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Lecture 9: Countsketch; sketch and solve
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Outline

1 Countsketch

2 Sketch and solve
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Types of sketching matrices

Gaussian sketching matrix:

Performs well. Small sketch size.

S ∈ Rm×n requires generating m · n random i.i.d entries.

Computing SA takes O(mnd) time.

SHRT: Subsampled Randomized Hadamard Transform

S = PHD ∈ Rm×n , fewer random bits.

Faster to apply. SA in O(md log(n)) time.

Sketch size needed is larger.

A should be dense.

Issues with parallel and distributed computing.
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Faster Embeddings: Countsketch

Sparse Embeddings: Adaptation of CountSketch from streaming algorithms.

S is of the form: 
0 −1 0 0 · · · 0

+1 0 0 +1 · · · 0

0 0 −1 0
. . . 0

0 0 0 0 · · · −1


One random ±1 per column.

Row Ai∗ of A contributes ±Ai∗ to one of the rows of SA.
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Sparse Embeddings

Sparse sketching matrix: For i ∈ [n], pick uniformly and independently: hi ∈ [m],
si ∈ {−1,+1}, and define S ∈ Rm×n as:

Shi,i → si for i ∈ [n],

and Sj,i → 0 otherwise.

s is a sign (Radamacher) vector. The vector h hashes to m “hash buckets”. That is,

Sj∗ =
∑
i:hi=j

sie
>
i ,

and so
[SA]j∗ =

∑
i:hi=j

sie
>
i A =

∑
i:hi=j

siAi∗.

Fast sketching: Can compute SA in O(nnz(A)) time.
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If s is a sign (Radamacher) vector, then E[(s>y)2] = ‖y‖22.
For y = Ax, each row of S:
(a) collects a subset of entries yi’s; (b) applies the signs, and (c) adds
E[‖Sy‖22] = ‖y‖22.
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Analysis of sparse embeddings

Variance of Countsketch

For S ∈ Rm×n a sparse sketching distribution, and y ∈ Rn a unit vector,

Var[‖Sy‖22] ≤
3

m
.

Proof: Let z = Sy. We have E[‖z‖22] =

Var[‖z‖22] =

E[‖z‖42] =

Es,h[z4j ] =
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Countsketch Embedding

Countsketch - subspace embedding

For S ∈ Rm×n a countsketch matrix and A ∈ Rn×d, if m = O
(
d2

δε2

)
, then with probability

at least 1− δ:
‖SAx‖2 = (1± ε)‖Ax‖2.

We use the AMM and JL moment result.

We have Var[‖Sy‖22] ≤ K
m .

If K
m ≤ ε

2δ, we know S is εd-embedding with probability at least 1− δ.
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Types of sketching matrices

Sketching matrix Sketch size m Cost to sketch SA

JL - i.i.d subGaussians m = O
(
d log(1/δ)

ε2

)
O(mnd)

Fast JL -SRHT m = O
(
d log(d) log(1/δ)

ε2

)
O(md log(n))

Countsketch m = O
(
d2

δε2

)
O(nnz(A))

We have other sparse embeddings where nnz per column is > 1, e..g, OSNAPs, sparse
graphs.

Can improve m = O
(
d log(d) log(1/δ)

ε2

)
with s = Θ(log(1/δ)) nonzero entries per column.
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Further Reading

Countsketch was first introduced by:

Clarkson, Kenneth L., and David P. Woodruff. “Low-rank approximation and
regression in input sparsity time.” Journal of the ACM (JACM) 63.6 (2017): 1-45

Above analysis is from:

Nelson, Jelani, and Huy L. Nguyen. “OSNAP: Faster numerical linear algebra
algorithms via sparser subspace embeddings.” 2013 ieee 54th annual symposium on
foundations of computer science. IEEE, 2013.
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Sketch and solve - least squares regression
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Least squares linear regression

Given a data matrix A ∈ Rn×d with n samples {ai}ni=1 ∈ Rd of d-dimensional features,
and a column vector b ∈ Rn (targets):

In the least-squares regression problem, assuming d < n, we solve:

x∗ = min
x∈Rd

‖Ax− b‖22.

A linear function and Euclidean- (`2) norm (squared) loss function.

The observed targets, bi = a>x + εi, for i = 1, . . . , n and εi is noise..
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Overdetermined problems

x∗ = min
x∈Rd

‖Ax− b‖22.

We are interested in over-constrained least-squares problems, n� d.

Typically, there is no x∗ such that Ax∗ = b.

Want to find the “best: x∗ such that Ax∗ ≈ b.

A

𝑛×𝑑	

bx =
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Exact solution and ε-approximation

The solution is given by the psuedo-inverse x∗ = A†b = (A>A)−1A>b.

In terms of SVD, we have A† = V Σ−1U>, and

QR factorization, we have A† = R−1Q>.

Complexity is O(nd2), but constant factors differ.

ε-approximation

For an error parameter ε, compute x̃ such that

‖Ax̃− b‖2 ≤ (1 + ε)‖Ax∗ − b‖2
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Sketch and solve

Use Sketching:

Generate a sketching matrix S ∈ Rm×n.
Compute sketches SA and Sb.
Solve:

x̃ = min
x∈Rd

‖SAx− Sb‖22.

Typically, m = poly(d/ε).

A

𝑛×𝑑	

b

x =𝑆 𝑆

𝑚×𝑛	
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Recall: subspace embedding

Subspace embedding

For A ∈ Rn×d, a matrix S ∈ Rm×n is a subspace ε-embedding for A if S is an
ε-embedding for span(A) = {Ax | x ∈ Rd}. I.e., for all x ∈ Rd,

‖SAx‖2 = (1± ε)‖Ax‖2.

Sketching matrix Sketch size m Cost to sketch SA

JL - i.i.d subGaussians m = O
(
d log(1/δ)

ε2

)
O(mnd)

Fast JL -SRHT m = O
(
d log(d) log(1/δ)

ε2

)
O(md log(n))

Countsketch m = O
(
d2

δε2

)
O(nnz(A))
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Subspace embedding for sketch and solve

Sketch and solve

Suppose S ∈ Rm×n is a subspace ε-embedding for span([A b]).
Let,

x∗ = min
x∈Rd

‖Ax− b‖2

x̃ = min
x∈Rd

‖S(Ax− b)‖2,

for ε ≤ 1/3, we have
‖Ax̃− b‖2 ≤ (1 + 3ε)‖Ax∗ − b‖2
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Proof:

For y =
[

x
−1

]
,x ∈ Rd,

‖S(Ax− b)‖2 =

‖Ax̃− b‖2 ≤

and so for ε ≤ 1/3, ‖Ax̃− b‖2 ≤ (1 + 3ε)‖Ax∗ − b‖2.

Computational cost:
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Matlab demo
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