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Lecture 9: Countsketch; sketch and solve
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Types of sketching matrices

Gaussian sketching matrix:
@ Performs well. Small sketch size.
@ S € R™*" requires generating m - n random i.i.d entries.

e Computing SA takes O(mnd) time.

SHRT: Subsampled Randomized Hadamard Transform
e S=PHD € R™" | fewer random bits.
Faster to apply. SA in O(mdlog(n)) time.

Sketch size needed is larger.
A should be dense.

Issues with parallel and distributed computing.
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Faster Embeddings: Countsketch

Sparse Embeddings: Adaptation of CountSketch from streaming algorithms.

@ S is of the form:

0 -1 0 O 0
+1 0 0 +1 0
0 0 -1 0 0
0 0 0 O -1

One random =1 per column.
o Row A;, of A contributes +A,, to one of the rows of S A.
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Sparse Embeddings

e Sparse sketching matrix: For i € [n], pick uniformly and independently: h; € [m],
si € {—1,4+1}, and define S € R™*™ as:

Sh,i — si for i € [n],

and S;; — 0 otherwise.

e s is a sign (Radamacher) vector. The vector h hashes to m “hash buckets”. That is,
Sj* = Z sie;»r s
ithi=j

and so

[SA]]* = Z SiejA: Z SiAi*.

ith;=j ithy=j
o Fast sketching: Can compute SA in O(nnz(A)) time.
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o If s is a sign (Radamacher) vector, then E[(s"y)?] = ||y||2.
e For y = Ax, each row of S:
(a) collects a subset of entries y;’s; (b) applies the signs, and (c) adds

o E[|Syl3] = llyl3-

i

[ ]

[]

SHEEEEEEEEEN
1

'HfH-DTHf
1

A B B

+
'
&

UT Austin CSE 392/CS 395T/M 397C Feb, 2025 7/ 20



Analysis of sparse embeddings

Variance of Countsketch

For S € R™*"™ a sparse sketching distribution, and y € R™ a unit vector,

3
< =,
Var|Syl3] < =
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Analysis of sparse embeddings

Variance of Countsketch

For S € R™*"™ a sparse sketching distribution, and y € R™ a unit vector,

3

m.

Var[||Sy|3] <

Proof: Let z = Sy. We have E[||z||3] =
Var(||z||3] =

UT Austin

CSE 392/CS 395T/M 397C

Feb, 2025 8 /20



Analysis of sparse embeddings

Variance of Countsketch

For S € R™*"™ a sparse sketching distribution, and y € R™ a unit vector,

3
Var[||Sy||?] < —.
ar[[|Syll3] < -

Proof: Let z = Sy. We have E[||z||3] =
Var(||z||3] =
El|lz]3] =

UT Austin

CSE 392/CS 395T/M 397C

Feb, 2025 8 /20



Analysis of sparse embeddings

Variance of Countsketch

For S € R™*"™ a sparse sketching distribution, and y € R™ a unit vector,
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Countsketch Embedding

Countsketch - subspace embedding

For 8§ € R™*" a countsketch matrix and A € R™4, if m = O (%), then with probability
at least 1 — §:

1S Az = (1 £ €)[| Az[|.
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Countsketch Embedding

Countsketch - subspace embedding

For S € R™*" a countsketch matrix and A € R"*4 if m = O (%), then with probability
at least 1 — 9:

1S Az = (1 £ €)[| Az[|.

We use the AMM and JL moment result.
We have Var[||Sy[3] < £.

If fq—i < €25, we know S is ed-embedding with probability at least 1 — 6.
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Types of sketching matrices

‘ Sketching matrix ‘ Sketch size m ‘ Cost to sketch S A ‘
JL - i.i.d subGaussians m =0 (%W) O(mnd)
Fast JL -SRHT m =0 (MM) O(mdlog(n))
Countsketch m =0 (%) O(nnz(A))

We have other sparse embeddings where nnz per column is > 1, e..g, OSNAPs, sparse

graphs.
dlog(d)log(1/4) )
EE

Can improve m = O (

with s = ©(log(1/4)) nonzero entries per column.
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Further Reading

Countsketch was first introduced by:

e Clarkson, Kenneth L., and David P. Woodruff. “Low-rank approximation and
regression in input sparsity time.” Journal of the ACM (JACM) 63.6 (2017): 1-45

Above analysis is from:

@ Nelson, Jelani, and Huy L. Nguyen. “OSNAP: Faster numerical linear algebra
algorithms via sparser subspace embeddings.” 2013 ieee 54th annual symposium on
foundations of computer science. IEEE, 2013.
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Sketch and solve - least squares regression
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Least squares linear regression

Given a data matrix A € R"*? with n samples {a;}?, € R? of d-dimensional features,
and a column vector b € R"™ (targets):

o In the least-squares regression problem, assuming d < n, we solve:

x* = min ||Az — bl|3.
zeR?

@ A linear function and Euclidean- (¢3) norm (squared) loss function.
o The observed targets, b; = a' @ +¢;, for i = 1,...,n and ; is noise..
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Overdetermined problems

x* = min ||Az — b|)3.
zeR?

o We are interested in over-constrained least-squares problems, n > d.

o Typically, there is no * such that Ax* = b.
e Want to find the “best: «* such that Ax* ~ b.

I | |
l_r_l
nxd
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Exact solution and e-approximation

o The solution is given by the psuedo-inverse z* = ATb = (AT A)"1ATb.

o In terms of SVD, we have AT = VE-1UT, and
e QR factorization, we have AT = R~1QT.

Complexity is O(nd?), but constant factors differ.
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Exact solution and e-approximation

o The solution is given by the psuedo-inverse z* = ATb = (AT A)"1ATb.
o In terms of SVD, we have AT = VE-1UT, and
e QR factorization, we have AT = R~1QT.

Complexity is O(nd?), but constant factors differ.

e-approximation

For an error parameter €, compute & such that

|AZ — blls < (1 +¢€)[|Az” — bl|s
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Sketch and solve

Use Sketching:
e Generate a sketching matrix S € R™*".
o Compute sketches SA and Sb.

e Solve:
& = min ||[SAx — Sb]|3.
xR

e Typically, m = poly(d/e).
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Recall: subspace embedding

Subspace embedding

For A € R"*? a matrix 8 € R™*" is a subspace e-embedding for A if S is an
e-embedding for span(A) = {Az | = € R%}. Le., for all x € RY,

1S Az|y = (1 £ €)[| Az[|.

‘ Sketching matrix ‘ Sketch size m ‘ Cost to sketch S A ‘
JL - i.i.d subGaussians m =0 (‘“‘%M) O(mnd)
Fast JL-SRHT | m = O (50200 | O(mdlog(n))
Countsketch m =0 (%) O(nnz(A))
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Subspace embedding for sketch and solve

Sketch and solve
Suppose S € R™*" is a subspace e-embedding for span([A b]).
Let,

z* = min ||Az — b2
xeR?

& = min [|[S(Ax — b)||2,
xeR?

for e < 1/3, we have
|Az — bls < (1 + 3€)||Az" — bl

UT Austin
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Proof:
For y = [_‘”1] ,x € RY,

I1S(Az — b)[|2 =
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Proof:
For y = [_‘”1] ,x € RY,
|S(Az — b2 =

|Az — b2 <
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Proof:

For y = [_‘cl] ,x € RY,
|S(Az — b2 =

Az — b2 <

and so for € < 1/3, ||AZ — bl]2 < (1 + 3¢)||Az* — b|.

Computational cost:

UT Austin CSE 392/CS 395T/M 397C Feb, 2025 19 /20



Matlab demo
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