CSE 392: Matrix and Tensor Algorithms for Data Spring 2024 Homework 3 Due Date: 04-03-2024

Assignments are to be submitted through Canvas, and should be individual work. You can discuss the problems, but should submit individually. Preferably typewritten.

Problem 1. Power method analysis

Let A be an $n \times d$ matrix and x a unit length vector in \mathbb{R}^d with $|x^{\top}v_1| \ge \eta$, where $\eta > 0$ and v_1 is the top right singular vector of A. Let W be the space spanned by the right singular vectors of Acorresponding to singular values greater than $(1 - \epsilon)\sigma_1$. Let z be the unit vector after $q = \frac{\log(1/\epsilon\eta)}{2\epsilon}$ iterations of the power method, namely

$$oldsymbol{z} = rac{(oldsymbol{A}^{ op}oldsymbol{A})^qoldsymbol{x}}{\|(oldsymbol{A}^{ op}oldsymbol{A})^qoldsymbol{x}\|}$$

Then, show that \boldsymbol{z} has a component of at most $\boldsymbol{\epsilon}$ perpendicular to \boldsymbol{W} .

(Note: if \boldsymbol{x} is a Gaussian vector, we saw in Lecture 12 that $\eta \approx 1/d^3$.)

Hints: (i) Consider writing z as a linear combination of the right singular vectors v_i 's. (see slides 14 and 15 in Lecture 12).

(ii) Let $\sigma_1, \ldots, \sigma_m$ be the singular values of A that are $\geq (1 - \epsilon)\sigma_1$ for some m.

(iii) Use hints (i) and (ii) to write out the component of z that is perpendicular to W. Find an upper bound to its squared length.

(iv) Use the first inequality in slide 16 of Lecture 12, and the value of q above to show that this length this at most ϵ .

Problem 2. Hutchinson's estimator analysis

The Hanson-Wright inequality is defined as: Given a symmetric matrix $B \in \mathbb{R}^{n \times n}$ and random vector $z \in \mathbb{R}^n$ with mean zero, i.i.d sub-Gaussian entries, and constant sub-Gaussian parameter C, we have for $t \ge 0$:

$$\Pr\left(\left|\boldsymbol{z}^{\top}\boldsymbol{B}\boldsymbol{z} - \mathbb{E}[\boldsymbol{z}^{\top}\boldsymbol{B}\boldsymbol{z}]\right| \ge t\right) \le 2\exp\left(-c \cdot \min\left(\frac{t^2}{\|\boldsymbol{B}\|_F^2}, \frac{t}{\|\boldsymbol{B}\|_2}\right)\right),$$

for some universal constant c > 0 that only depending on C.

Using this, show that the Hutchinson's estimator, $\tilde{\mathrm{Tr}}_m(\mathbf{A}) = \frac{1}{m} \sum_{l=1}^m \mathbf{x}_l^\top \mathbf{A} \mathbf{x}_l$ where $\mathbf{A} \in \mathbb{R}^{d \times d}$ is SPD, and $\mathbf{x}_l, l = 1, \ldots, m$ are random vectors with mean zero, i.i.d sub-Gaussian entries, if $m \geq \frac{c \log(2/\delta)}{\epsilon^2}$, then

$$\Pr\left[\left|\tilde{\mathrm{Tr}}_{m}(\boldsymbol{A}) - \mathrm{Tr}(\boldsymbol{A})\right| \leq \epsilon |\mathrm{Tr}(\boldsymbol{A})|\right] \geq 1 - \eta.$$

Hint: Consider applying the Hanson-Wright inequality to a block-diagonal matrix with repeated diagonal entries. We discussed this in the class.

Problem 3. Tensors

Consider the following tensor:

$$\mathcal{A}_{:,:,1} = \begin{bmatrix} 3 & 9 & 1 \\ 8 & 2 & 1 \\ 4 & 3 & 9 \end{bmatrix} \text{ and } \mathcal{A}_{:,:,2} = \begin{bmatrix} 6 & 9 & 5 \\ 5 & 6 & 4 \\ 1 & 4 & 1 \end{bmatrix}$$

- (a) Find $\mathcal{A}_{2,:,:}$ and $\mathcal{A}_{2,3,:}$
- (b) Write $\operatorname{vec}(\mathcal{A})$
- (c) Write $A_{(2)}$ and $A_{(3)}$
- (d) Compute $\|\mathcal{A}\|_F^2$.

Problem 4. Khathri-Rao product properties:

Given the Kronecker product properties:

$$(\boldsymbol{B}\otimes \boldsymbol{A})^{ op} = \boldsymbol{B}^{ op}\otimes \boldsymbol{A}^{ op}$$

 $(\boldsymbol{B}\otimes \boldsymbol{A})(\boldsymbol{D}\otimes \boldsymbol{C}) = (\boldsymbol{B}\boldsymbol{D})\otimes (\boldsymbol{A}\boldsymbol{C})$

Prove:

- $(\boldsymbol{B} \odot \boldsymbol{A})^{\top} (\boldsymbol{B} \odot \boldsymbol{A}) = \boldsymbol{B}^{\top} \boldsymbol{B} * \boldsymbol{A}^{\top} \boldsymbol{A}$
- $(\boldsymbol{B} \otimes \boldsymbol{A})(\boldsymbol{D} \odot \boldsymbol{C}) = (\boldsymbol{B}\boldsymbol{D}) \odot (\boldsymbol{A}\boldsymbol{C})$

Note that '*' is the elementwise (Hadamard) product.

Problem 5. CP-ALS and randomized CP

Download the Monkey BMI data from (https://gitlab.com/tensors/tensor_data_monkey_bmi). The data.mat contains a 3-way tensor of size $43 \times 200 \times 88$.

(a) Run and time CP ALS for ranks 5:5:20. Plot the relative errors.

(You can use cp_als function from tensor toolbox or parafac function from tensorly package)

(b) Run and time CP-ARLS-Mix for the same set of ranks. Plot the relative errors. How do these compare to CP ALS?

(You can use cp_arls function with 'mix' parameter set to true from tensor toolbox or randomized_parafac function from tensorly package)

In Matlab, you will have to apply tensor function to convert matlab array to a tensor object.

You can use the 'viz_monkey_bmi_cp' function to visualize the CP factors. (viz_monkey_bmi_cp(M, angle), where M is CP output tensor and angle is an array inside data.mat file)