymbol{R}^{-1}\right)$ is small.
- Applying CG method to $\boldsymbol{A} \boldsymbol{R}^{-1}$ would converge quickly.
- Idea is similar to approximate leverage scores computation.

Apply a (sparse) subspace embedding matrix \boldsymbol{S} to \boldsymbol{A}.
Compute \boldsymbol{R} as $[\boldsymbol{Q}, \boldsymbol{R}]=q r(\boldsymbol{S A})$.
We know that $\boldsymbol{A} \boldsymbol{R}^{-1}$ has singular values in $\left[1-\epsilon_{0}, 1+\epsilon_{0}\right]$ (almost orthonormal).

$$
\kappa\left(\boldsymbol{A} \boldsymbol{R}^{-1}\right) \leq \frac{1+\epsilon_{0}}{1-\epsilon_{0}}
$$

After m iterations of CG, we have: $\left\|\boldsymbol{A} \boldsymbol{R}^{-1}\left(\boldsymbol{x}^{(m)}-\boldsymbol{x}^{*}\right)\right\|^{2} \leq 2 \epsilon_{0}^{m}\left\|\boldsymbol{x}^{*}\right\|^{2}$

Iterative Refimenent

Given $\boldsymbol{A} \in \mathbb{R}^{n \times d}, \boldsymbol{b} \in \mathbb{R}^{n}$, and a subspace ϵ_{0}-embedding $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ for \boldsymbol{A},
(0) $m=O(\log (1 / \epsilon))$
(2) $\boldsymbol{W}=\boldsymbol{S A}$;

- $[\boldsymbol{Q}, \boldsymbol{R}]=q r(\boldsymbol{W})$;
- $x^{(0)} \leftarrow 0$;
(-) for $j=0,1, \ldots, m$:

$$
\boldsymbol{x}^{(j+1)} \leftarrow \boldsymbol{x}^{(j)}+\left(\boldsymbol{R}^{\top}\right)^{-1} \boldsymbol{A}^{\top}\left(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}^{(j)}\right)
$$

- return $\boldsymbol{R}^{-1} \boldsymbol{x}^{(m+1)}$

Cost:

For SRHT or OSNAP: $O\left(n n z(\boldsymbol{A}) \log (n / \epsilon)+d^{3} \log ^{2} d+d^{2} \log (1 / \epsilon)\right)$ For Countsketch: $O\left(\left(n n z(\boldsymbol{A})+d^{4}\right) \log (1 / \epsilon)\right)$.

Sketch based preconditioning

Let $\boldsymbol{x}^{(j+1)} \leftarrow \boldsymbol{x}^{(j)}+\left(\boldsymbol{R}^{\top}\right)^{-1} \boldsymbol{A}^{\top}\left(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}^{(j)}\right)$.
We have

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{R}^{-1}\left(\boldsymbol{x}^{(j+1)}-\boldsymbol{x}^{*}\right) & =\boldsymbol{A} \boldsymbol{R}^{-1}\left(\boldsymbol{x}^{(j)}+\left(\boldsymbol{R}^{\top}\right)^{-1} \boldsymbol{A}^{\top}\left(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}^{(j)}\right)-\boldsymbol{x}^{*}\right) \\
& = \\
& =
\end{aligned}
$$

Sketch based preconditioning

Let $\boldsymbol{x}^{(j+1)} \leftarrow \boldsymbol{x}^{(j)}+\left(\boldsymbol{R}^{\top}\right)^{-1} \boldsymbol{A}^{\top}\left(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}^{(j)}\right)$.
We have

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{R}^{-1}\left(\boldsymbol{x}^{(j+1)}-\boldsymbol{x}^{*}\right) & =\boldsymbol{A} \boldsymbol{R}^{-1}\left(\boldsymbol{x}^{(j)}+\left(\boldsymbol{R}^{\top}\right)^{-1} \boldsymbol{A}^{\top}\left(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{x}^{(j)}\right)-\boldsymbol{x}^{*}\right) \\
& = \\
& =
\end{aligned}
$$

where $\boldsymbol{A} \boldsymbol{R}^{-1}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\top}$. We know $\boldsymbol{A} \boldsymbol{R}^{-1}$ has singular values in $\left[1-\epsilon_{0}, 1+\epsilon_{0}\right]$. So, diagonal entries of $\Sigma-\Sigma^{3}$ are at most $\sigma_{i}\left(1-\left(1-\epsilon_{0}\right)^{2}\right) \leq 3 \sigma_{i} \epsilon_{0}$ for $\epsilon_{0} \leq 1$. Hence,

$$
\left\|\boldsymbol{A} \boldsymbol{R}^{-1}\left(\boldsymbol{x}^{(m+1)}-\boldsymbol{x}^{*}\right)\right\| \leq 3 \epsilon_{0}\left\|\boldsymbol{A} \boldsymbol{R}^{-1}\left(\boldsymbol{x}^{(m)}-\boldsymbol{x}^{*}\right)\right\|
$$

and by choosing $\epsilon_{0}=1 / 2$, say, $O(\log (1 / \epsilon))$ iterations suffice to attain ϵ relative error.

Further Reading

- Avron, Haim, Petar Maymounkov, and Sivan Toledo. "Blendenpik: Supercharging LAPACK's least-squares solver." SIAM Journal on Scientific Computing 32.3 (2010): 1217-1236.
- Clarkson, Kenneth L., and David P. Woodruff. "Low-rank approximation and regression in input sparsity time." Journal of the ACM (JACM) 63.6 (2017): 1-45.

Questions?

