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Lecture 5: Matrix factorizations II - eigenvalue decomposition, PCA
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Eigenvalue problems

Given a square matrix A € C™*", the eigenvalue problem:
Au = Au.

A is an eigenvalue and w is an eigenvector of A.

Types of problems:
o Find the largest or the smallest eigenvalues.
e Compute all eigenvalues in region of C.
e Compute dominant eigenvalues and eigenvectors.

Applications: Structural engineering, stability analysis, electronic structure calculations,
dimensionality reduction, spectral clustering and graphs, pagerank and many more.
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Eigenvalues and properties

A complex scalar A is called an eigenvalue of a square matrix A € C™*"™ if there exists a

nonzero vector u € C" such that
Au = \u.

The vector u is called an eigenvector of A associated with .

@ A is an eigenvalue iff the columns of A — AT are linearly dependent
e That is, det(A — AI) =0 .
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Eigenvalues and properties II

e The set of all eigenvalues of A, denoted A(A), is the spectrum of A.

@ An eigenvalue is a root of the characteristic polynomial:
pa(A) =det(A — \I)

@ So there are n eigenvalues (counted with their multiplicities).
e The multiplicity of these eigenvalues as roots of p4 are called algebraic multiplicities.

e The geometric multiplicity of an eigenvalue A; is the number of linearly independent
eigenvectors associated with A;.

e Geometric multiplicity is < algebraic multiplicity.
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Eigenvalues and properties I11

e Diagonalization: Two matrices A, B are similar if there exists a nonsingular
matrix X such that: A = XBX !,

o Au=)u & B(X 1u) = \(X tu)

eigenvalues remain the same, eigenvectors transformed.

A is diagonalizable if it is similar to a diagonal matrix.

Transformations that preserve eigenvectors:
Shift : B = (A —nl)

Polynomial : B = p(A)

Inverse: B = A~}

Shift and inverse: B = (A —nI)~!

v
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Symmetric eigenvalue problem

o For every square symmetric matrix A € R™*™, we can compute eigendecompostion:
A=UANU",

where U is an orthogonal matrix with eigenvectors u; as columns, and A is diagonal
matrix with eigenvalues A\; on the diagonal.

o U forms an orthonormal basis of eigenvectors of A.
o FEigenvalues of A are real.

@ When A is real, U is also real.
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The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly: A1 > Ao > --- > A,,.

The eigenvalues of a Hermitian matrix A are characterized by the relation

. (Az,x)
A, = max min ——+
S.dim(S)=k zcS,2#0 (x,x)
or
: (Az, )
B = min max -~————
S.dim(S)=n—k+1z€S,x£0 (T,x)
° <’<3:$> is called the Rayleigh-Ritz quotient of A.
A .
® A1 = maxgzo { <;f£> and A, = ming-g (aif?.
Question: Use min-max theorem to show that o1 = || A|2.
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Interlacing Theorem

Suppose A € R™*" is symmetric. Let B € R™*™ with m < n be a principal submatrix
(obtained by deleting both i-th row and i-th column for some values of 7).
Suppose A has eigenvalues A\; > --- > \,, and B has eigenvalues p1 > -+ > iy, Then

/\kZMkZ)\n+k—m for k=1,...,m

and if m=n—1,
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PageRank

o PageRank is the first Google algorithm developed to evaluate the quality and
importance of web pages.

@ Webgraph - created by all World Wide Web pages as nodes and hyperlinks as edges.

e Likelihood that a person randomly clicking on links will arrive at any particular page.
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PageRank

e PageRank value of a page is given as:

1-d

P1,D2,...,pN are the pages, M (p;) = set of pages that link to p;, L(p;) = number of
outbound links on page pj, N = total number of pages, and d = damping factor.

@ The values are the entries of the dominant right eigenvector of the modified adjacency
matrix rescaled so that each column adds up to one.

PR(pl)
PR(pz)
r = .
PR(pN)
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@ r is the solution of the equation

(1—d)/N Up1,p1) Lp1,p2) -+ A(p1,pN)
r= (1_,d)/N +d tp2, p1) ' : r
: : (pi, pj)
(1—d)/N Upn,p1) U(pN,pN)

the adjacency function ¢(p;,p;) is the ratio between number of links outbound from
page j to page ¢ to the total number of outbound links of page j.

N
> Upiopi) =1,
i=1

The matrix is a stochastic matrix. Closely related to the problem of finding the
stationary points of Markov processes. It is also a variant of the eigenvector centrality
measure used commonly in network analysis.
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Dimensionality Reduction

UT Austin > 3¢ 95T /M 397C



Dimensionality Reduction

e Dimensionality Reduction (DR) techniques pervasive to many data applications.
@ Reduce computational cost; but also more often :

» reduce noise and redundancy in data, and
» discover patterns.

o Given € R%, and k < d, find the mapping ® : & € R — y € R*.

A&
- @&
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Projection-based Dimensionality Reduction

e Given dataset X = [x;,...,x,], and dimension k, find the reduced set Y.
o Projection method: Explicit mapping to the lower dimension
y=V'z

with V € Rk,
e Projection-based Dimensionality Reduction : Y = VT X. Find the best such
mapping (optimization) given that the y;’s must satisfy certain constraints.
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Principal Component Analysis

e Principal Component Analysis (PCA) : find (orthogonal) V' so that projected
data Y = VT X has maximum variance.

e Maximize over all orthogonal d x k matrices V:
1 _
dollyi— = wili = =TVIXXTV],
( J

where X = [%1,...,%,] with & = z; — u, and p =mean.
e Solution: V = dominant k eigenvectors of the covariance matrix. Top k singular
vectors of X.

UT Austin CSE 392/CS 395T/M 397C Jan, 2025 17 /20



Exercises

o Show that X = X (I — 2ee”) (here e = vector of all ones). What does the projector
(I-21ee') do?

@ Show that solution V also minimizes reconstruction error:

ZHQ% VVTQ%HQ anz VyzHQ

o It also maximizes }_, ; [y — y;ll?
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Low rank approximation

@ Given a data matrix X € R"*¢ and integer k, find a rank-k approximation of X.

(] Xk = UkEkaT = UkU,;rX = X‘/kaT.

d left singular vectors  singular values  right singular vectors
o, T
0y vk

X = | Uy %

U, =arg min | X —UU"X|% =arg max |[UU'X|>.
o =g min_| I3 = arg max [UUT X3

n
IX - XplB= > of.
i=k+1

UT Austin CSE 392/CS 395T/M 397C Jan, 2025 19 /20



Eigenfaces

Austin 'SE 39 95T /M 397C



	Eigenvalue problems
	PCA
	Eigenfaces

