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Lecture 4: Matrix factorizations I - QR, SVD
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Orthogonality

e Two vectors u and v are orthogonal if (u,v) = 0.

o A set of vectors {u1,...,uq} is orthogonal if (u;,u;) = 0 for i # j;
and orthonormal if (u;,u;) = d;; for i = j.

o U € R™*? is orthonormal if UTU = I. If U is square, then it is orthogonal (or
unitary if complex), and UU " = I.

e Orthonormal matrices preserve norms: |Uy||2 = ||y||2-
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Projectors

Projection matrix: A symmetric matrix P of the form P = UU " is an orthogonal
projection matrix, with:

o P2=P.

o If P is a (orthogonal) projection matrix, then:
P=1I-P

is also a projection matrix.
o If U is an orthonormal basis of X C R", then:

Ran(P) =X, and Ran(I — P) = Null(P) = X*

Question: PP =?
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Subspaces of a matrix

Let A € R™*? and consider Ran(A)*, then :

Ran(A)*t = Null(A")

Proof: Any x € Ran(A)* iff (Ay,x) = 0 for all y.
This is same as (y, ATx) = 0 for all y.
Similarly, we also have:

Ran(AT) = Null(A)*
Thus:

R" = Ran(A)® Null(A")
R? = Ran(A")® Null(A)
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Finding an orthonormal basis of a subspace

e Goal: Find vector in span(A) closest to some vector b.

e Much easier with an orthonormal basis for span(A).

Given A = [ay,...,aq], compute Q = [q1, ..., qq] which has orthonormal columns
and s.t. span(Q) = span(A). J

Each column of A must be a linear combination of certain columns of Q.

Gram-Schmidt process: Compute Q so that a; (j column of A) is a linear
combination of the first j columns of Q.
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The QR Decomposition

Given A € R™*? with n > d, and rank(A) = d, there is a Q € R™*? and R € R™¥? s,
e A=QR
e Q has orthonormal columns, QTQ = I.
e R is upper triangular, r;; = 0 for i > j.

We have span(Q) = span(A), the columns of Q are an orthonormal basis of span(A).

Question: What is the computational cost of QR?
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Least squares using QR

o Recall: In the least-squares regression problem, assuming n > d, we solve:

x* = min ||Ax — bl|3.
zeR?

o If A is full rank then we compute A = QR.
@ The normal equation can be written as:
ATAz=A"b - R'Q'QRz=R'Q'b
- R'TRz=R'Q'b
— Rx=Q"b.
@ Therefore,
z*=R'Q"b.
Note that R is non-singular.
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o Alternatively, recall that span(Q) = span(A).
o We know that ||Ax — b2 is minimum when Az — b L span(Q).
e This implies what?

As a rule it is not a good idea to form AT A and solve the normal equations.
Methods using the QR factorization are better.
Why?

QR factorization is also used in direct solvers of linear system Ax = b.
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The Singular Value Decomposition

SVD

For any matrix A € R™"*? there exist unitary matrices U € R™™ and V' € R%*¢ such that
A=UxV'

where Y is a diagonal matrix with entries o; > 0.

01> 09> -+ > 0p with p = min(n, d)

Let o1 = ||All2 = max ||z=1 [[Az||2. There exists a pair of unit vectors such that

A’Ul =0o1uj.
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Thin SVD

o In the first case, suppose , we can write
by
A =[U, Uy [ ] v,

where U; € R"*? and U, € R"*" ¢ Then,
A=Ux V',

where %1,V € R4,
e Referred to as thin or economical SVD.
Question: How to compute the thin SVD of A from its QR factorization?
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SVD Properties

Suppose
012092 ->0p>0and op41 =+ = Opin(n,g) =0
Then:
e rank(A) = r = number of nonzero singular values.
e Ran(A) = span{ui,ug, ..., u,}
o Null(A") = span{u, 41, Ur12,...,Up}
o Ran(AT) = span{vi,vs,...,v,}

Null(A) = span{vy41,Vr41,...,04}
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SVD Properties 11

e A matrix A admits the SVD expansion

r
A= E aiuiviT
=1

o ||A|l2 = o1 = largest singular value.

o [lAllF = /3 07

Eckart-Young-Mirsky Theorem

For any matrix A € R™*¢ with rank r, let k < r and Ay, = Zle ouv; then

i A—Bls=|A—- A2 = -
B:raglil(%):k H ||2 || k:||2 Ok+1
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Pseudo-inverse
o Given A =UXV', we rewrite it as :

o3[

00 VT} ad
2

@ Then the pseudo inverse of A is:

T
1
A =vis'Ul =) —wv/

7
° i
=1

@ The pseudo-inverse of A is the mapping from a vector b to the (unique)
Minimum Norm solution of the LS problem: min,cpa || Az — b]|3.

z=(ATA)TATb = ATb.
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Let us express solution x in basis V as: x = Vy = [V, V3] [Z;]
o Then left multiply by U to get:

lae ol = | [510] [] - [5}’5} 2

Let us find all possible solutions in terms of y = [y1; y2].

From above, we have y; = X7 UlT b and yy can be anything.
o Then,

x = [W, Vo [zj = Viy1 + Vayo

VisTU b+ Vays
ATb 4 Vays.
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o We know that AT € Ran(AT) and Vays € Null(A).

o Therefore: least-squares solutions are all of the form:
ATb+w where w e Null(A).

@ We obtain the smallest norm when w = 0.

o The Minimum Norm solution of the LS problem: mingcpa ||[Az — b||3 is :

xrs = ViS['U b= ATb.
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Moore-Penrose Inverse

The pseudo-inverse of A € R"*¢ is given by

x7to "1
Al=v |71 TUT =) —wvu/
[00] ;ai”“’

Properties:
e AATA=A ATAAT = AT (ATA)H = ATA (AANHH = AAT
o ATA =T when rank(A) = d, and AT = A~ if A is invertible.
o Left inverse: AT = (AT A)"'AT when n > d, and A is full rank.
o Right inverse: AT = AT(AAT)~!, when n < d, and A is full rank.
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Exercises

@ AA' is a projector onto which space?
@ A" A is a projector onto which space?

@ For orthonormal U, show that U b = argming |[Uz — b||2. (You might use the normal equations, or
the Pythagorean theorem as stated for projections.)

@ For orthonormal U, show that Pyb is the closest vector to b in span(U).
@ Show that AT = (AT A)TAT.
@ Show for symmetric P that PP = P —> P =UU "' for some orthonormal U.
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Questions?
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