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Lecture 6: Approximate matrix product and sampling
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Why randomization?

Modern data applications: massive data, computationally expensive problems.

Approximate solutions suffice in many situations.

Randomized sampling and sketching allow us to design approximation
algorithms with provable error guarantees.

Probabilistic error bounds. E.g., the (ε, δ) type bounds.
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Product and norms using randomization

If a random distribution on s ∈ Rn has entries si with:

E[s2i ] = 1 for i = [n] and E[sisj ] = 0 for i, j = [n], i 6= j.

Then, for x,y ∈ Rn, we have

E[〈s · x, s · y〉] = E[(s>x) · (s>y)] = E[x>ss>y] = x>y

In particular, E[(s>y)2] = E[y>ss>y] = y>y = ‖y‖2.

E[ss>] =


s21 s1s2 · · · s1sn

s2, s1 s22
...

...
. . .

sn, s1 · · · s2n

 = I =


1 0 · · · 0

0 1
...

...
. . .

0 · · · 1
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Sketching and Sampling

Sketching:

Suppose si ∼ N (0, 1) and independent.

We have E[si] = 0, E[s2i ] = Var(si) = 1 .

For i 6= j, independence implies
E[sisj ] = E[si]E[sj ] = 0.

Sampling:

Suppose we pick i ∈ [n] uniformly with probability 1
n and set si ←

√
n, 0 o.w.

We have E[s2i ] = 1
n

√
n
2

+ (1− 1
n)0 = 1.

For i 6= j if si 6= 0 =⇒ sj = 0,
so sisj = 0.
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Randomized techniques

With repetitions and better distributions, randomization can be made highly accurate.

A random distribution on S ∈ Rc×n has independent rows, each row is 1√
c

times a sample

of s ∈ Rn, then

E[S>S] = E[
∑
i∈[c]

S>i∗Si∗] =
∑
i∈[c]

E[S>i∗Si∗] =
∑
i∈[c]

1

c
I = I,

so for x,y ∈ Rn, we have E[〈Sx,Sy〉] = E[x>S>Sy] = x>E[S>S]y = x>y.
In particular, E[‖Sy‖2] = ‖y‖2

Applications:

Approximating matrix multiplication

Least squares regression

Low rank approximation

UT Austin CSE 392/CS 395T/M 397C Feb, 2025 7 / 24



Approximating Matrix Multiplication (AMM)

Problem Statement:
Given an m× n matrix A and an n× p matrix B, approximate the product A ·B,

OR, equivalently,
Approximate the sum of n rank-one matrices.

A ·B =

n∑
i=1

A∗i
 · [ Bi∗

]
︸ ︷︷ ︸

m×p

where A∗i is the ith column of A and Bi∗ is the ith row of B.
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Sampling rows of a matrix

If S ∈ Rc×n is a random row sampling matrix, then SA:


0 s12 0 0 · · · 0

s21 0 0 0 · · · 0

0 0 s33 0
. . . 0

0 0 0 0 · · · scn



A1∗
A2∗

...
An∗

 =


s12A2∗
s21A1∗
s33A3∗

...
scnAn∗


As above, for a single sampling vector s, uniform sampling would pick i ∈ [n]
uniformly with probability 1

n and set si ←
√
n .

Generally, given p ∈ [0, 1]n,
∑

i pi = 1. Pick i ∈ [n] with probability pi, si ←
√

1/pi.

We have E[s2i ] = pi
√

1/pi
2

+ (1− pi)0 = 1.

In some instances, by choosing appropriate pi’s, we can get improved results.
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AMM - Sampling

A ·B =

n∑
i=1

A∗i
 · [ Bi∗

]
︸ ︷︷ ︸

m×p

≈ 1

c

c∑
t=1

1

pjt

A∗jt
 · [ Bjt∗

]
︸ ︷︷ ︸

m×p

Pick c terms of the sum, with replacement, with respect to the pi’s. I.e. set jt = i, where
Pr(jt = i) = pi.
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 A


︸ ︷︷ ︸

m×n

·

 B


︸ ︷︷ ︸

n×p

≈

 C


︸ ︷︷ ︸

m×c

·

 R


︸ ︷︷ ︸

c×p

We would like to estimate AB ≈ AS>SB.

Suppose S has just one row si. Then, we just get Ai∗s
2
iB∗i = A∗iBi∗/pi with

probability pi.

If we pick uniformly with pi = 1/n, and suppose one of the row norms ‖B1∗‖2 is much
� norms of other rows, then the estimate will be poor, if we miss the row i = 1.

One idea : catch the rows with large norms by setting pi ∝ ‖Bi∗‖2. This is called
Length-squared sampling.
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 A


︸ ︷︷ ︸

m×n

·

 B


︸ ︷︷ ︸

n×p

≈

 C


︸ ︷︷ ︸

m×c

·

 R


︸ ︷︷ ︸

c×p

Create C and R by picking columns A∗jt and rows Bjt∗ with probability

Pr(jt = i) =
‖A∗i‖2‖Bi∗‖2∑n
j=1 ‖A∗j‖2‖Bj∗‖2

Include A∗jt/
√
cpjt as a column of C, and Bjt∗/

√
cpjt as a row of R.
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Length-squared sampling

Given A ∈ Rm×n and B ∈ Rn×p. Let S ∈ Rc×n be the length squared sampling matrix.
Then, E[CR] = AB (unbiased estimator), where C = AS>,R = SB, and

E[‖CR−AB‖2F ] ≤ 1

c
‖A‖2F ‖B‖2F

Proof: First, for any probability pi, we know that E[CRij ] = ABij . Elementwise is an
unbiased estimator.
Next, note that for a single vector s,E[‖Ass>B −AB‖2F ] is the sum of entry-wise
variances.
Since Var[x] = E[x2]− E[x]2, we have E[‖Ass>B −AB‖2F ] ≤ E[‖Ass>B‖2F ]
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E[‖Ass>B‖2F ] =
∑
j,k

E[(Aj∗ss
>B∗k)2] =

∑
j,k

E[(
∑
i

ajis
2
i bik)2]

=
∑
j,k

∑
i

a2jipi
1

p2i
b2ik =

∑
i

∑
j

a2ji
1

pi

∑
k

b2ik =
∑
i

‖A∗i‖2
1

pi
‖Bi∗‖2

= ‖A‖2F ‖B‖2F .

Next, for the case of c rows, the expected Frobenius norm error is sum of variance of the form

Var[
∑
i∈[c]

x(i)/c] =
∑
i∈[c]

Var[x(i)/c] = Var[x(1)]/c.

Thus, we get the result

E[‖CR−AB‖2F ] ≤ 1

c
‖A‖2F ‖B‖2F .

Using Markov’s inequality, we can show that for c ≥ 1/ε2δ,

Pr(‖CR−AB‖F ≥ ε‖A‖F ‖B‖F ) ≤ δ.
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CUR decomposition

Given A ∈ Rm×n, a particular type of low rank approximation:

A row sampling matrix S1 ∈ Rc×m, and R = S1A ∈ Rc×n

A column sampling matrix S2 ∈ Rn×c, and C = AS2 ∈ Rm×c

A matrix U ∈ Rc×c, such that A ≈ CUR and c� {m,n}.

A ≈ C

U R

𝑛	×	𝑑 𝑛	×	𝑐

𝑐	×	𝑐 c	×	𝑑

UT Austin CSE 392/CS 395T/M 397C Feb, 2025 15 / 24



CUR decomposition

We can compute U = (AS2)
†S>1 = (C>C)−1(S1AS2)

>.

U can be ill-conditioned.

Typically, in applications, we are interested in random columns C and rows R of A.

We can also consider, S1 ∈ Rr×m and S2 ∈ Rn×c, for different c, r.

Given A ∈ Rm×n, row sampler S1 ∈ Rr×m, column S2 ∈ Rn×c, and with
C = AS2,R = S1A,U = (AS2)

†S>1 , then

E[‖CUR−A‖22] ≤ 2‖A‖2F
(

1√
c

+
c

r

)
≤ ε‖A‖2F ,

for c = 16/ε2, r = 64/ε3.
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Matrix (low rank) approximations

We can also consider sampling only the columns as A ≈ CX, or

Sample only the rows A ≈XR.

More flexible structure can give better-conditioned X.

We need fast decaying spectrum.

For
Pr(‖CUR−A‖2 ≥ ε‖A‖F ) ≤ δ,

we need c = O(δ−2ε−4), r = O(δ−3ε−6).

Cost =?
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Better variance reduction

We want S such that ‖SAx‖ is a good estimator of ‖Ax‖.
Length-squared sampling : pi ∝ ‖Ai∗‖2 is good, but for some x, we could have
Ai∗x = 0 even if ‖Ai∗‖2 is large.

We want ( 1√
pi
Ai∗x)2 to be “well-behaved” for all i and x.

“well-behaved” in one sense : bounded relative contribution to ‖Ax‖2 =
∑

i(Ai∗x)2.

sampling using information related to span(A).
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Leverage scores

Leverage scores: Given a linear subspace L ⊂ Rm, for i ∈ [m], the ith leverage
score `i(L) = supy∈L y

2
i /‖y‖2.

The leverage scores of A ∈ Rm×n are `i(A) = `i(span(A)).

Given A ∈ Rm×n, and an orthonormal basis U for span(A), for i ∈ [m], the ith leverage
score

`i(A) = sup
x

(Ai∗x)2

‖Ax‖2
= ‖Ui∗‖2.

For L = span(A) = span(U), and z ∈ L has z = Ax = Uy for some x,y. So,

sup
x

(Ai∗x)2

‖Ax‖2
= sup

y

(Ui∗y)2

‖Uy‖2
= sup

y

(Ui∗y)2

‖y‖2
= ‖Ui∗‖2.

We have `i(A) ∈ [0, 1] and
∑

i `i(A) = rank(A).
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Leverage score sampling

Leverage score sampling: sample rows with probability proportional to the square of
the Euclidean norms of the rows of the left singular vectors of A.

pi =
‖Ui∗‖2

‖U‖2F
=
‖Ui∗‖2

n

Column sampling is equivalent to row sampling by focusing on A>. So, we consider the
right singular vectors V .

pj =
‖Vj∗‖2

n
.
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Leverage scores: general case

Let A ∈ Rm×n and Ak its best rank-k approximation (as computed by the SVD):

A ≈

 Ak


︸ ︷︷ ︸

m×n

≈

 Uk


︸ ︷︷ ︸

m×k

·

 Σk


︸ ︷︷ ︸

k×k

·

 V >k


︸ ︷︷ ︸

k×n

Row Leverage scores and Column Leverage scores

pi =
‖(Uk)i∗‖2

k
pj =

‖(Vk)j∗‖2

k
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Leverage score sampling

Given A ∈ Rm×n, if we randomly sample the columns C ∈ Rm×c using leverage scores,
then, with probability at least 0.9,

‖A−CX‖F = ‖A−CC†A‖F ≤ (1 + ε)‖A−Ak‖F ,

for sampling complexity

c = O

(
k

ε2
log

(
k

ε

))

Proof uses Matrix Chernoff inequality.
Let Xi for i ∈ [c] be i.i.d copies of symmetric random X ∈ Rn×n with γ, σ2 > 0,
E[X] = 0, ‖X‖2 ≤ γ, and ‖E[X2]‖2 ≤ σ2. Then for ε > 0,

Pr(‖1

c

∑
i

Xi‖2 ≥ ε) ≤ 2n exp(−cε2/(σ2 + γε/3)).
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Questions?
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