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Lecture 6: Approximate matrix product and sampling
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Outline

@ Randomization
© Approximating Matrix Multiplication
@ Length-squared sampling

@ Leverage score sampling
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Why randomization?

e Modern data applications: massive data, computationally expensive problems.
o Approximate solutions suffice in many situations.

o Randomized sampling and sketching allow us to design approximation
algorithms with provable error guarantees.

Probabilistic error bounds. E.g., the (€,d) type bounds.
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Product and norms using randomization

If a random distribution on s € R™ has entries s; with:
o E[s?] =1 for i = [n] and Els;s;] = 0 for i,j = [n],i # j.
@ Then, for ,y € R™, we have

El(s-z,5-y)] =E[(s ') (s'y)] =E[zss'y| =

o In particular, E[(s"y)?] = Ely'ss'y] =y 'y = ||y|*

s% S1S9  -+-  S1Sp 1 0
2 :
S9,S S : 0 1
E[ss']= |™" ™ =1I=
Sn,S1 - s% 0
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Sketching and Sampling

Sketching:
e Suppose s; ~ N (0,1) and independent.
o We have E[s;] = 0, E[s?] = Var(s;) =1 .
e For i # j, independence implies
Els;s;] = E[si]E[s;] = 0.
Sampling:
@ Suppose we pick ¢ € [n] uniformly with probability % and set s; < 1/n,0 o.w.
o We have E[s?] = %\/52 +(1-4o=1
o Fori#jifs; #0 = s; =0,
so s;85 = 0.
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Randomized techniques

With repetitions and better distributions, randomization can be made highly accurate.

A random distribution on S € R°*" has independent rows, each row is \/LE times a sample
of s € R", then

E[STS] =B} §7.8] = S E[STSu] = %1 1,
1€[c] i€][c] i€][c]

so for &,y € R”, we have E[(Sx, Sy)] =E[x'STSy] =x"E[S'Sly =2 "y.
In particular, E[| Sy?] = ||y

Applications:
e Approximating matrix multiplication
o Least squares regression
e Low rank approximation
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Approximating Matrix Multiplication (AMM)

Problem Statement:
Given an m x n matrix A and an n X p matrix B, approximate the product A - B,
OR, equivalently,
Approximate the sum of n rank-one matrices.

AB=Y |a. [ B. |
=1

~~

mxp

where A,; is the 7th column of A and B;, is the ith row of B.
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Sampling rows of a matrix

o If S € R®*™ is a random row sampling matrix, then SA:

0 s 0 0 07 AL :1232*
s91 0 0 0 0| | Ay 2180
| = |s33As.
0 0 S33 0 0 .
0 0 0 0 Sen | | A oA,

e As above, for a single sampling vector s, uniform sampling would pick i € [n]
uniformly with probability L and set s; < /1 .

o Generally, given p € [0,1]",) . p; = 1. Pick i € [n] with probability p;, s; < \/1/p;.
We have E[s?] = p; 1/p,‘2 +(1—-p))0=1.

o In some instances, by choosing appropriate p;’s, we can get improved results.
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AMM - Sampling

n
=1
e 7
I 1
~ E,:_Zﬂz A || Bjs |
e .

Pick ¢ terms of the sum, with replacement, with respect to the p;’s. L.e. set j; = ¢, where
Pr(je = i) = p;.
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mxn nxp mXc

We would like to estimate AB ~ AST SB.

Suppose S has just one row s;. Then, we just get A;.s?B,; = A,;B;./p; with
probability p;.

o If we pick uniformly with p; = 1/n, and suppose one of the row norms || By.||? is much

> norms of other rows, then the estimate will be poor, if we miss the row ¢ = 1.

o One idea : catch the rows with large norms by setting p; o || Bi«||?. This is called
Length-squared sampling.
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cXp

mxn nxp mXc

e Create C and R by picking columns A,;, and rows Bj,. with probability

[ Auill2]| Bix|l2
2 =1 [ Asll2 1 Bjs [l

e Include A,;,/,/cp;, as a column of C, and Bj,./,/cpj, as a row of R.

Pr(jt = Z) =
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Length-squared sampling

Given A € R™*™ and B € R"*P. Let S € R°*" be the length squared sampling matrix.
Then, E[CR] = AB (unbiased estimator), where C = AST, R = SB, and

1
E[|CR - AB|z] < —[|Al#(BlF
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Length-squared sampling

Given A € R™*™ and B € R"*P. Let S € R°*" be the length squared sampling matrix.
Then, E[CR] = AB (unbiased estimator), where C = AST, R = SB, and

1
E[|CR - AB|z] < —[|Al#(BlF

Proof: First, for any probability p;, we know that E[CR;;] = AB;;. Elementwise is an
unbiased estimator.

Next, note that for a single vector s, E[||Ass’ B — AB||%] is the sum of entry-wise
variances.

Since Var[x] = E[x?] — E[x]?, we have E[|Ass" B — AB|2] < E[||Ass B||%]
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E[|Ass" B3]

ZE[( jxSS B*k ZE ZCLNS bzk
- ZZW ZZ% me—2||A*i||2§||Bi*u2
. Z K3

= HAHF”BHF'
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E[|Ass' B[]

ZE[( j+88" Byy)? ZE Zaﬂs bir)?
- ZZW 7t = Zzaﬂ szk—2||A*i||2$||Bi*||2

= |lAZ]BI[%-

Next, for the case of ¢ rows, the expected Frobenius norm error is sum of variance of the form

Var[z x® /¢ = Z Var[x¥ /c] = Var[x(] /c.

i€[c] i€[c]

Thus, we get the result
E[|CR~ ABJ[}] < -IIAIIFIIBIIF

Using Markov’s inequality, we can show that for ¢ > 1/€26,
Pr(|CR - AB||r > €| A r||B|lr) <
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CUR decomposition

Given A € R™*" a particular type of low rank approximation:
e A row sampling matrix S; € R*™ and R = S1 A € R*"
@ A column sampling matrix Sy € R"*¢ and C = ASy € R™*¢
e A matrix U € R“*¢| such that A ~ CUR and ¢ < {m,n}.

-
L ) L )
| T
cxc cxd
A =~ €
e — \_Y_l
nxd

nxc
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CUR decomposition

o We can compute U = (AS)IS] = (CTC)71(8;A48,)7.
@ U can be ill-conditioned.

e Typically, in applications, we are interested in random columns C' and rows R of A.

o We can also consider, S1 € R™™ and Sy € R"*¢, for different ¢, r.

Given A € R™*™, row sampler S; € R™*™, column Sy € R"*¢, and with
C=AS5,R=S,AU= (ASQ)TS;—, then

1 c
EICUR - Al < 2141} (= + ) <Al

for ¢ = 16/€,r = 64/¢3.
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Matrix (low rank) approximations

@ We can also consider sampling only the columns as A =~ CX, or
e Sample only the rows A ~ X R.

e More flexible structure can give better-conditioned X.

o We need fast decaying spectrum.

e For

Pr([|CUR — A|2 > €| Al|F) <0,
we need ¢ = O(62¢7),r = O(673¢79).

o Cost =7
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Better variance reduction

e We want S such that ||[SAz|| is a good estimator of ||Ax||.
Length-squared sampling : p; oc | Az]|? is good, but for some x, we could have
Az =0 even if || A;)? is large.

We want (\/LE_A;kcc)Q to be “well-behaved” for all < and «.

o “well-behaved” in one sense : bounded relative contribution to ||Az||? = >, (Ai.x)>.

e sampling using information related to span(A).
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Leverage scores

e Leverage scores: Given a linear subspace L C R™, for i € [m], the ith leverage
score £i(L) = supyer y7 /|ly]*.
e The leverage scores of A € R™*™ are ¢;(A) = {;(span(A)).

Given A € R™*" and an orthonormal basis U for span(A), for i € [m], the ith leverage
score

, _ (Ajz)? T 112
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Leverage scores

e Leverage scores: Given a linear subspace L C R™, for i € [m], the ith leverage
score £i(L) = supyer y7 /|ly]*.
e The leverage scores of A € R™*™ are ¢;(A) = {;(span(A)).

Given A € R™*" and an orthonormal basis U for span(A), for i € [m], the ith leverage
score

, _ (Aisz)? _ 12

For L = span(A) = span(U), and z € L has z = Ax = Uy for some x,y. So,

sup (Az*w)Q = sup (Uz*y)z = sup (Ui*y)2
= [Az|>  y [[Uyl? o [yl?

We have £;(A) € [0,1] and >, ¢;(A) = rank(A).
e B0I 1973

= |Uss*.




Leverage score sampling

Leverage score sampling: sample rows with probability proportional to the square of
the Euclidean norms of the rows of the left singular vectors of A.

pi = 1T ]? _ ||U1?
;= -
IUl% n

Column sampling is equivalent to row sampling by focusing on A'. So, we consider the
right singular vectors V.

LA

bj n
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Leveragescore& generalcase

Let A € R™*™ and Ay its best rank-k approximation (as computed by the SVD):

kexk kxn
— N—
mxn mxk

Row Leverage scores and Column Leverage scores

WR)s? V)P
bi = k by = k
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Leverage score sampling

Given A € R™*"_if we randomly sample the columns C € R™*¢ using leverage scores,
then, with probability at least 0.9,

|A-CX||r=|A-CCAlr < (1 + )| A - A,

ol (2)

for sampling complexity
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Leverage score sampling
Given A € R™*"_if we randomly sample the columns C € R™*¢ using leverage scores,
then, with probability at least 0.9,

|A-CX||r=|A-CCAlr < (1 + )| A - A,

ol (2)

Proof uses Matrix Chernoff inequality.
Let X; for i € [c] be i.i.d copies of symmetric random X € R™ " with 7,02 > 0,
E[X] =0, | X|]2 <7, and |E[X?]||2 < 0. Then for € > 0,

for sampling complexity

Pr(IL Y0 Xilla 2 ) < 2nesp(-e/(5? +9¢/3)).
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Further Reading

@ Drineas, Petros, Ravi Kannan, and Michael W. Mahoney. “Fast Monte Carlo algorithms for
matrices I: Approximating matrix multiplication.” STAM Journal on Computing 36.1 (2006):
132-157.

@ Drineas, Petros, Ravi Kannan, and Michael W. Mahoney. “Fast Monte Carlo algorithms for
matrices II: Computing a low-rank approximation to a matrix.” STAM Journal on computing
36.1 (2006): 158-183.

¢ Kannan, Ravindran, and Santosh Vempala. “Randomized algorithms in numerical linear
algebra.” Acta Numerica 26 (2017): 95-135.

@ Boutsidis, Christos, and David P. Woodruff. “Optimal CUR matrix decompositions.”
Proceedings of the forty-sixth annual ACM symposium on Theory of computing. 2014.
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Questions?
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