CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024

Lecture 1: Introduction and Overview

Outline

(1) Class Topics and Logistics
(2) Introduction - Vector spaces and matrices
(3) Eigenvalues and singular values
(4) Vector and matrix norms

Data Deluge

- Modern applications involve large dimensional datasets (matrices and beyond!).
- New technologies - generation and collection of large volumes of scientific data.
- Algorithms - Inexpensive, scalable; parallel and online/streaming.

A Multi-Dimensional World

- Much of real-world data is inherently multidimensional

- Many operators and models are natively multi-way

Algorithms for Data

- Growing demands of data science and artificial intelligence and the need to handle large and high dimensional data have ushered in a "new era" for algorithms research.
- Today's data problems are two folds:
- Computational issues in handling large and high dimensional data.
- Representational challenges in order to capture multi-dimensional correlation structure.
- Typical data applications require combining a diverse set of algorithmic tools. Most are not heavily covered in traditional algorithms curriculum.

Class topics

- The class topics are divided into two parts:
(1) Randomized matrix computations
(2) Tensor algebraic methods
- Randomized linear algebra - Approximate computational paradigm through the interplay between statistics, algebra and geometry.
- Tensor algebra - algebraic constructs that represent and manipulate natively high-dimensional entities, while preserving their multi-dimensional integrity.
- We will cover theory, matlab/Python implementations, and applications.
- Focus on the tools to design new algorithms.
- Will need strong background in linear algebra and probability.

Course Logistics

Course webpage:

https://shashankaubaru.github.io/Teaching/CSE392-2024.html You will find all information related to the course.
Instructor: Shashanka Ubaru

- Email: shashanka.ubaru@austin.utexas.edu or @ibm.com
- Office hours: Wednesdays 3:00pm - 4:00pm.
- Location: POB 3.134

Class time and Location:
Mondays and Wednesdays, 11:00am - 12:30pm, GDC 2.402.

Class Logistics II

- Syllabus, schedule, lecture notes and other information can all be found in the class webpage.
- Assignments are to be submitted through Canvas, and should be individual work. You can discuss the problems, but should submit individually. Preferably typewritten.
- The programming languages for the course will be Matlab and/or Python.
- Some of the assignments and exercises will involve programming and code submission.
- We will use Canvas for grades, submissions, etc.

Class Logistics III

Grading:

- Scribing - 10\%: Participation and scribed notes preparation. 1-2 lectures, depending on the class strength. LaTeX template is available in the webpage.
- Assignments - 50\% : Around 5 problem sets each contributing an equal amount to the grade. Will include programming exercises.
- Class Project - 40% : Teams of two. There will be a final presentation of the projects during the last week of the semester.

Relevant resources will be posted on the webpage.

Questions?

This lecture

General Introduction

- Background: Linear algebra and numerical linear algebra.
- Mathematical background - vector spaces, matrices, rank.
- Types of matrices, structured matrices.
- eigenvalues, singular values.
- Inner products, norms.

Vector spaces and matrices

- A vector subspace of \mathbb{R}^{n} is a subset of \mathbb{R}^{n} that is also a real vector space.
- The set of all linear combinations of a set of vectors $\mathbb{A}=\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{q}\right\}$ of \mathbb{R}^{n} is a vector subspace called the linear span of \mathbb{A}.
- If the \boldsymbol{a}_{i} 's are linearly independent, then each vector of $\operatorname{span}(\mathbb{A})$ admits a unique expression as a linear combination of the \boldsymbol{a}_{i} 's. The set \mathbb{A} is then called a basis.

Vector spaces and matrices

- A vector subspace of \mathbb{R}^{n} is a subset of \mathbb{R}^{n} that is also a real vector space.
- The set of all linear combinations of a set of vectors $\mathbb{A}=\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{q}\right\}$ of \mathbb{R}^{n} is a vector subspace called the linear span of \mathbb{A}.
- If the \boldsymbol{a}_{i} 's are linearly independent, then each vector of $\operatorname{span}(\mathbb{A})$ admits a unique expression as a linear combination of the \boldsymbol{a}_{i} 's. The set \mathbb{A} is then called a basis.
- A matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ is an $m \times n$ array of real numbers

$$
a_{i j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n .
$$

- A matrix represents a linear mapping between two vector spaces of finite dimension n and m :

$$
\boldsymbol{x} \in \mathbb{R}^{n} \longrightarrow \boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} \in \mathbb{R}^{m}
$$

Tensors

- Notation : $\mathcal{A}^{n_{1} \times n_{2} \ldots, \times n_{d}}-d^{\text {th }}$ order tensor
- $0^{\text {th }}$ order tensor - scalar
- $1^{\text {st }}$ order tensor - vector

- $2^{\text {nd }}$ order tensor - matrix

- $3^{\text {rd }}$ order tensor ...

Matrix operations

- Addition: $\boldsymbol{C}=\boldsymbol{A}+\boldsymbol{B}$, where $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C} \in \mathbb{R}^{m \times n}$ with

$$
c_{i j}=a_{i j}+b_{i j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Scalar multiplication: $\boldsymbol{C}=\alpha \boldsymbol{A}$, where

$$
c_{i j}=\alpha a_{i j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Matrix-matrix multiplication: $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$, where $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{B} \in \mathbb{R}^{n \times p}, \boldsymbol{C} \in \mathbb{R}^{m \times p}$ with

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}, \quad i=1, \ldots, m, \quad j=1, \ldots, p
$$

Matrix operations

- Transposition: $\boldsymbol{C}=\boldsymbol{A}^{\top}$, where $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{C} \in \mathbb{R}^{n \times m}$ with

$$
c_{i j}=a_{j i}, \quad i=1, \ldots, m, \quad j=1, \ldots, n .
$$

- Transpose conjugate: for complex matrices

$$
\boldsymbol{A}^{H}=\overline{\boldsymbol{A}}^{\top}=\overline{\boldsymbol{A}^{\top}} .
$$

- Kronecker product: For $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{B} \in \mathbb{R}^{p \times q}$

$$
\boldsymbol{A} \otimes \boldsymbol{B}=\left[\begin{array}{cccc}
a_{11} \boldsymbol{B} & a_{12} \boldsymbol{B} & \cdots & a_{1 n} \boldsymbol{B} \\
a_{21} \boldsymbol{B} & a_{22} \boldsymbol{B} & \cdots & a_{2 n} \boldsymbol{B} \\
\vdots & \ldots & \cdots & \vdots \\
a_{m 1} \boldsymbol{B} & a_{m 2} \boldsymbol{B} & \cdots & a_{m n} \boldsymbol{B}
\end{array}\right]
$$

In Matlab and Numpy: kron (A,B). Size = ??

Questions and Exercises

- $\left(\boldsymbol{A}^{\top}\right)^{\top}=? \quad(\boldsymbol{A B})^{\top}=? \quad\left(\boldsymbol{A}^{H}\right)^{H}=$? $\left(\boldsymbol{A}^{H}\right)^{\top}=? \quad(\boldsymbol{A B C})^{\top}=?$
- When is $\boldsymbol{A} \boldsymbol{A}^{\top}=\boldsymbol{A}^{\top} \boldsymbol{A}$?
- What are the computational complexity of (a) matrix addition, (b)matrix-vector product (matvec), and (c) matrix-matrix product?
- If $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$, then what are the sizes of $\boldsymbol{u}^{\top} \boldsymbol{v}$ and $\boldsymbol{u} \boldsymbol{v}^{\top}$?

What are these called?

- Exercise 1: Show that for $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$, we have $\boldsymbol{v}^{\top} \otimes \boldsymbol{u}=\boldsymbol{u} \boldsymbol{v}^{\top}$.

Range, rank, and null space

- Range: $\operatorname{Ran}(\boldsymbol{A})=\left\{\boldsymbol{A} \boldsymbol{x} \mid \boldsymbol{x} \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{m}$
- Null Space: $\operatorname{Null}(\boldsymbol{A})=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A} \boldsymbol{x}=0\right\} \subseteq \mathbb{R}^{n}$
- Range $=$ linear span of the columns of \boldsymbol{A}
- Rank of a matrix $\operatorname{rank}(\boldsymbol{A})=\operatorname{dim}(\operatorname{Ran}(\boldsymbol{A})) \leq n$
- $\operatorname{Ran}(\boldsymbol{A}) \subseteq \mathbb{R}^{m} \rightarrow \operatorname{rank}(\boldsymbol{A}) \leq m \rightarrow$

$$
\operatorname{rank}(\boldsymbol{A}) \leq \min \{m, n\}
$$

- $\operatorname{rank}(\boldsymbol{A})=$ number of linearly independent columns of $\boldsymbol{A}=$ number of linearly independent rows of \boldsymbol{A}.
- \boldsymbol{A} is of full rank if $\operatorname{rank}(\boldsymbol{A})=\min \{m, n\}$. Otherwise it is rank-deficient.

Rank - Nullity Theorem

- For $\boldsymbol{A} \in \mathbb{R}^{m \times n}$:

$$
\operatorname{dim}(\operatorname{Ran}(\boldsymbol{A}))+\operatorname{dim}(\operatorname{Null}(\boldsymbol{A}))=n
$$

Also

$$
\operatorname{dim}\left(\operatorname{Ran}\left(\boldsymbol{A}^{\top}\right)\right)+\operatorname{dim}\left(\operatorname{Null}\left(\boldsymbol{A}^{\top}\right)\right)=m
$$

- $\operatorname{dim}(\operatorname{Null}(\boldsymbol{A}))$ is called the nullity or co-rank of \boldsymbol{A}.
- $\operatorname{rank}(\boldsymbol{A})+\operatorname{nullity}(\boldsymbol{A})=n$.

Question: If $\operatorname{rank}(\boldsymbol{A})=r$, what are $\operatorname{rank}\left(\boldsymbol{A}^{\top}\right), \operatorname{rank}(\overline{\boldsymbol{A}}), \operatorname{rank}\left(\boldsymbol{A}^{H}\right)$? Explore rank function in Matlab or numpy.

Types of matrices

- Orthonormal : $\boldsymbol{U} \in \mathbb{R}^{m \times n}$ is orthonormal if $\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}$.
- If \boldsymbol{U} is square, then it is orthogonal (or unitary if complex), and $\boldsymbol{U} \boldsymbol{U}^{\top}=\boldsymbol{I}$.
- A square matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is,

Symmetric : $A^{\top}=A$, Skew-symmetric : $A^{\top}=-A$,
Hermitian: $\boldsymbol{A}^{H}=\boldsymbol{A}$, Skew-Hermitian : $\boldsymbol{A}^{H}=-\boldsymbol{A}$, Normal: $\boldsymbol{A}^{H} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{A}^{H}$.

Types of matrices

- Orthonormal : $\boldsymbol{U} \in \mathbb{R}^{m \times n}$ is orthonormal if $\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}$.
- If \boldsymbol{U} is square, then it is orthogonal (or unitary if complex), and $\boldsymbol{U} \boldsymbol{U}^{\top}=\boldsymbol{I}$.
- A square matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ is,

Symmetric : $A^{\top}=A$, Skew-symmetric : $A^{\top}=-A$,
Hermitian: $\boldsymbol{A}^{H}=\boldsymbol{A}$, Skew-Hermitian : $\boldsymbol{A}^{H}=-\boldsymbol{A}$, Normal: $\boldsymbol{A}^{H} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{A}^{H}$.

- Matrix is non-negative if $a_{i j} \geq 0, i, j=1, \ldots, n$.
- A symmetric matrix \boldsymbol{P} of the form $\boldsymbol{P}=\boldsymbol{U} \boldsymbol{U}^{\top}$ is a projection matrix, and $\boldsymbol{P} \boldsymbol{P}=\boldsymbol{P}$.
- Structured matrices: Diagonal, Upper (U) and Lower (L) triangular, U \& L bidiagonal, tridiagonal, and U \& L Hessenberg.
- Special matrices: Toeplitz, Hankel, and circulant matrices.
- Sparse matrices Many of the large matrices encountered in applications are sparse. Sparse matrix computations can be a separate course.

Reference

Recommended reading:

If these topics are not familiar, refer to sections 1.1 to 1.6 in Dr. Yousef Saad's text book:
http://www.cs.umn.edu/~saad/eig_book_2ndEd.pdf.

Eigenvalues and Eigenvectors

A complex scalar λ is called an eigenvalue of a square matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ if there exists a nonzero vector $\boldsymbol{u} \in \mathbb{C}^{n}$ such that

$$
\boldsymbol{A} \boldsymbol{u}=\lambda \boldsymbol{u}
$$

The vector \boldsymbol{u} is called an eigenvector of \boldsymbol{A} associated with λ.

- The set of all eigenvalues of \boldsymbol{A}, denoted $\Lambda(\boldsymbol{A})$, is the spectrum of \boldsymbol{A}.
- An eigenvalue is a root of the characteristic polynomial:

$$
p_{\boldsymbol{A}}(\lambda)=\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})
$$

- Diagonalization: Two matrices $\boldsymbol{A}, \boldsymbol{B}$ are similar if there exists a nonsingular matrix \boldsymbol{X} such that: $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{B} \boldsymbol{X}^{-1}$.
\boldsymbol{A} is diagonalizable if it is similar to a diagonal matrix

Eigenvalues and properties

- For every square symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, we can compute eigendecompostion:

$$
\boldsymbol{A}=\boldsymbol{U} \Lambda \boldsymbol{U}^{\top}
$$

where \boldsymbol{U} is an orthogonal matrix with eigenvectors \boldsymbol{u}_{i} as columns, and Λ is diagonal matrix with eigenvalues λ_{i} on the diagonal.

- Spectral radius: The maximum modulus of the eigenvalues

$$
\rho(\boldsymbol{A})=\max _{\lambda \in \Lambda(\boldsymbol{A})}|\lambda|
$$

- Trace of \boldsymbol{A} is the sum of diagonal elements

$$
\operatorname{Tr}(\boldsymbol{A})=\sum_{i=1}^{n} a_{i i}=\sum_{i=1}^{n} \lambda_{i}
$$

sum of all the eigenvalues of \boldsymbol{A} counted with their multiplicities.

- Note $\operatorname{det}(\boldsymbol{A})=$ product of all the eigenvalues of \boldsymbol{A} counted with their multiplicities.

Singular values

- Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$.
- The eigenvalues of $\boldsymbol{A}^{H} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{H}$ are real and ≤ 0.
- Let $\sigma_{i}=\sqrt{\boldsymbol{A}^{H} \boldsymbol{A}}$ if $n \leq m$
else $\sigma_{i}=\sqrt{\boldsymbol{A A}^{H}}$ for $i=1, \ldots, \min \{n, m\}$.
- These σ_{i} 's are called the singular values of \boldsymbol{A}.

Singular value decomposition: For every matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \mathrm{~m}$ we have

$$
\boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\top},
$$

where $\boldsymbol{U} \in \mathbb{R}^{m \times m}, \boldsymbol{V} \in \mathbb{R}^{m \times n}$ are an orthogonal matrices, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal matrix with singular values σ_{i} on the diagonal ordered non-increasingly:
$\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{m} \geq 0$.

Questions and Exercises

- Given a symmetric matrix \boldsymbol{A} with eigen-decomposition $\boldsymbol{A}=\boldsymbol{U} \Lambda \boldsymbol{U}^{\top}$, then
(1) What are the eigenvalues/eigenvectors of \boldsymbol{A}^{q} for a given integer power q ?
(2) If \boldsymbol{A} is nonsingular what are the eigenvalues/eigenvectors of \boldsymbol{A}^{-1} ?
(3) What are the eigenvalues/eigenvectors of $p(\boldsymbol{A})$ for a polynomial $p(\cdot)$?
- Similarly, for a general matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, with SVD $\boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\top}$, what are the eigen-values of $\boldsymbol{A}^{\top} \boldsymbol{A}$?

Inner products and norms

- Inner product of two vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$:

$$
\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u}^{\top} \boldsymbol{v}=\sum_{i=1}^{n} u_{i} v_{i}
$$

- For complex numbers?
- Given $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ then,

$$
\langle\boldsymbol{A} \boldsymbol{u}, \boldsymbol{v}\rangle=\left\langle\boldsymbol{u}, \boldsymbol{A}^{H} \boldsymbol{v}\right\rangle
$$

- Vector norm on a vector space \mathbb{X} is a real-valued function on \mathbb{X}, which satisfies the following three conditions:

1. $\|\boldsymbol{x}\| \geq 0, \forall \boldsymbol{x} \in \mathbb{X}$, and $\|\boldsymbol{x}\|=0$ iff $\boldsymbol{x}=0$.
2. $\|\alpha \boldsymbol{x}\|=|\alpha|\|\boldsymbol{x}\|, \forall \boldsymbol{x} \in \mathbb{X}, \forall \alpha \in \mathbb{C}$.
3. $\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\|, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{X}$.

Vector norms

- Euclidean norm on $\mathbb{X}=\mathbb{C}^{n}$,

$$
\|\boldsymbol{x}\|_{2}=\langle\boldsymbol{x}, \boldsymbol{x}\rangle^{1 / 2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}
$$

- Most common vector norms in numerical linear algebra: for $p \geq 1$ (Hölder norms)

$$
\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{2}\right)^{1 / p}
$$

- Cauchy-Schwartz inequality:

$$
|\langle\boldsymbol{x}, \boldsymbol{y}\rangle| \leq\|\boldsymbol{x}\|_{2}\|\boldsymbol{y}\|_{2}
$$

- Hölder inequality:

$$
|\langle\boldsymbol{x}, \boldsymbol{y}\rangle| \leq\|\boldsymbol{x}\|_{p}\|\boldsymbol{y}\|_{q}, \text { with } \frac{1}{p}+\frac{1}{q}=1
$$

Matrix norms

- Matrix norm by treating $m \times n$ matrices as vectors in $\mathbb{C}^{m n}$:

1. $\|\boldsymbol{A}\| \geq 0, \forall \boldsymbol{A} \in \mathbb{C}^{m \times n}$, and $\|\boldsymbol{A}\|=0$ iff $\boldsymbol{A}=0$.
2. $\|\alpha \boldsymbol{A}\|=|\alpha|\|\boldsymbol{A}\|, \forall \boldsymbol{x} \in \mathbb{C}^{m \times n}, \forall \alpha \in \mathbb{C}$.
3. $\|\boldsymbol{A}+\boldsymbol{B}\| \leq\|\boldsymbol{A}\|+\|\boldsymbol{B}\|, \forall \boldsymbol{A}, \boldsymbol{B} \in \mathbb{C}^{m \times n}$.

- Given $\boldsymbol{A} \in \mathbb{C}^{m \times n}$, we define a set of matrix norms :

$$
\|\boldsymbol{A}\|_{p}=\max _{\boldsymbol{x} \in \mathbb{C}^{m}, \boldsymbol{x} \neq 0} \frac{\|\boldsymbol{A} \boldsymbol{x}\|_{p}}{\|\boldsymbol{x}\|_{p}}
$$

- Consistency / sub-mutiplicativity of matrix norms:

$$
\|\boldsymbol{A} \boldsymbol{B}\|_{p} \leq\|\boldsymbol{A}\|_{p}\|\boldsymbol{B}\|_{p}
$$

- Frobenius norm of a matrix:

$$
\|\boldsymbol{A}\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}
$$

Expressions of standard matrix norms

- Recall for a square matrix, we have

$$
\rho(\boldsymbol{A})=\max _{\lambda \in \Lambda(\boldsymbol{A})}|\lambda| \text { and } \operatorname{Tr}(\boldsymbol{A})=\sum_{i=1}^{n} a_{i i}=\sum_{i=1}^{n} \lambda_{i} .
$$

- Then the matrix norms are:

$$
\begin{aligned}
& \|\boldsymbol{A}\|_{1}=\max _{j} \sum_{i=1}^{m}\left|a_{i j}\right|, \\
& \|\boldsymbol{A}\|_{\infty}=\max _{i} \sum_{j=1}^{n=1}\left|a_{i j}\right|, \\
& \|\boldsymbol{A}\|_{2}=\left[\rho\left(\boldsymbol{A}^{H} \boldsymbol{A}\right)\right]^{1 / 2}=\left[\rho\left(\boldsymbol{A}^{H} \boldsymbol{A}\right)\right]^{1 / 2} . \\
& \|\boldsymbol{A}\|_{F}=\left[\operatorname{Tr}\left(\boldsymbol{A}^{H} \boldsymbol{A}\right)\right]^{1 / 2}=\left[\operatorname{Tr}\left(\boldsymbol{A}^{H} \boldsymbol{A}\right)\right]^{1 / 2} .
\end{aligned}
$$

In terms of singular values

- For \boldsymbol{A}, assume we have r nonzero singular values (with $r \leq \min \{m, n\}$) :

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0
$$

- Then, we have

$$
\|\boldsymbol{A}\|_{2}=\sigma_{1} \quad \text { and } \quad\|\boldsymbol{A}\|_{F}=\sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}}
$$

- Schatten p-norms for $p \geq 1$

$$
\|\boldsymbol{A}\|_{*, p}=\left[\sum_{i=1}^{r} \sigma_{i}^{p}\right]^{1 / p}
$$

- In particular: $\|\boldsymbol{A}\|_{*, 1}=\sum_{i=1}^{r} \sigma_{i}$ is called the nuclear norm and is denoted by $\|\boldsymbol{A}\|_{*}$.

Questions and Exercises

- For an orthogonal matrix \boldsymbol{U}, show that $\|\boldsymbol{U} \boldsymbol{x}\|_{2}=\|\boldsymbol{x}\|_{2}$.
- Exercise 2: Show that for any $\boldsymbol{x}: \frac{1}{\sqrt{n}}\|\boldsymbol{x}\|_{1} \leq\|\boldsymbol{x}\|_{2} \leq\|\boldsymbol{x}\|_{1}$.
- Exercise 3: Prove that the Frobenius norm is consistent [Hint: Use Cauchy-Schwartz]
- Let $\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{\top}$. Then, $\|\boldsymbol{A}\|_{2}=\|\boldsymbol{u}\|_{2}\|\boldsymbol{v}\|_{2}$.
- Exercise 4: Prove the above.

What is $\|\boldsymbol{A}\|_{F}=$?

