CSE 392/CS 395T/M 397C: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2025

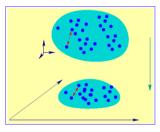
Lecture 7: JL Lemma and subspace embedding

1 Near orthogonal vectors and ϵ -Net

- **2** Gaussian matrix properties
- 3 Johnson-Lindenstrauss Lemma
- 4 Subspace embedding

High-dimensional vectors

- Often we deal with data vectors that are high-dimensional.
- **Dimensionality reduction:** One popular approach is to embed these vectors on a low-dimensional space.
- What criteria should we use to compute this low-dimensional embedding? What properties of the data do we wish to preserve?



Given a d-dimensional space, what is the largest set of mutually orthogonal unit vectors x_1, \ldots, x_t we can have? I.e. with the inner products

$$|oldsymbol{x}_i^ opoldsymbol{x}_j|=0 \quad orall i,j$$

Given a d-dimensional space, what is the largest set of mutually orthogonal unit vectors x_1, \ldots, x_t we can have? I.e. with the inner products

$$|oldsymbol{x}_i^ opoldsymbol{x}_j|=0 \quad orall i,j$$

Answer: d

Given a *d*-dimensional space, what is the largest set of nearly orthogonal unit vectors x_1, \ldots, x_t ? I.e. with the inner products

$$|\boldsymbol{x}_i^{ op} \boldsymbol{x}_j| \le \epsilon \quad \forall i, j$$

Suppose ϵ is a constant. E.g. $\epsilon = 1/10$.

Given a d-dimensional space, what is the largest set of mutually orthogonal unit vectors x_1, \ldots, x_t we can have? I.e. with the inner products

$$|oldsymbol{x}_i^ opoldsymbol{x}_j|=0 \quad orall i,j$$

Answer: d

Given a *d*-dimensional space, what is the largest set of nearly orthogonal unit vectors x_1, \ldots, x_t ? I.e. with the inner products

$$|\boldsymbol{x}_i^{ op} \boldsymbol{x}_j| \le \epsilon \quad \forall i, j$$

Suppose ϵ is a constant. E.g. $\epsilon = 1/10$. Answer: $2^{\Theta(d)}$

Claim: There is an exponential number of nearly orthogonal unit vectors in d-dimensional space (~ 2^d).

Proof approach: One approach is to use *Probabilistic Argument*. For $t = 2^{\Theta(d)}$, define a random process which generates random vectors $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_t$ that are unlikely to have large inner product

• Show that, with high probability, $|\boldsymbol{x}_i^{\top} \boldsymbol{x}_j| \leq \epsilon \quad \forall i, j.$

• Hence, there must exists some set of unit vectors with all pairwise inner-products bounded by $\epsilon.$

Proof: Let x_1, \ldots, x_t be normalized Radmacher vectors, i.e., have independent random entries, each set to $\pm 1/\sqrt{d}$ with equal probability.

$$\mathbb{E}[\boldsymbol{x}_i^{ op} \boldsymbol{x}_j] = ?$$

Let $S = \boldsymbol{x}_i^{\top} \boldsymbol{x}_j = \sum_{i=1}^d c_i$, where c_i is random $\pm 1/d$. S is sum of i.i.d random variables. Lets use Hoeffding's inequality:

Hoeffding Inequality

Let c_1, \ldots, c_d be independent random variables with each $c_i \in [a_i, b_i]$. Let $\mathbb{E}[c_i] = \mu_i$ and $\operatorname{Var}[c_i] = \sigma_i^2$. Let $\mu = \sum_i \mu_i$ and $\sigma^2 = \sum_i \sigma_i^2$. Then, for and $\alpha > 0, S = \sum_i c_i$ satisfies

$$\Pr[|S - \mu| \ge \alpha] \le 2e^{-\frac{2\alpha^2}{\sum_i (a_i - b_i)^2}}.$$

Hoeffding Inequality

Let c_1, \ldots, c_d be independent random variables with each $c_i \in [a_i, b_i]$. Let $\mathbb{E}[c_i] = \mu_i$ and $\operatorname{Var}[c_i] = \sigma_i^2$. Let $\mu = \sum_i \mu_i$ and $\sigma^2 = \sum_i \sigma_i^2$. Then, for and $\alpha > 0, S = \sum_i c_i$ satisfies

$$\Pr[|S - \mu| \ge \alpha] \le 2e^{-\frac{2\alpha^2}{\sum_i (a_i - b_i)^2}}$$

Here, $a_i = -1/d$, $b_i = 1/d$. $\mu_i = ?$

Hoeffding Inequality

Let c_1, \ldots, c_d be independent random variables with each $c_i \in [a_i, b_i]$. Let $\mathbb{E}[c_i] = \mu_i$ and $\operatorname{Var}[c_i] = \sigma_i^2$. Let $\mu = \sum_i \mu_i$ and $\sigma^2 = \sum_i \sigma_i^2$. Then, for and $\alpha > 0, S = \sum_i c_i$ satisfies

$$\Pr[|S - \mu| \ge \alpha] \le 2e^{-\frac{2\alpha^2}{\sum_i (a_i - b_i)^2}}$$

Here, $a_i = -1/d$, $b_i = 1/d$. $\mu_i = ?$

We have

$$\Pr[|\boldsymbol{x}_i^{\top} \boldsymbol{x}_j| \ge \epsilon] \le 2e^{-\epsilon^2 d/2}$$

For any pair i, j, we have $\Pr[|\boldsymbol{x}_i^{\top}\boldsymbol{x}_j| < \epsilon] > 1 - 2e^{-\epsilon^2 d/2}$. Taking union bound over all possible pairs, we get

$$\Pr[|\boldsymbol{x}_i^{\top}\boldsymbol{x}_j| < \epsilon] > 1 - \binom{t}{2} 2e^{-\epsilon^2 d/2}$$

- **Result:** In *d*-dimensional space, there are $t = 2^{\Theta(\epsilon^2 d)}$ unit vectors with all pairwise inner products $\leq \epsilon$.
- Alternate point of view : Random vectors tend to be far apart (and roughly equidistant) in high-dimensions.
- Curse of dimensionality: If our data distribution is truly random, suppose we want to use say k-nearest neighbors to learn a function or classify points in \mathbb{R}^d , we typically need an exponential amount of data.
- Hope is that there exists low dimensional structure is our data.

Alternate approach: ϵ -Nets

Some definitions:

- Unit sphere: Let $S_p^{d-1} \equiv \{ \boldsymbol{x} \in \mathbb{R}^d \mid ||\boldsymbol{x}||_p = 1 \}$. We will omit p, when p = 2, and d when in context.
- Semi-norms from sets: For symmetric matrix $W \in \mathbb{R}^{d \times d}$ and non-empty $\mathcal{N} \subset \mathbb{R}^d$, let

$$\| \boldsymbol{W} \|_{\mathcal{N}} \equiv \sup \{ | \boldsymbol{x}^{ op} \boldsymbol{W} \boldsymbol{x} | / \| \boldsymbol{x} \|^2 \mid \boldsymbol{x} \in \mathcal{N}, \boldsymbol{x}
eq 0 \}$$

so when $\mathcal{N} \subset \mathcal{S}, \|\boldsymbol{W}\|_{\mathcal{N}} \equiv \sup_{\boldsymbol{x} \in \mathcal{N}} |\boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{x}|.$

- Embedding of \mathcal{N} : For $\mathcal{N} \subset \mathbb{R}^d$, $B \in \mathbb{R}^{m \times d}$, and $\beta \in (0, 1]$, $\|B^\top B - I\|_{\mathcal{N}} \leq \beta \implies B$ is a β -embedding of \mathcal{N} .
- $B^{\top}B I$ is called the centered Grammian of B.
- If $\|\boldsymbol{B}^{\top}\boldsymbol{B} \boldsymbol{I}\|_{\mathcal{S}} \leq \beta$, then \boldsymbol{B} is a β -embedding of \mathbb{R}^d .

ϵ -Nets

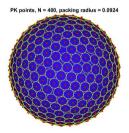
• $\mathcal{N} = \mathcal{N}(\epsilon)$ is an ϵ -net of set \mathcal{P} if it is both:

• ϵ -packing: all $p \in \mathcal{N}$ at least ϵ from \mathcal{N}

 $d(p, \mathcal{N} \setminus \{p\}) \ge \epsilon \text{ for } p \in \mathcal{N}$

• ϵ -covering: all $p \in \mathcal{P}$ at most ϵ from \mathcal{N}

 $d(p, \mathcal{N}) \leq \epsilon \text{ for } p \in \mathcal{P}$



$\epsilon\text{-Nets}$

Sphere covering number

The unit sphere S in \mathbb{R}^d has an ϵ -net of size at most $(1+2/\epsilon)^d$.

Proof is through a volume argument. Since the points in $\mathcal{N}(\epsilon)$ are ϵ -separated, the balls of radii $\epsilon/2$ centered at the points in $\mathcal{N}(\epsilon)$ are disjoint. Also, all such balls lie in $(1 + \epsilon/2)B_2^d$ where B_2^d denotes the unit Euclidean ball centered at the origin. So, we have

$$vol(\frac{\epsilon}{2}B_2^d) \cdot |\mathcal{N}(\epsilon)| \le vol((1+\frac{\epsilon}{2})B_2^d)$$

Since, $vol(rB_2^d) = r^d vol(B_2^d)$, we get

$$|\mathcal{N}(\epsilon)| \le (1 + \frac{\epsilon}{2})^d / (\frac{\epsilon}{2})^d = (1 + \frac{2}{\epsilon})^d.$$

$\epsilon\text{-Net}$ bound

For \mathcal{N}_{ϵ} an ϵ -net of unit sphere \mathcal{S} in \mathbb{R}^d and $\epsilon < 1$, if matrix \boldsymbol{W} is symmetric, then

 $(1-2\epsilon) \| \boldsymbol{W} \|_2 \le \| \boldsymbol{W} \|_{\mathcal{N}_{\epsilon}} \le \| \boldsymbol{W} \|_{\mathcal{S}} = \| \boldsymbol{W} \|_2$

and so if **B** is a β -embedding of \mathcal{N}_{ϵ} , then it is a $\beta/(1-2\epsilon)$ - embedding of \mathcal{S} , and so of \mathbb{R}^d .

ϵ -Net bound

For \mathcal{N}_{ϵ} an ϵ -net of unit sphere \mathcal{S} in \mathbb{R}^d and $\epsilon < 1$, if matrix \boldsymbol{W} is symmetric, then

 $(1-2\epsilon) \| \boldsymbol{W} \|_2 \le \| \boldsymbol{W} \|_{\mathcal{N}_{\epsilon}} \le \| \boldsymbol{W} \|_{\mathcal{S}} = \| \boldsymbol{W} \|_2$

and so if **B** is a β -embedding of \mathcal{N}_{ϵ} , then it is a $\beta/(1-2\epsilon)$ - embedding of \mathcal{S} , and so of \mathbb{R}^d .

Proof: Let unit \boldsymbol{y} be such that $|\boldsymbol{y}^{\top}\boldsymbol{W}\boldsymbol{y}| = \|\boldsymbol{W}\|_2 = \|\boldsymbol{W}\|_{\mathcal{S}}$. Since \mathcal{N}_{ϵ} is an ϵ -net, there is \boldsymbol{z} with $\|\boldsymbol{z}\| \leq \epsilon$ and $(\boldsymbol{y} - \boldsymbol{z}) \in \mathcal{N}_{\epsilon}$. Next,

$$\begin{split} \|\boldsymbol{W}\|_2 &= |\boldsymbol{y}^\top \boldsymbol{W} \boldsymbol{y}| = |(\boldsymbol{y} - \boldsymbol{z})^\top \boldsymbol{W} (\boldsymbol{y} - \boldsymbol{z}) + \boldsymbol{z}^\top \boldsymbol{W} \boldsymbol{y} + \boldsymbol{z}^\top \boldsymbol{W} (\boldsymbol{y} - \boldsymbol{z})| \\ &\leq |(\boldsymbol{y} - \boldsymbol{z})^\top \boldsymbol{W} (\boldsymbol{y} - \boldsymbol{z})| + |\boldsymbol{z}^\top \boldsymbol{W} \boldsymbol{y}| + |\boldsymbol{z}^\top \boldsymbol{W} (\boldsymbol{y} - \boldsymbol{z})| \\ &\leq \|\boldsymbol{W}\|_{\mathcal{N}_{\epsilon}} + \|\boldsymbol{z}\| \cdot \|\boldsymbol{W} \boldsymbol{y}\| + \|\boldsymbol{z}\| \cdot \|\boldsymbol{W} (\boldsymbol{y} - \boldsymbol{z})\| \\ &\leq \|\boldsymbol{W}\|_{\mathcal{N}_{\epsilon}} + 2\epsilon \|\boldsymbol{W}\|_{2}. \end{split}$$

Independent Gaussians

Recall the norm estimation random vectors.

• Gaussians are stable: Given $\boldsymbol{y} \in \mathbb{R}^d$, if $\boldsymbol{g} \in \mathbb{R}^d$ has entries i.i.d $\mathcal{N}(0,1)$, then

$$\boldsymbol{g}^{\top}\boldsymbol{y} \sim \mathcal{N}(0, \|\boldsymbol{y}\|^2)$$

• A sum of independent Gaussians is Gaussian, and a scalar multiple of a Gaussian is Gaussian.

Independent Gaussians

Recall the norm estimation random vectors.

• Gaussians are stable: Given $\boldsymbol{y} \in \mathbb{R}^d$, if $\boldsymbol{g} \in \mathbb{R}^d$ has entries i.i.d $\mathcal{N}(0,1)$, then

$$\boldsymbol{g}^{\top}\boldsymbol{y} \sim \mathcal{N}(0, \|\boldsymbol{y}\|^2)$$

- A sum of independent Gaussians is Gaussian, and a scalar multiple of a Gaussian is Gaussian.
- Vector embedding: Given a unit vector $\boldsymbol{y} \in \mathbb{R}^d$, $\epsilon \in (0, 1]$. If $\boldsymbol{G} \in \mathbb{R}^{m \times d}$ has independent entries $g_{ij} \sim \mathcal{N}(0, 1/m)$, then

$$\Pr\{|\|\boldsymbol{G}\boldsymbol{y}\|_{2}^{2} - 1| \ge \epsilon\} \le 2\exp(-\epsilon^{2}m/16).$$

We know $\sqrt{m}Gy \sim \mathcal{N}(0,1)$ and squared norm is a χ_m^2 distribution. Using the standard bounds for concentration of a χ_m^2 , we get the above.

• With high probability, \boldsymbol{G} ϵ -embeds unit vectors $\boldsymbol{y} \in \mathbb{R}^d$. Also, for any fixed $\boldsymbol{y} \in \mathbb{R}^d$.

Gaussian width

• Gaussian width: Given $\mathcal{R} \subset \mathbb{R}^d$, the Gaussian width of \mathcal{R} is

$$w(\mathcal{R}) \equiv \mathbb{E}_{\boldsymbol{g} \sim \mathcal{N}(0,\boldsymbol{I})}[\sup_{\boldsymbol{y},\boldsymbol{x} \in \mathcal{R}} \boldsymbol{g}^{\top}(\boldsymbol{y}-\boldsymbol{x})].$$

• Alternatively, the Gaussian width of ${\mathcal R}$ is

$$w(\mathcal{R}) \equiv \mathbb{E}_{\boldsymbol{g} \sim \mathcal{N}(0,\boldsymbol{I})}[\sup_{\boldsymbol{y} \in \mathcal{R}} \boldsymbol{g}^{\top} \boldsymbol{y} / \|\boldsymbol{y}\|].$$

• Gaussian widths:

•
$$w(\mathbb{R}^d) \le \sqrt{d}$$

- $w(\mathcal{L}) \leq \sqrt{k}$ for \mathcal{L} a k-dimensional subspace.
- $w(\mathcal{R}) \leq \sqrt{2 \log |\mathcal{R}|}$ for finte \mathcal{R} .

Gordon's theorem

Gordon's theorem [G88] For given $\mathcal{R} \subset \mathbb{R}^d$, if $\boldsymbol{G} \in \mathbb{R}^{m \times d}$ has independent entries $g_{ij} \sim \mathcal{N}(0, 1/m)$, then $\Pr\{\|\boldsymbol{G}^\top \boldsymbol{G} - \boldsymbol{I}\|_{\mathcal{R}} \ge 2\beta + \beta^2\} \le 2\exp(-t^2/2),$ where $\beta \equiv \frac{w(\mathcal{R}) + 1 + t}{\sqrt{m}}$.

Euclidean dimensionality reduction

Johnson-Lindenstrauss, 1984

For any set of n data points $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \in \mathbb{R}^d$ there exists a *linear map* $\Pi : \mathbb{R}^d \to \mathbb{R}^m$ where $m = O(\frac{\log n}{\epsilon^2})$ such that for all i, j,

$$\| (1 - \epsilon) \| oldsymbol{x}_i - oldsymbol{x}_j \|_2 \le \| \Pi oldsymbol{x}_i - \Pi oldsymbol{x}_j \|_2 \le (1 + \epsilon) \| oldsymbol{x}_i - oldsymbol{x}_j \|_2$$

Johnson-Lindenstrauss, 1984

For any set of n data points $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \in \mathbb{R}^d$ there exists a *linear map* $\Pi : \mathbb{R}^d \to \mathbb{R}^m$ where $m = O(\frac{\log n}{\epsilon^2})$ such that for all i, j,

$$\| (1 - \epsilon) \| \boldsymbol{x}_i - \boldsymbol{x}_j \|_2 \le \| \Pi \boldsymbol{x}_i - \Pi \boldsymbol{x}_j \|_2 \le (1 + \epsilon) \| \boldsymbol{x}_i - \boldsymbol{x}_j \|_2$$

Proof:

- We show that for a Gaussian matrix $\boldsymbol{G} \in \mathbb{R}^{m \times d}$ has independent entries $g_{ij} \sim \mathcal{N}(0, 1/m)$, the result holds.
- Use the vector embedding result from before (squared norm $\|\boldsymbol{G}(\boldsymbol{x}_i \boldsymbol{x}_j)\|^2$ is χ_m^2 distribution with mean $\|\boldsymbol{x}_i \boldsymbol{x}_j\|^2$).
- Set the probability to $1/n^2$. Since we have $< n^2$ possible pairs i, j, using union bound, we get the result.
- For vectors in finite $\mathcal{R} \subset \mathbb{R}^d$, we can use Gordon's theorem to prove similar result.

Original result used rows of a random orthogonal matrix. Random sign matrix, where rows are Radamacher vectors, is an example.

UT Austin

CSE 392/CS 395T/M 397C

Oblivious subspace embedding

- For real $\boldsymbol{x}, \boldsymbol{y}$ and ϵ , by $\boldsymbol{x} = (1 \pm \epsilon) \boldsymbol{y}$ we mean that $|\boldsymbol{x} \boldsymbol{y}| \le \epsilon |\boldsymbol{y}|$.
- Embedding: A matrix $S \in \mathbb{R}^{m \times n}$ is an ϵ -embedding of set $\mathcal{P} \subset \mathbb{R}^n$ if, for all $y \in \mathcal{P}$,

$$\|Sy\|_2 = (1 \pm \epsilon) \|y\|_2$$

We will call \boldsymbol{S} a "sketching matrix".

Subspace embedding

For $A \in \mathbb{R}^{n \times d}$, a matrix $S \in \mathbb{R}^{m \times n}$ is a subspace ϵ -embedding for A if S is an ϵ -embedding for $span(A) = \{Ax \mid x \in \mathbb{R}^d\}$. I.e., for all $x \in \mathbb{R}^d$,

 $\|\boldsymbol{S}\boldsymbol{A}\boldsymbol{x}\|_2 = (1\pm\epsilon)\|\boldsymbol{A}\boldsymbol{x}\|_2.$

We will call SA a "sketch".

Obliviousness

An *Oblivious* subspace embedding is:

- A probability distribution $\mathcal D$ over matrices $\boldsymbol S \in \mathbb{R}^{m \times n},$ so that
- For any unknown but fixed matrix A, S is a subspace ϵ -embedding for A with high probability.

Advantages:

- Distribution \mathcal{D} does not depend on input data. Construct S without knowing A.
- Streaming: when entries of \boldsymbol{A} change, $\boldsymbol{S}\boldsymbol{A}$ is easy to update.
- Distributed: If each p processor has matrix $A^{(p)}$ and $A = \sum_{p} A^{(p)}$, compute sketch at each processor.
- Analysis: If **U** has $span(\mathbf{U}) = span(\mathbf{A})$, then the embedding condition holds for $span(\mathbf{A})$ iff it holds for $span(\mathbf{U})$. So, we can assume **A** is orthonormal.

Subspace embedding

Given $\epsilon, \delta > 0, \mathbf{A} \in \mathbb{R}^{n \times d}$, and unit vector $\mathbf{y} \in \mathbb{R}^n$. There is $m = O(\frac{d \log(1/\delta)}{\epsilon^2})$ so that if $\mathbf{S} \in \mathbb{R}^{m \times n}$ is randomly chosen from a fixed (oblivious to \mathbf{A}) distribution with the property that \mathbf{S} is an $\epsilon/6$ -embedding of \mathbf{y} (JL property) with failure probability $\delta' = K_1 \exp(-K_2 \epsilon^2 m)$, for some $K_1, K_2 > 0$, then \mathbf{S} is a subspace ϵ -embedding for \mathbf{A} with failure probability δ .

Subspace embedding

Given $\epsilon, \delta > 0, \mathbf{A} \in \mathbb{R}^{n \times d}$, and unit vector $\mathbf{y} \in \mathbb{R}^n$. There is $m = O(\frac{d \log(1/\delta)}{\epsilon^2})$ so that if $\mathbf{S} \in \mathbb{R}^{m \times n}$ is randomly chosen from a fixed (oblivious to \mathbf{A}) distribution with the property that \mathbf{S} is an $\epsilon/6$ -embedding of \mathbf{y} (JL property) with failure probability $\delta' = K_1 \exp(-K_2 \epsilon^2 m)$, for some $K_1, K_2 > 0$, then \mathbf{S} is a subspace ϵ -embedding for \mathbf{A} with failure probability δ .

Proof: We will use the ϵ -net argument with the ϵ -embedding (JL) property.

- $\bullet\,$ Since ${\boldsymbol S}$ is oblivious, assume ${\boldsymbol A}$ has orthonormal columns.
- For some $\epsilon_0 > 0$ (to be determined), we pick an ϵ_0 -net $\mathcal{N}_{\epsilon_0} \subset \mathcal{S}$.
- For $\boldsymbol{x} \in \mathcal{N}_{\epsilon_0}, \boldsymbol{y} = \boldsymbol{A} \boldsymbol{x} \in span(\boldsymbol{A})$ is a unit vector.
- Let $\boldsymbol{W} := \boldsymbol{A}^{\top} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{A} \boldsymbol{I}.$
- Note that, for any $\beta \in (0, 1], (1 + \beta)^2 \le (1 + 3\beta)$ and $(1 \beta)^2 \ge (1 3\beta)$.

So, we have $|||\boldsymbol{S}\boldsymbol{y}||_2^2 - 1| \leq \epsilon/2$. Also,

$$|\|\boldsymbol{S}\boldsymbol{y}\|_2^2 - 1| = |\boldsymbol{y}^\top \boldsymbol{S}^\top \boldsymbol{S}\boldsymbol{y} - \boldsymbol{y}^\top \boldsymbol{y}| = |\boldsymbol{x}^\top \boldsymbol{A}^\top \boldsymbol{S}^\top \boldsymbol{S} \boldsymbol{A} \boldsymbol{x} - \boldsymbol{x}^\top \boldsymbol{A}^\top \boldsymbol{A} \boldsymbol{x}| = |\boldsymbol{x}^\top \boldsymbol{W} \boldsymbol{x}| \le \epsilon/2$$

with failure probability δ' . Applying this to all vectors in \mathcal{N}_{ϵ_0} , and union bound,

 $\|\boldsymbol{W}\|_{\mathcal{N}_{\epsilon_0}} \leq \epsilon/2$ with failure probability $\leq \delta' |\mathcal{N}_{\epsilon_0}|$

Using the relation between $\|\boldsymbol{W}\|_{\mathcal{S}}$ and $\|\boldsymbol{W}\|_{\mathcal{N}_{\epsilon_0}}$ and the bound on net size $|\mathcal{N}_{\epsilon_0}|$,

 $\|\boldsymbol{W}\|_{\mathcal{S}} \leq \epsilon/2/(1-\epsilon_0) \text{ with failure probability } \leq \delta'|\mathcal{N}_{\epsilon_0}| \leq (1+\frac{2}{\epsilon_0})^d K_1 \exp(-K_2\epsilon^2 m).$

For fixed ϵ_0 , there is $m = O(\frac{d \log(1/\delta)}{\epsilon^2})$, so that this is at most δ . For $\epsilon_0 \leq 1/2$, we have $\|\boldsymbol{W}\|_{\mathcal{S}} \leq \epsilon$.

Further Reading

- Woodruff, David P. "Sketching as a tool for numerical linear algebra." Foundations and Trends® in Theoretical Computer Science 10.1–2 (2014): 1-157.
- Martinsson, P. G., and Tropp, J. "Randomized numerical linear algebra: foundations and algorithms". arXiv preprint arXiv:2002.01387 (2020).

Questions?