CSE 392/CS 395T/M 397C: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2025

Lecture 9: Countsketch; sketch and solve

Outline

Types of sketching matrices

Gaussian sketching matrix:

- Performs well. Small sketch size.
- $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ requires generating $m \cdot n$ random i.i.d entries.
- Computing SA takes O(mnd) time.

SHRT: Subsampled Randomized Hadamard Transform

- $S = PHD \in \mathbb{R}^{m \times n}$, fewer random bits.
- Faster to apply. \boldsymbol{SA} in $O(md\log(n))$ time.
- Sketch size needed is larger.
- **A** should be dense.
- Issues with parallel and distributed computing.

Faster Embeddings: Countsketch

- Sparse Embeddings: Adaptation of CountSketch from streaming algorithms.
- **S** is of the form:

 $\begin{bmatrix} 0 & -1 & 0 & 0 & \cdots & 0 \\ +1 & 0 & 0 & +1 & \cdots & 0 \\ 0 & 0 & -1 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & \cdots & -1 \end{bmatrix}$

- One random ± 1 per column.
- Row A_{i*} of A contributes $\pm A_{i*}$ to one of the rows of SA.

Sparse Embeddings

• Sparse sketching matrix: For $i \in [n]$, pick uniformly and independently: $h_i \in [m]$, $s_i \in \{-1, +1\}$, and define $S \in \mathbb{R}^{m \times n}$ as:

$$\mathbf{S}_{h_i,i} \to s_i \text{ for } i \in [n],$$

and $\mathbf{S}_{j,i} \to 0$ otherwise.

• s is a sign (Radamacher) vector. The vector h hashes to m "hash buckets". That is,

$$oldsymbol{S}_{j*} = \sum_{i:h_i=j} s_i oldsymbol{e}_i^ op,$$

and so

$$[\boldsymbol{S}\boldsymbol{A}]_{j*} = \sum_{i:h_i=j} s_i \boldsymbol{e}_i^\top \boldsymbol{A} = \sum_{i:h_i=j} s_i \boldsymbol{A}_{i*}.$$

• Fast sketching: Can compute SA in O(nnz(A)) time.

UT Austin

- If s is a sign (Radamacher) vector, then $\mathbb{E}[(s^{\top}y)^2] = \|y\|_2^2$.
- For y = Ax, each row of S:

(a) collects a subset of entries y_i 's; (b) applies the signs, and (c) adds

• $\mathbb{E}[\|{\boldsymbol{S}}{\boldsymbol{y}}\|_2^2] = \|{\boldsymbol{y}}\|_2^2.$

Variance of Countsketch

For $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $\boldsymbol{y} \in \mathbb{R}^n$ a unit vector,

$$\operatorname{Var}[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \le \frac{3}{m}.$$

Variance of Countsketch

For $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $\boldsymbol{y} \in \mathbb{R}^n$ a unit vector,

$$\operatorname{Var}[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \le \frac{3}{m}.$$

Proof: Let $\boldsymbol{z} = \boldsymbol{S}\boldsymbol{y}$. We have $\mathbb{E}[\|\boldsymbol{z}\|_2^2] =$

 $\operatorname{Var}[\|\boldsymbol{z}\|_2^2] =$

Variance of Countsketch

For $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $\boldsymbol{y} \in \mathbb{R}^n$ a unit vector,

$$\operatorname{Var}[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \le \frac{3}{m}.$$

Proof: Let $\boldsymbol{z} = \boldsymbol{S}\boldsymbol{y}$. We have $\mathbb{E}[\|\boldsymbol{z}\|_2^2] =$

 $\operatorname{Var}[\|\boldsymbol{z}\|_2^2] =$

 $\mathbb{E}[\|oldsymbol{z}\|_2^4] =$

Variance of Countsketch

For $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $\boldsymbol{y} \in \mathbb{R}^n$ a unit vector,

$$\operatorname{Var}[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \le \frac{3}{m}.$$

Proof: Let $\boldsymbol{z} = \boldsymbol{S}\boldsymbol{y}$. We have $\mathbb{E}[\|\boldsymbol{z}\|_2^2] =$

 $\mathrm{Var}[\|\boldsymbol{z}\|_2^2] =$

 $\mathbb{E}[\|oldsymbol{z}\|_2^4] =$

 $\mathbb{E}_{s,h}[z_j^4] =$

Countsketch Embedding

Countsketch - subspace embedding

For $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ a countsketch matrix and $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, if $m = O\left(\frac{d^2}{\delta \epsilon^2}\right)$, then with probability at least $1 - \delta$:

$$\|\boldsymbol{S}\boldsymbol{A}\boldsymbol{x}\|_2 = (1\pm\epsilon)\|\boldsymbol{A}\boldsymbol{x}\|_2.$$

Countsketch Embedding

Countsketch - subspace embedding

For $\boldsymbol{S} \in \mathbb{R}^{m \times n}$ a countsketch matrix and $\boldsymbol{A} \in \mathbb{R}^{n \times d}$, if $m = O\left(\frac{d^2}{\delta \epsilon^2}\right)$, then with probability at least $1 - \delta$:

$$\|\boldsymbol{S}\boldsymbol{A}\boldsymbol{x}\|_2 = (1\pm\epsilon)\|\boldsymbol{A}\boldsymbol{x}\|_2$$

We use the AMM and JL moment result.

We have $\operatorname{Var}[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \leq \frac{K}{m}$. If $\frac{K}{m} \leq \epsilon^2 \delta$, we know \boldsymbol{S} is ϵd -embedding with probability at least $1 - \delta$.

Types of sketching matrices

Sketching matrix	Sketch size m	Cost to sketch \boldsymbol{SA}
JL - i.i.d subGaussians	$m = O\left(\frac{d\log(1/\delta)}{\epsilon^2}\right)$	O(mnd)
Fast JL -SRHT	$m = O\left(\frac{d\log(d)\log(1/\delta)}{\epsilon^2}\right)$	$O(md\log(n))$
Countsketch	$m = O\left(\frac{d^2}{\delta\epsilon^2}\right)$	$O(nnz({m A}))$

We have other sparse embeddings where nnz per column is > 1, e..g, OSNAPs, sparse graphs. Can improve $m = O\left(\frac{d \log(d) \log(1/\delta)}{\epsilon^2}\right)$ with $s = \Theta(\log(1/\delta))$ nonzero entries per column.

Further Reading

Countsketch was first introduced by:

• Clarkson, Kenneth L., and David P. Woodruff. "Low-rank approximation and regression in input sparsity time." Journal of the ACM (JACM) 63.6 (2017): 1-45

Above analysis is from:

• Nelson, Jelani, and Huy L. Nguyen. "OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings." 2013 ieee 54th annual symposium on foundations of computer science. IEEE, 2013.

Sketch and solve - least squares regression

Least squares linear regression

Given a data matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with *n* samples $\{\mathbf{a}_i\}_{i=1}^n \in \mathbb{R}^d$ of *d*-dimensional features, and a column vector $\mathbf{b} \in \mathbb{R}^n$ (targets):

• In the *least-squares* regression problem, assuming d < n, we solve:

$$oldsymbol{x}^* = \min_{oldsymbol{x} \in \mathbb{R}^d} \|oldsymbol{A}oldsymbol{x} - oldsymbol{b}\|_2^2.$$

- A linear function and Euclidean- (ℓ_2) norm (squared) loss function.
- The observed targets, $b_i = \mathbf{a}^\top \mathbf{x} + \varepsilon_i$, for $i = 1, \ldots, n$ and ε_i is noise.

UT Austin

Overdetermined problems

$$oldsymbol{x}^* = \min_{oldsymbol{x} \in \mathbb{R}^d} \|oldsymbol{A}oldsymbol{x} - oldsymbol{b}\|_2^2.$$

- We are interested in over-constrained least-squares problems, $n \gg d$.
- Typically, there is no x^* such that $Ax^* = b$.
- Want to find the "best: x^* such that $Ax^* \approx b$.

UT Austin

Exact solution and ϵ -approximation

- The solution is given by the psuedo-inverse $x^* = A^{\dagger}b = (A^{\top}A)^{-1}A^{\top}b$.
- In terms of SVD, we have $\boldsymbol{A}^{\dagger} = \boldsymbol{V} \Sigma^{-1} \boldsymbol{U}^{\top}$, and
- QR factorization, we have $\boldsymbol{A}^{\dagger} = \boldsymbol{R}^{-1} \boldsymbol{Q}^{\top}$.

Complexity is $O(nd^2)$, but constant factors differ.

Exact solution and ϵ -approximation

- The solution is given by the psuedo-inverse $x^* = A^{\dagger}b = (A^{\top}A)^{-1}A^{\top}b$.
- In terms of SVD, we have $\boldsymbol{A}^{\dagger} = \boldsymbol{V} \Sigma^{-1} \boldsymbol{U}^{\top}$, and
- QR factorization, we have $A^{\dagger} = R^{-1}Q^{\top}$.

Complexity is $O(nd^2)$, but constant factors differ.

ϵ -approximation

For an error parameter ϵ , compute \tilde{x} such that

$$\|A ilde{x} - b\|_2 \le (1 + \epsilon) \|Ax^* - b\|_2$$

Sketch and solve

Use Sketching:

- Generate a sketching matrix $\boldsymbol{S} \in \mathbb{R}^{m \times n}$.
- \bullet Compute sketches $\boldsymbol{S}\boldsymbol{A}$ and $\boldsymbol{S}\boldsymbol{b}.$

• Solve:

$$ilde{oldsymbol{x}} = \min_{oldsymbol{x} \in \mathbb{R}^d} \|oldsymbol{S}oldsymbol{A}oldsymbol{x} - oldsymbol{S}oldsymbol{b}\|_2^2.$$

• Typically, $m = \text{poly}(d/\epsilon)$.

Recall: subspace embedding

Subspace embedding

For $A \in \mathbb{R}^{n \times d}$, a matrix $S \in \mathbb{R}^{m \times n}$ is a subspace ϵ -embedding for A if S is an ϵ -embedding for $span(A) = \{Ax \mid x \in \mathbb{R}^d\}$. I.e., for all $x \in \mathbb{R}^d$,

$$\|\boldsymbol{S}\boldsymbol{A}\boldsymbol{x}\|_2 = (1\pm\epsilon)\|\boldsymbol{A}\boldsymbol{x}\|_2.$$

Sketching matrix	Sketch size m	Cost to sketch \boldsymbol{SA}
JL - i.i.d subGaussians	$m = O\left(\frac{d\log(1/\delta)}{\epsilon^2}\right)$	O(mnd)
Fast JL -SRHT	$m = O\left(\frac{d\log(d)\log(1/\delta)}{\epsilon^2}\right)$	$O(md\log(n))$
Countsketch	$m = O\left(\frac{d^2}{\delta\epsilon^2}\right)$	$O(nnz(oldsymbol{A}))$

Subspace embedding for sketch and solve

Sketch and solve Suppose $S \in \mathbb{R}^{m \times n}$ is a subspace ϵ -embedding for $span([A \ b])$. Let,

$$egin{aligned} oldsymbol{x}^* &= \min_{oldsymbol{x} \in \mathbb{R}^d} \|oldsymbol{A}oldsymbol{x} - oldsymbol{b}\|_2 \ & ilde{oldsymbol{x}} &= \min_{oldsymbol{x} \in \mathbb{R}^d} \|oldsymbol{S}(oldsymbol{A}oldsymbol{x} - oldsymbol{b})\|_2, \end{aligned}$$

for $\epsilon \leq 1/3$, we have

$$\|A\tilde{x} - b\|_2 \le (1 + 3\epsilon)\|Ax^* - b\|_2$$

Proof:

For
$$\boldsymbol{y} = \begin{bmatrix} \boldsymbol{x} \\ -1 \end{bmatrix}, \boldsymbol{x} \in \mathbb{R}^d$$

 $\|S(Ax - b)\|_2 =$

Proof:

For
$$oldsymbol{y} = \left[egin{array}{c} oldsymbol{x} \\ -1 \end{array}
ight], oldsymbol{x} \in \mathbb{R}^d,$$
 $\|oldsymbol{S}(oldsymbol{A}oldsymbol{x} - oldsymbol{b})\|_2 =$

 $\|oldsymbol{A} ilde{oldsymbol{x}}-oldsymbol{b}\|_2 \leq$

Proof:

For
$$oldsymbol{y} = \left[egin{array}{c} x \\ -1 \end{array}
ight], oldsymbol{x} \in \mathbb{R}^d,$$
 $\|oldsymbol{S}(oldsymbol{A}oldsymbol{x} - oldsymbol{b})\|_2 =$

 $\|oldsymbol{A} ilde{oldsymbol{x}}-oldsymbol{b}\|_2 \leq$

and so for $\epsilon \leq 1/3$, $\|\boldsymbol{A}\tilde{\boldsymbol{x}} - \boldsymbol{b}\|_2 \leq (1+3\epsilon)\|\boldsymbol{A}\boldsymbol{x}^* - \boldsymbol{b}\|_2$.

Computational cost:

Matlab demo