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@ Least squares regression

© Ridge regression

@ Kernel methods




Data fitting - Regression

e We are given,
» A data matrix A € R"*? with n samples {a;}?_; € R? of d-dimensional features, and
» A column vector b € R™ (targets).
e Data fitting: Find a functional relation between features and targets wrt. certain
loss. General form: For a loss function ¢(-,-), and a function f(-,6), where 0 are the
function parameters over a possible set ©, we solve

n

0" = min 2 U f(a;,0),b;)

e Numerous applications from scientific computing to machine learning, finance,
statistics and many more.
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Least squares linear regression

o In the least-squares regression problem, assuming d < n, we solve:

x* = min ||Ax — bl|3.
zeR?

@ A linear function and Euclidean- (¢3) norm (squared) loss function.

@ The observed targets, b; = aiT:c + ¢, for i =1,...,n and ¢; is noise.
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Normal equation

The vector * minimizes || Az — b||? if and only if it is the solution of the normal
equations:
ATAz =ATb.
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Normal equation

The vector * minimizes || Az — b||? if and only if it is the solution of the normal
equations:
ATAz =ATb.

Proof: Consider any & = «* + Ax, then we have

|AZ —b|? = |Az*+ AAx — b
|Az* — b||? — 2(AAz) " (Az* — b) + || AAz|?
= ||Az* —b|]> —2(Ax)" AT (Az* — b) + | AAx]?
N — N——

Vel >0

Hence, |A(z* + Az) — b||?> > ||Ax* — b||? for any A=z, iff the gradient vector V¢ is zero.
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x* is the best approximation to b from the subspace span{A} iff (b — Ax) is L to the
whole subspace span{A}. This in turn is equivalent to Normal equations
AT(Az* —b) =0.
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Matlab demo
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Issue with normal equations

The solution is * = (AT A)"1ATb.
e Condition number of a matrix :
ra(A) = [ All2l| A7 |2 = omax/Omin
o Then, ka(ATA) = ||[ATA|2][(ATA) 7|2 = (0max/0min)>
E.g., suppose we have a matrix with spectrum in [1,¢€], i..e, ka(A) = 1/e.

Then, xa(ATA) =2
AT A could be highly ill-conditioned.
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Ridge Regression

Ridge Regression or Tikhonov reqularization: For a given A € R™*? and b € R™ the
ridge-regression estimator is the minimizer of the problem:

2,, = arg min | Az — b]}3 + A3
where A > 0 is a fixed regularization parameter.
The solution is x,, = (ATA + )\I)_lATb.

We select an appropriate A such that:
@ we have a better conditioned matrix, and
e we avoid owver fitting.

Bias—variance tradeoff.
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LASSO Regression

Least absolute shrinkage and selection operator, or LASSO , proposed by Thibshirani in
1996, solves the optimization problem:

Llasso = argm{gn HA"B - b”% + )‘H:BHl’

where A > 0 is a fixed regularization parameter.

@ The problem is still convex, but is non-smooth.

e Many efficient optimization algorithms have been proposed. E.g., Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA), Alternating Direction Method of
Multipliers (ADMM).

@ Yields a sparse solution.
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Constraint Regions for LASSO (left) and Ridge Regression (right). Shows why LASSO
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yields a sparse solution.
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Matlab demo 11
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Feature maps

Linear regression fits a linear functions to the data.

However, the functional relation could be “non-linear”.

Example: Consider fitting a cubic function:
b= 30> + x00® + 110 + 0.

@ We can view the cubic function as a linear function over a different set of feature
variables. Let the function ¢ : R — R?* be defined as:

¢(a) = [1; a; a®; a¥].
o If x = [zg, x1, x2, x3], then
b= x3a> + x0a® + x10 + 19 = :BTgi)(a).

e The function ¢ is called the feature map.
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Kernelization

e Approach to linearize non-linear problems.
o Map columns of A € R¥™" to ¢(a;) in higher dimension.

e Kernel Trick or kernel substitution: if the input enters an algorithm only in the
form of inner products, then we can replace the inner product with some other choice
of a kernel.

o Kernel: corresponding to the feature map ¢ satisfies:

K(a,a) = ¢(a)" ¢(a)

e Kernel is symmetric of its arguments , i.e., K(a,a) = K(a,a).

UT Austin CSE 392/CS 395T/M 397C Jan, 2025 15 /19



Kernel properties

Mercer Theorem

Let K : R x RY — R be given. Then for K to be a valid (Mercer) kernel, it is necessary

and sufficient that for any {ai,...,a,}, (n < 00), the corresponding kernel matrix is
symmetric positive semi-definite.
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Kernel properties

Mercer Theorem

Let K : R x RY — R be given. Then for K to be a valid (Mercer) kernel, it is necessary

and sufficient that for any {ai,...,a,}, (n < 00), the corresponding kernel matrix is
symmetric positive semi-definite.

Proof: Let the kernel matrix K be defined as K;; = #(a;) ' ¢(a;). If K is a valid kernel, then
Kij = ¢(a:) " d(a;) = ¢(a;) T ¢(a;) = Kj;, hence symmetric. Also for any vector z, we have:

2 Kz = ZZZiKijZ] ZZzl a:) ¢(a;)z;
Zzzzz¢k a;)r(a;)z; = ZZZ%% ai)or(a;)z;

5 (z zmk(ai)f >0

k i
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Kernels as similarity metrics

e Intuitively, when ¢(a) and ¢(a) are close to each other, the kernel
K(a,a) = ¢(a) " ¢(a) should be large.
e Conversely, if they are far apart, K(a,a) should be small.
o Kernel as a similarity measure of the features.
o Gaussian Kernel: Homogeneous kernels defined by the magnitude of distance:

K(a.a) = exp (1%

202

It corresponds to an infinite dimensional feature map ¢.
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Kernel Ridge Regression

e Kernel methods - do not explicitly define or compute the feature map ¢. Only
compute the kernel function K(-,-).

e In ridge regression, suppose we replace the feature vectors: a; — ®; = ¢(a;) to
account for non-linear function relation.

e Now the dimension can be much higher.

@ The solution to the ridge regression is, with ¢(a;)’s as columns of ® :
Ty = (PO +NI)1Ob =D (Td+ A" 'b
o Given a new data point a, the prediction will be:
b=¢(a) zp = ¢(a)' ® (2'®+AI)7'b=k(a)(K + \I)"'b,
where £(a) = [K(a;,a)];.
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Questions?
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