Assignments are to be submitted through Canvas, and should be individual work. You can discuss the problems, but should submit individually. Preferably typewritten.

Problem 1. Power method analysis

Let \boldsymbol{A} be an $n \times d$ matrix and \boldsymbol{x} a unit length vector in \mathbb{R}^{d} with $\left|\boldsymbol{x}^{\top} \boldsymbol{v}_{1}\right| \geq \eta$, where $\eta>0$ and \boldsymbol{v}_{1} is the top right singular vector of \boldsymbol{A}. Let W be the space spanned by the right singular vectors of \boldsymbol{A} corresponding to singular values greater than $(1-\epsilon) \sigma_{1}$. Let \boldsymbol{z} be the unit vector after $q=\frac{\log (1 / \epsilon \eta)}{2 \epsilon}$ iterations of the power method, namely

$$
\boldsymbol{z}=\frac{\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{q} \boldsymbol{x}}{\left\|\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{q} \boldsymbol{x}\right\|}
$$

Then, show that \boldsymbol{z} has a component of at most ϵ perpendicular to \boldsymbol{W}.
(Note: if \boldsymbol{x} is a Gaussian vector, we saw in Lecture 12 that $\eta \approx 1 / d^{3}$.)
Hints: (i) Consider writing \boldsymbol{z} as a linear combination of the right singular vectors \boldsymbol{v}_{i} 's. (see slides 14 and 15 in Lecture 12).
(ii) Let $\sigma_{1}, \ldots, \sigma_{m}$ be the singular values of \boldsymbol{A} that are $\geq(1-\epsilon) \sigma_{1}$ for some m.
(iii) Use hints (i) and (ii) to write out the component of \boldsymbol{z} that is perpendicular to W. Find an upper bound to its squared length.
(iv) Use the first inequality in slide 16 of Lecture 12 , and the value of q above to show that this length this at most ϵ.

Problem 2. Hutchinson's estimator analysis

The Hanson-Wright inequality is defined as: Given a symmetric matrix $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ and random vector $\boldsymbol{z} \in \mathbb{R}^{n}$ with mean zero, i.i.d sub-Gaussian entries, and constant sub-Gaussian parameter C, we have for $t \geq 0$:

$$
\operatorname{Pr}\left(\left|\boldsymbol{z}^{\top} \boldsymbol{B} \boldsymbol{z}-\mathbb{E}\left[\boldsymbol{z}^{\top} \boldsymbol{B} \boldsymbol{z}\right]\right| \geq t\right) \leq 2 \exp \left(-c \cdot \min \left(\frac{t^{2}}{\|\boldsymbol{B}\|_{F}^{2}}, \frac{t}{\|\boldsymbol{B}\|_{2}}\right)\right)
$$

for some universal constant $c>0$ that only depending on C.
Using this, show that the Hutchinson's estimator, $\tilde{T r}_{m}(\boldsymbol{A})=\frac{1}{m} \sum_{l=1}^{m} \boldsymbol{x}_{l}^{\top} \boldsymbol{A} \boldsymbol{x}_{l}$ where $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ is SPD, and $\boldsymbol{x}_{l}, l=1, \ldots, m$ are random vectors with mean zero, i.i.d sub-Gaussian entries, if $m \geq \frac{c \log (2 / \delta)}{\epsilon^{2}}$, then

$$
\operatorname{Pr}\left[\left|\tilde{\operatorname{Tr}}_{m}(\boldsymbol{A})-\operatorname{Tr}(\boldsymbol{A})\right| \leq \epsilon|\operatorname{Tr}(\boldsymbol{A})|\right] \geq 1-\eta .
$$

Hint: Consider applying the Hanson-Wright inequality to a block-diagonal matrix with repeated diagonal entries. We discussed this in the class.

Problem 3. Tensors

Consider the following tensor:

$$
\mathcal{A}_{: ;,, 1}=\left[\begin{array}{lll}
3 & 9 & 1 \\
8 & 2 & 1 \\
4 & 3 & 9
\end{array}\right] \text { and } \mathcal{A}_{:,:, 2}=\left[\begin{array}{lll}
6 & 9 & 5 \\
5 & 6 & 4 \\
1 & 4 & 1
\end{array}\right]
$$

(a) Find $\mathcal{A}_{2,:,:}$ and $\mathcal{A}_{2,3,}$
(b) Write $\operatorname{vec}(\mathcal{A})$
(c) Write $\boldsymbol{A}_{(2)}$ and $\boldsymbol{A}_{(3)}$
(d) Compute $\|\mathcal{A}\|_{F}^{2}$.

Problem 4. Khathri-Rao product properties:

Given the Kronecker product properties:

$$
\begin{aligned}
(\boldsymbol{B} \otimes \boldsymbol{A})^{\top} & =\boldsymbol{B}^{\top} \otimes \boldsymbol{A}^{\top} \\
(\boldsymbol{B} \otimes \boldsymbol{A})(\boldsymbol{D} \otimes \boldsymbol{C}) & =(\boldsymbol{B} \boldsymbol{D}) \otimes(\boldsymbol{A C})
\end{aligned}
$$

Prove:

- $(\boldsymbol{B} \odot \boldsymbol{A})^{\top}(\boldsymbol{B} \odot \boldsymbol{A})=\boldsymbol{B}^{\top} \boldsymbol{B} * \boldsymbol{A}^{\top} \boldsymbol{A}$
- $(\boldsymbol{B} \otimes \boldsymbol{A})(\boldsymbol{D} \odot \boldsymbol{C})=(\boldsymbol{B D}) \odot(\boldsymbol{A C})$

Note that ' $*$ ' is the elementwise (Hadamard) product.

Problem 5. CP-ALS and randomized CP

Download the Monkey BMI data from (https://gitlab.com/tensors/tensor_data_monkey_bmi). The data.mat contains a 3 -way tensor of size $43 \times 200 \times 88$.
(a) Run and time CP ALS for ranks 5:5:20. Plot the relative errors.
(You can use cp_als function from tensor toolbox or parafac function from tensorly package)
(b) Run and time CP-ARLS-Mix for the same set of ranks. Plot the relative errors. How do these compare to CP ALS?
(You can use cp_arls function with 'mix' parameter set to true from tensor toolbox or randomized_parafac function from tensorly package)

In Matlab, you will have to apply tensor function to convert matlab array to a tensor object.
You can use the 'viz_monkey_bmi_cp' function to visualize the CP factors.
(viz_monkey_bmi_cp(M, angle), where M is CP output tensor and angle is an array inside data.mat file)

