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Complexity Classes

There are many intractable problems where the best known algorithm has runtime
that scales exponentially with input size
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Complexity Classes

Quantum Computers are the Only Novel Hardware which Changes the Game
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The Complexity Zoo

Should We Focus on NP-hard Problems ?
I Counter to the layman belief, there is a consensus among quantum computing

researchers that quantum computing is not likely to exponentially speed-up computation
of NP-hard problems [C.H. Bennett, E. Bernstein, G. Brassard, U. Vazirani, Strengths
and Weaknesses of Quantum Computing, 1996]
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Fourier Transform - Background

Fourier Transform: Decomposes a function or a signal in
one domain (e.g. time) into its constituent frequency
representation

Instrumental in signal processing, image analysis,
(convolutional) neural networks, etc

Gilbert Strang described the FFT as “the most important
numerical algorithm of our lifetime”

Inducted in Top 10 Algorithms of 20th Century by the
IEEE journal Computing in Science & Engineering

Classically, the Fast Fourier Transform (FFT) can perform
the task in N log(N) run-time [Cooley and Tukey, 1965]

Qunatumly, the Quantum Fast Fourier Transform (FFT) is
due to [Coppersmith, 1994]
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Quantum Fourier Transform

Similarly to the classical, the quantum Fourier Transform, (QFT) performs a discrete
Fourier transform on the complex valued vector |ψ〉, yet it can achieve runtime of O(n log n)

Given: an n-qubit state as a superposition of basis states |0〉, |1〉, . . . , |2n − 1〉
Map each basis state |j〉

QFT (|j〉) =
1√
2n

2n−1∑
k=0

e
2πijk
2n |k〉
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Quantum Fourier Transform

Notation: Fractional Binary Notation :

[0.x1 . . . xm] =

m∑
k=1

xk2−k

For instance, [0.x1] =
x1
2

and [0.x1x2] =
x1
2

+
x2
22

With this notation, the action of the quantum Fourier transform can be expressed in a
compact manner:

QFT (|x1x2 . . . xn〉) =

1√
N

(
|0〉+ e2πi [0.xn]|1〉

)
⊗
(
|0〉+ e2πi [0.xn−1xn]|1〉

)
⊗ · · · ⊗

(
|0〉+ e2πi [0.x1x2...xn]|1〉

)
or

QFT (|x1x2 . . . xn〉) =
1√
N

(|0〉+ ωx1 |1〉)⊗ (|0〉+ ωx2 |1〉)⊗ · · · ⊗ (|0〉+ ωxn|1〉)
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Quantum Fourier Transform

The algorithm effectively takes the 2n amplitudes of an n-qubit state as a vector of size 2n

and performs a discrete Fourier Transform so that the result is encoded in the amplitudes
of the output state

The simplest way to show that the normalized Fourier Transform is a unitary operation is to
demonstrate the quantum circuit that performs the QFT

|x1〉 H R2 · · · Rn−1 Rn |0〉+ e2πi(0.x1x2···xn)|1〉

|x2〉 • H R2 · · · Rn−2 Rn−1 |0〉+ e2πi(0.x2···xn)|1〉
...

|xn−1〉 • • H R2 |0〉+ e2πi(0.xn−1xn)|1〉

|xn〉 • • • H |0〉+ e2πi(0.xn)|1〉
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Quantum Fourier Transform

The input register contains an n-qubit basis state |x〉 expressed as the tensor product
of the individual qubits in its binary expansion:

|x〉 ≡ |x1x2 · · ·xn〉 ≡ |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉

The gates labeled Rm represent a series of single-qubit phase rotations

For each integer m ≥ 2, the gate Rm shifts the phase of the |1〉 component of the

input qubit by a factor of e
2πi
2m , representing the unitary transformation(

1 0

0 e
2πi
2m

)

UT Austin CSE 392/CS 395T/M 397C Apr, 2025 11 / 34



Quantum Fourier Transform

However, in the QFT circuit, each Rm gate is controlled by another qubit (indicated
by a large dot connected to the gate by a vertical line)

Given a two-qubit state, |ψ1〉|ψ2〉, composed of the controlling qubit, |ψ1〉, and the
input qubit, |ψ2〉, the controlled-Rm gate represents the unitary transformation

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e
2πi
2m
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Quantum Fourier Transform

If the controlled-Rm gate is being applied to a basis state, |x`〉, where x` is either 0
or 1, then depending on the value of x`, the controlled-Rm gate performs the
identity transformation, or the Rm transformation

However, we may combine the two and equivalently say that the controlled-Rm gate
performs the transformation (

1 0

0 e
2πix`
2m

)
on the qubit |ψ2〉, effectively performing a data-dependent phase rotation
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Quantum Fourier Transform - Circuit Analysis

|x1〉 H R2 · · · Rn−1 Rn |0〉+ e2πi(0.x1x2···xn)|1〉

|x2〉 • H R2 · · · Rn−2 Rn−1 |0〉+ e2πi(0.x2···xn)|1〉
...|xn−1〉 • • H R2 |0〉+ e2πi(0.xn−1xn)|1〉

|xn〉 • • • H |0〉+ e2πi(0.xn)|1〉
1 After the first Hadamard gate on qubit 1, the state is transformed from the input state to

H ⊗ In−1|x1x2 . . . xn〉 =
1√
2

(
|0〉+ e

2πi
2
x1 |1〉

)
⊗ |x2x3 . . . xn〉

2 Following application of R2 on qubit 1 controlled by qubit 2, the state becomes

1√
2

(
|0〉+ e

2πi
22

x2+
2πi
2
x1 |1〉

)
⊗ |x2x3 . . . xn〉

3 After the application of the last Rn gate on qubit 1 controlled by qubit n, the state is

1√
2

(
|0〉+ e

2πi
2n

xn+
2πi

2n−1 xn−1+···+ 2πi
22

x2+
2πi
2
x1 |1〉

)
⊗ |x2x3 . . . xn〉
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Quantum Fourier Transform - Circuit Analysis

|x1〉 H R2 · · · Rn−1 Rn |0〉+ e2πi(0.x1x2···xn)|1〉

|x2〉 • H R2 · · · Rn−2 Rn−1 |0〉+ e2πi(0.x2···xn)|1〉
...|xn−1〉 • • H R2 |0〉+ e2πi(0.xn−1xn)|1〉

|xn〉 • • • H |0〉+ e2πi(0.xn)|1〉
1√
2

(
|0〉+ e

2πi
2n

xn+
2πi

2n−1 xn−1+···+ 2πi
22

x2+
2πi
2
x1 |1〉

)
⊗ |x2x3 . . . xn〉

Since x = 2n−1x1 + 2n−2x2 + · · ·+ 21xn−1 + 20xn, we can rewrite the state as
1√
2

(
|0〉+ e

2πi
2n

x|1〉
)
⊗ |x2x3 . . . xn〉

4 Application of a similar sequence of gates for qubits 2 . . . n, the final state is:

1√
2

(
|0〉+ e

2πi
2n

x|1〉
)
⊗ 1√

2

(
|0〉+ e

2πi
2n−1 x|1〉

)
⊗ · · · ⊗ 1√

2

(
|0〉+ e

2πi
22

x|1〉
)
⊗ 1√

2

(
|0〉+ e

2πi
21

x|1〉
)

which is the QFT of the input state in reversed order
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Quantum Phase Estimation

The Quantum Phase Estimation algorithm is one
of the most instrumental algorithms in Quantum
Computing

Proposed first in von Neumman’s Mathematical
Foundations of Quantum Mechanics book (aka von
Neumann measurement)

Quantum Computing formulation is due to Kitaev

Applications range from factoring, through
eigenvalue decomposition, linear system solver and
more...
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Quantum Phase Estimation

Recall : Unitary Eigenvalues : Let U be a N ×N unitary transformation. U has
an orthonormal basis of eigenvectors |ψ1〉, |ψ2〉, . . . , |ψN 〉 with eigenvalues
λ1, λ2, . . . , λN , where λj = e2πiθj for some θj
Proof : U , being unitary, maps unit vectors to unit vectors and hence all the
eigenvalues have unit magnitude, i.e. they are of the form e2πiθ for some θ

I Let |ψj〉 and |ψk〉 be two distinct eigenvectors with distinct eigenvalues λj and λk
I We have that

λj〈ψj , ψk〉 = 〈λjψj , ψk〉 = 〈Uψj , ψk〉 = 〈ψj , Uψk〉 = 〈ψj , λkψk〉 = λk〈ψj , ψk〉

I Since λj 6= λk, the inner product 〈ψj , ψk〉 is 0, i.e. the eigenvectors |ψj〉 and |ψk〉 are
orthonormal
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Quantum Phase Estimation

Goal: Phase Estimation : Given a unitary transformation U , and one of its eigenstate |ψj〉

Find: the corresponding eigenvalue λj = e2πiθj (or, equivalently, θj ∈ R)

Reminder : Controlled U : For any unitary transformation U , the controlled U gate,
CU , transforms the target register |ψ〉 to U |ψ〉 conditionally upon the control input qubit

|k〉 •

|ψ〉 /n CU /n |ψ′〉

Estimation of the phase θ can be performed by the following simple prototype circuit

|0〉 H • H

|ψ〉 /n CU /n
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Quantum Phase Estimation Prototype - Circuit Analysis

|0〉 H • H

|ψ〉 /n CU /n

The application of H gate upon the control qubit, transfers the controller into a uniform
superposition state

H ⊗ In |0〉|ψ〉 =
1√
2

(|0〉+ |1〉) |ψ〉

Consequent application of the controlled CU entails

CU
1√
2

(|0〉+ |1〉) |ψ〉 =
1√
2
|0〉|ψ〉+

1√
2
|1〉λ|ψ〉

=

(
1√
2
|0〉+

λ√
2
|1〉
)
⊗ |ψ〉

Note : After application of CU gate, the eigenstate, |ψ〉 remained unchanged while were
able to push λ into the phase (phase kickback) of the controller qubit
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Quantum Phase Estimation Prototype - Circuit Analysis

|0〉 H • H

|ψ〉 /n CU /n

Application of an additional Hadamard gate upon the controller qubit will
transform the state into a measurable amplitude in the Z basis

H

(
1√
2
|0〉+

λ√
2
|1〉
)

=
1 + λ

2
|0〉+

1− λ
2
|1〉
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Quantum Phase Estimation - Circuit Analysis

To perform a (more) efficient implementation of the phase estimation algorithm
we need to extend the set of ancillary qubits

Definition: m-Controlled U : For any unitary transformation U , m-controlled U
gate, CmU , performs the transformation CmU |k〉 ⊗ |ψ〉 = |k〉 ⊗ Uk|ψ〉

|k〉 /m • /m

|ψ〉 /n CmU /n Uk|ψ〉

where k ∈ {0, 1, ..., 2m − 1}
Estimation of θ within m bits of precision is equivalent to estimating the integer j,
where j

2m is the closest approximation to θ
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Quantum Phase Estimation - Circuit Analysis

Let wm = e
2πi
2m , the circuit below estimates the phase efficiently

|0m〉 /m H⊗m • /m QFT−1
2m |j〉

|ψ〉 /n CmU /n

The Hadamard (over m qubits this time) results in a uniform superposition

H⊗m ⊗ In |0m〉|ψ〉 =

(
1√
2m

2m−1∑
k=0

|k〉

)
⊗ |ψ〉

Next, application of the m-controlled U gate

CmU

(
1√
2m

2m−1∑
k=0

|k〉

)
⊗ |ψ〉 =

(
1√
2m

2m−1∑
k=0

λk|k〉

)
⊗ |ψ〉 =

(
1√
2m

2m−1∑
k=0

wjkm |k〉

)
⊗ |ψ〉

UT Austin CSE 392/CS 395T/M 397C Apr, 2025 22 / 34



Quantum Phase Estimation - Circuit Analysis

Following the controlled operation the ancillary register contains the Fourier
Transform mod 2m of j

How do we retrieve j back ?

Apply the inverse of the Fourier Transform mod 2m

Recall that quantum circuits are reversible, thus, following the inverse QFT we
get back j

QFT−12m ⊗ In

(
1√
2m

2m−1∑
k=0

wjkm |k〉

)
⊗ |ψ〉 = |j〉 ⊗ |ψ〉

If θ = j
2m , then the circuit outputs j

If θ ≈ j
2m , then the circuit outputs j with high probability

UT Austin CSE 392/CS 395T/M 397C Apr, 2025 23 / 34



Quantum Phase Estimation - Circuit Analysis

Following the controlled operation the ancillary register contains the Fourier
Transform mod 2m of j

How do we retrieve j back ? Apply the inverse of the Fourier Transform mod 2m

Recall that quantum circuits are reversible, thus, following the inverse QFT we
get back j

QFT−12m ⊗ In

(
1√
2m

2m−1∑
k=0

wjkm |k〉

)
⊗ |ψ〉 = |j〉 ⊗ |ψ〉

If θ = j
2m , then the circuit outputs j

If θ ≈ j
2m , then the circuit outputs j with high probability

UT Austin CSE 392/CS 395T/M 397C Apr, 2025 23 / 34



Quantum Phase Estimation - Circuit Description

|0〉 H . . . •

QFT−1

...
...

|0〉 H • . . .

|0〉 H • . . .

|ψ〉 /n CU20 CU21 . . . CU2m−1 /n
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Linear System of Equations - Problem Definition

Given a matrix A and a vector |b〉
Find a vector |x〉 such that A|x〉 = |b〉

Solution of linear systems of equations is instrumental
across most disciplines of science and engineering

The study of Harrow, Hassidim and Lloyd (2008)
provided algorithmic framework for linear regression with
an exponential speed-up

Note: it is a quantum algorithm but not a realizable
quantum computation. i.e. it does not map classical
input to a classical result, but rather manipulates
quantum data only
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Assumptions and Disclaimers

The algorithm exemplifies the gap between the desired computation of providing the
system A, and RHS b, and extracting x, vs. the quantum computation of |x〉 given A and
|b〉. This difference is not as subtle as it may appear at first glance

Data loading into the quantum computer, is assumed to be performed in logarithmic cost
with respect to the problem size (an unrealistic assumption for general data), or
alternatively the data is (somehow) already stored in a so-called QRAM (quantum RAM)

Classical output is limited to a low dimensional function of the solution (e.g. an
expectation)

Known approximation of the expectation value of some operator associated with x, e.g.,
x†Mx for some matrix M

A is sparse, (s� N in entries / row), Hermitian N ×N with condition number κ (this
assumption can be avoided)
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High Level Algorithmic Schematics

Solve Ax = b, where |x〉 and |b〉 are quantum states, and A represents the
Hamiltonian

UT Austin CSE 392/CS 395T/M 397C Apr, 2025 27 / 34



High Level Algorithmic - Steps

1 State preparation - prepare the state |b〉 (amplitude encoding), n ancilla qubits at |0〉, additional
ancillar qubit at |0〉

2 Quantum Phase Estimation - perform phase estimation upon the state |b〉, using the n ancillar
qubits - extract eigenvalues of A - QPEA|b〉|0〉⊗n =

∑
j βj |ψj〉|λ̄j〉

3 Conditional rotation - performs
∑
βj |ψj〉|λ̄j〉|0〉 →

∑
βj |ψj〉|λ̄j〉

(√
1− C2

λ2
j
|0〉+ C

λj
|1〉
)

4 Uncompute QPE - uncompute eigenvalue register with the inverted phase∑
βj |ψj〉|0〉

(√
1− C2

λ2
j
|0〉+ C

λj
|1〉
)

5 Rejection sampling - identify cases in which the conditional rotation was successful
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Linear System of Equations - Solution Approach

Assume A = A†

Otherwise, solve instead (
0 A
A† 0

)(
0
x

)
=

(
b
0

)
which implies that Ax = b for all A (not necessarily square, can be over-determined
or under-determined)

Per the sparsity assumption upon A, s� N , A = A† is local

Then exponentiation of the operator A (aka Hamiltonian simulation) e−iAt can be
performed in time O(log(N)) [Lloyd 1996]
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Linear System of Equations - Solution Approach

If we know how to diagonalize A, i.e.

UAU† =

λ1 0
. . .

0 λN


then inverse is just the inverse of the diagonal elements

U†A−1U =

λ
−1
1 0

. . .

0 λ−1N


Based on Kitaev’s QPE algorithm for finding eigenpairs, a momentum operator p is used to
advance the system |b〉|0〉 by a distance proportional to the eigenvalue of A

Let the state |b〉 be represented by an eigen decomposition of A, i.e. |b〉 =
∑
j βj |ψj〉

QPEA|b〉|0〉 =
∑
j

βj |ψj〉|λj〉
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Linear System of Equations - Solution Approach

Next, we pick the inverse of the eigenvalues λj and turn them into a phase∑
j

βje
iδλ−1

j |ψj〉|λj〉

with a small δ

Next, following the swap of λ and λ−1 undo the phase estimation operation

βje
iδλ−1

j |ψj〉|0〉

The above term is essentially
eiδA

−1 |b〉|0〉
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Linear System of Equations - Solution Approach

If δ is small enough

eiδA
−1 |b〉|0〉 ≈ (I + iδA−1)|b〉|0〉 = (|b〉+ iδ A−1|b〉︸ ︷︷ ︸

|x〉

)|0〉

Thus, within the expression we have the desired A−1|b〉 which can be extracted with
probability of δ2
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Linear Solver - Run-Time Complexity

The classical algorithms can find x and estimate x†Mx in Õ(N
√
κ) run time

For A of condition number, κ, in k steps we get A−1|b〉 to accuracy of O(κ
2s2

ε logN)

This is indeed a remarkable exponential acceleration

Consequent work improved upon the condition number dependency [A. Childs, R.
Kothari and R. Somma, 2015]

Extension to non-sparse settings and further complexity reduction based on quantum
singular value estimation are due to O(

√
N logNκ2) [L. Wossing et al, 2018]
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Questions
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