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Quantum Computing Dialog

@ “The underlying physical laws necessary for the math-
ematical theory of a large part of physics ... are com-
pletely known, and the difficulty is only that the exact
application of these laws leads to equations much too
complicated to be soluble. It therefore becomes desir-
able that approximate practical methods ... should be
developed...” [Dirac, 1929]

@ “‘I'm not happy with all the analysis that go with

just classical theory, because nature isn’t classical,
dammit.
And if you want to make a simulation of nature, you’d
better make it quantum mechanical, and, by golly, |
it’s a wonderful problem because it doesn’t look so
easy” [Feynman 1982]
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1981 MIT-IBM Conference
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History of Quantum Computing

1935 1964 1970 1980 Discovery of
O O . ® topological quantum
The EPR Paradox Bell’s Inequality Birth of quantum First conference on physics of 1982 order
information theory computation

co-hosted by MIT and IBM

1984
Experimentally Quantum
factoring 15 (IBM) 1997 1996 1995 1994 1993 ryptography (1BM)
)
N\ ' N\
2001 Topological DiVincenzo Criteria for Quantum error  Shor’s Factoring Quantum
codes building a quantum correction Algorithm teleportation (IBM)
computer (IBM)
Circuit QED is
2004 demonstrated
2007 2012 2015 2016 2017
The transmon Coherence time Demonstrate [[2,0,2]] IBM makes quantum  Quantum demonstrations
superconducting qubit improvement (IBM) code (IBM) computing available on 0(10) qubits

IBM Cloud
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Early History

1970 Quantum money (Stephen Wiesner). Unpub-
lished until 1993

1981 Conference at MIT. Feynman reasoned that
because quantum mechanics is hard to simulate,
maybe a quantum computer would be good for sim-
ulating quantum mechanics

1982 No-cloning theorem (Wootters-Zurek)

1984 Quantum Crytography (Bennett-Brassard)
“BB84”

1989 Quantum Key Distribution Device
1993 Teleportation (Bennett et. al.)

1994 Polynomial time factoring algorithm (Peter
Shor)
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e 1995 Quantum Error-correcting codes (Calderbank-Shor)

e 1996 Fault-tolerant quantum computation (Peter Shor)

e 1997 Fault-tolerant Quantum Computation with Constant
Error (Aharonov-Ben Or)
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Current Effort
e Superconducting qubits:
» IBM: 433 (Osprey), 1,121 qubits (Condor)
» Google: 105 qubits (Willow)
» Rigetti 84 qubits (Ankaa-2)
» DWave: 5760 “qubits” (quantum annealer)
o Ion Traps:
» Quantinuum (56 qubits)
» IonQ (36 qubits)
e Photonics:
» USTC: 76 qubits (Jiuzhang)

» Xanadu: 24 qubits (X24)
@ Qubit count is not everything... equally and often more important is the computation

fidelity and connectivity...
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Future Directions

@ Quantum Advantage (or “Supremacy”) - Demonstrate a special purpose application whose
output cannot be simulated as fast using existing classical computers (50-100 qubits)
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Future Directions

@ Quantum Advantage (or “Supremacy”) - Demonstrate a special purpose application whose
output cannot be simulated as fast using existing classical computers (50-100 qubits)
=0 nagure

Avticl | Publihed: 23 October 2019
Quantum supremacy using a

progr superconducting
processor

Frank Arute, Kunal Arya, ] John M. Martinis

Nature 574, 505-510(2019) | Cite this article:
661k Accesses | 26 Citations | 6016 Altmetric | Metrics

Abstract
promi
might faster P thanona

classical processor’. A is to build a high-fidelity

processor capable of

large computational space. Here we report the use of a processor with

pace of dimension
25% (about 1016).

ity usi
simulations. Our Sycamore processor takes about 200 seconds to sample

our

currently indi i for classical
10,000 years. Thi i

S910ILI21314 for this

""UT Austin CSE 392/CS 395T /M 397 Apr, 2025 10 /44




Future Directions

@ Quantum Advantage (or “Supremacy”) - Demonstrate a special purpose application whose
output cannot be simulated as fast using existing classical computers (50-100 qubits)
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Future Directions

e Quantum Advantage (or “Supremacy”) - Demonstrate a special purpose
application whose output cannot be simulated as fast using existing classical
computers (around 100 qubits)

e Approximate quantum computer - Demonstrate a useful application (quantum
chemistry, optimization, ...) with a quantum device which does not need full fault
tolerance (1K-5K qubits)

o Universal fault-tolerant quantum computer - Run useful quantum algorithms with
exponential speed up over their classical counterparts (requires error correction)
(IM-5M qubits)

e Large-scale, fault tolerant (logical) quantum system

o Topological qubits

e Find useful algorithms of notable quantum advantage
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Classical Bits

A bit is a fundamental unit of information used in classical computation and
digital communication

@ A classical bit can hold the binary value of either 0 or 1, yet not a combination of
the two

o In information theory, one bit is typically defined as the information entropy of a
binary random variable that is 0 or 1 with equal probability (sometimes called
a Shannon, but you’ll never see that...)

e The state of each classical bit, can be set independently of the state of other
classical bits

e The state of a register of ¢ classical bits, can be represented by a binary string in
{0, 1}
e This is a g-dimensional space

@ The dimension of the state-space grows linearly with the number of bits
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Classical Bits

e Physical representation of the abstract notion of a bit entity, can be by:
» Stone tablet

v

Holes in a punch card

v

Varying levels of voltage or current

v

Magnetic field

v

Reflective vs. non-reflective spots on an optical
disk

> etc.
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Single Quantum Bit - Definition

@ Definition: Computational Basis States : A qubit has two special states, which
in Dirac’s ket notation are denoted by |0) and |1)

o Definition : Single Qubit Quantum State: The state of a single quantum bit
(aka qubit) can be represented as a unitary vector in a 2-dimensional complex
vector space, C?

al0) + B[1)
where
» a,feC
> o>+ 187 =1
» |0) and |1) represent the basis states in C? (They correspond to the classical states)

o Consider the standard unitary basis for C2, we can denote |0) by < (1) ) and [1) by

()
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Quantum Bits - Physical Representation

@ Various propositions for a physical substrate to represent the abstract notion of a qubit

Classical Quantum

Relay ,
’ Rydberg atoms (Haroche)

- |u|u i

Ion traps (Blatt & Wineland)

Vacqg‘m tube

Cn lulll !

Transistor Superconducting resonators (IBM)  Quantum dots (Petta)
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Quantum Bits - Tensor Product Space (Recall)

o Definition: Tensor Product Space: Let V and W be vector spaces over the
field F

o Let {v1,...,v} € V and {wy,...,w,} € W be bases of the respective spaces

@ The tensor product V ® W induces a tensor product space over the field F,
equipped with the bi-linear operation ® : Vx Q -V Q W

e The vectors v; ® w;, Vi = 1,...,m,Vj = 1,...,n forms a basis for the vector space
Vew

o Considering the standard bases for the vector spaces V and W, the tensor product
space becomes the Kronecker product
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Tensor Product Properties

o Tensor Product Properties: Let A, B € C™*™ and C, D € C™*" be linear
transformations on V' and W respectively, v,u € C™, w,x € C" and a,b € C. The
tensor product satisfies the following properties:

(A® C)(B® D) = AB® CD

(A C)(u®w)=Au® Cw

(u+v)QW=uRW+vW

uR(z+w)=uRuw+uzx

(ARC)*=A*®C*

v

vV vy VvYy
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Hilbert Space

o Definition: Hilbert Space:
» A Hilbert space is a vector space H with an inner product (z,y) = z*y such that
the norm defined by
|z = (2, z)
turns H into a complete metric space
» For a complex inner product space, the inner product (z,y) associates a complex
number to each pair of elements z,y of H while satisfying the following properties:

* The inner product of a pair of elements is equal to the complex conjugate of the inner
product of the swapped elements:

(y,2) = (z,9)
* The inner product is linear in its arguments. For all complex numbers a € C and b € C,
(az1 + bra,y) = alz1,y) + b{w2, y)
* The inner product of an element with itself is positive definite:
(z,z) >0

where the case of equality holds precisely when x = 0
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State Representation

o Definition: Bra-Ket Notation:
» Given a Hilbert space H, a quantity ¢ € H enclosed in a ket, denoted |)), is a vector
and can be thought of as a column vector
» A quantity ¢ € H* enclosed in a bra, denoted (4|, is a vector in the dual space, and
can be thought of as a row vector that is the conjugate transpose of ¢ € H
» An inner product of (¢| and |¢) in the Hilbert space H is denoted by (¢[i))

o Notation: Standard Basis: The standard basis for C2, which is a Hilbert space, is

denoted by |0) = ( (1) ) and |1) = ( (1] >
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Bra-Ket Representation
@ The bra-ket notion of a state «|0) 4+ B|1) is equivalent to the previously defined representation
{ g } , where o and § are the amplitudes of the |0) and |1) states respectively
@ Basis vectors are orthogonal:
o =[10]]%]=0
1

@ The state can be denoted as
) = a]0) + B[1)
@ Bras and kets are essentially vectors (in dual spaces), and as such they obey the usual rules
for vectors in vector spaces:

¥(al0) + BI1)) = yal0) +vB|1) 7{ % } - [ 3% ]

(6751 +OZ2

(@010 ) Hasi0)+11) = anranO-+ ity = [ 50 ]+ 52 ] =[5 ]
E—



Bloch Sphere Representation

@ State space of a single qubit can be represented geometri-
cally using the Bloch sphere representation

@ Most general pure state
. 0 0 .
[1)) = €*7(cos §|O> + sin iel¢|1>)

@ The Bloch sphere is a unit 2-sphere, with antipodal points
corresponding to a pair of mutually orthogonal state vec-
tors

@ North and south poles are typically chosen to correspond to
the standard basis vectors |0) and |1)

@ Points on the surface of the sphere correspond to the pure
states of the system, whereas interior points correspond to
the mixed states (aka density matrices) )

@ Unitary operations correspond to rotations on the Bloch
sphere
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Multiple Qubit State

o The state of ¢ qubits is a unit vector in (C?)®4 = EC2 ®C?...®C?

q times

o Given the standard basis for each C2, a basis for (C?)®7 is given by:

0=  [0)®---@|0)=[0B)=  |000...0)
—_— ——

q times g—terms
=  |0)®--®|l)=[1B)=  |000...1)
—_—— ~—

q times g—terms
29— 1) = )@ @|1) = |29 1)B,) = |111...1)
e — ~—

q times g—terms

e The state of ¢ qubits can be represented as: |¢) = Z?q 01 aj|j), with a;j € C and

29—-1 2
>0 loylf=1
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Postulates: State Space

@ Quantum states are vectors in a Hilbert space, a complex vector space:

@ The z; are complex numbers, called amplitudes

@ The inner product on the vector space is defined as
. n
Why=[= . 4] = X As
i=1

@ States are usually normalized (¢|¢) =1

@ Systems are combined by the tensor product on their Hilbert spaces: |¥)15 = |1))1 @ [1))s.
Apr, 2025 2344



Postulates: Unitarity

Evolution is Unitary: |¢) — |¢') = Uly).
o U is a unitary matrix UTU = I (the identity matrix).

Therefore U is its own inverse U~ = U.

Rows and columns of U are orthonormal.
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Basis States and Superposition

° Deﬁnition Standard Basis State: ¢ qubits are in a basis state if their state
[v) = Z; 0 on |7) is such that exists an index k for which ay = 1 while o; = 0,Vj # k
@ Otherwise, the qubits are in a superposition state

Proposition: Basis State of Multiple Qubits: ¢ qubits are in a (standard) basis state
if and only if each of the individual qubits is in a basis state

@ There is no classical equivalent to superposition as ¢ classical bits are always in a basis
state, i.e., the g bits will always correspond exactly to one of the 2¢ binary strings
representing the numbers 0,...,29 — 1

@ Superposition is one of the unique key features of quantum computers

SCHRODINGER'S CAT IS

ALAVIE

ey



Product States and Entanglement - Definition

o Definition : A quantum state |¢) € (C?)®9 is a product state if there exist g
single-qubit quantum states |;) € (C?), i =1,...,q such that

) = [1) ® -+ @ [1hg)

o Otherwise, it is an entangled state

A Quantum
Enfanglement
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Outline of Quantum Computation

@ Single qubit gates

e Multiple qubit gates

() — UL W

> = U‘¢2><2>

)]

Ul )

|4") = Ultbaxa)

o Universality : Any unitary operation (on any number of qubits) can be
decomposed in terms of arbitrary one- and two-qubit gates

UT Austin

CSE 392/CS 395T/M 397C Apr, 2025

27 /44



Quantum Logic Gate

Logical gates are the fundamental building blocks of computation and
information processing tasks

Similarly to classical logical gate, a quantum logic gate is a mean to manipulate
the state of a qubit or a set of qubits
e Examples of classical gates:

» NOT - the only single bit gate (unless identity counts...)
» AND

» OR

» XOR

» NAND

Quantum gate set is more elaborate, and subject to several conditions
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Quantum Logical Gates - Properties

o Definition: Gate : Any operation applied by a quantum computer with g qubits,
also called a gate, is a unitary matrix in C2**?*

o Definition: Unitary operation : A matrix U is unitary if
Ulu =00 =1

o Property: Norm Preserving : Unitary matrices are norm-preserving: given a
unitary matrix U and a vector |t)

1T = 119l

e State Evolution: For a g-qubit system, the quantum state is a unit vector
lv) € C*, a quantum operation is a unitary matrix U € C***?* and the
application of U onto the state |+)) is the unit vector Uli) € C**
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Quantum Logical Gates - Properties

@ These definitions entail the following central properties
» Linearity : Quantum operations are linear
» Reversibility : Quantum operations are reversible
e Reversibility : The classical model of computation is typically not reversible,
as memory can be erased, yet, [Bennett, 1973] shows that computations can be made
reversible by means of (a reasonable amount of) extra space

o Turing Completeness : While these properties may initially seem to be extremely
restrictive, [Deutsch, 1985] shows that a universal quantum computer is
Turing-complete, implying that it can simulate any Turing-computable
function, given sufficient time and memory
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The Pauli Matrices

e Pauli Matrices : 2 x 2 matrices commonly used in quantum

computation
01 0 —
el [
1 0 10
O R PR

o The Pauli matrices form a basis for C>*2, they are Hermitian,
and they satisfy the relationship XY Z =il

o The identity operator [ is sometimes omitted from the list
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Single Qubit Gates - Pauli

e Pauli Gates : Perform 7 radians rotations about a principal axis upon a single qubit
0 1 0 —1
] e[
1 0 10
Y P
o X and Y gates perform quantum equivalent to the classical NOT gate
» X gate maps |0) to |1) and |1) to |0) (bit-flip)

» Z gate flips the phase, leaves |0) unchanged, and maps |1) to —|1)
» Y gate performs both a bit-flip and a phase-flip

e The identity operator I, performs an idle operation on a single qubit
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Single Qubit Gates - Quantum Wire

o Quantum Wire : Trivially maintains the state of a system

W) — T 7 T )

[¥) [¥)

e Equivalent to application of identity gates sequentially

e In practice, non-trivial at all in actual quantum systems
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Single Qubit Gates - Hadamard Gate

e Hadamard Gate : Rotates by 7 radians about the X + Z

axis (which is equivalent to m about X followed by 5 over
the Y-axis) @

e Exchanges the Z and X axes

o Maps classical states to equal-weighted superposition
states and vice versa

b0y o 4 = Dy = D ) o
s 1) |-y = 05y = o ) ®
@ Represented by A L
H:L[l 1 ] »/E‘S)"'\/E\ﬁ‘)
211 —1

o Self-inverse
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Multi Qubit Gates

o Definition : Quantum Register : A set of qubits grouped together
o Controlled gates act on 2 or more qubits, where one or more qubits act as a control
for some operation

e Controlled NOT gate (or CNOT) acts on 2 qubits, and performs the NOT
operation on the target qubit only when the control qubit is |1), and otherwise leaves
it unchanged (essentially a reversible XOR)

D S
0100
CNOT = =100 0 1

0010

e Controlled Phase (CPhase)

» Same idea but target qubit is flipped around the Z axis (instead of X)
» Equivalent to CNOT up to single-qubit gates
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Quantum Computation Model

o Circuit : The input to the quantum computer is a circuit, comprising the
instructions as well as the data (unless QRAM is assumed)
@ On a high level a quantum computer performs 3 tasks:

» State Preparation : The state of the quantum computer is contained in a quantum
register, which is initialized in a predefined way

» State Evolution : The state evolves according to operations specified in advance
according to an algorithm

» Quantum Measurement : At the end of the computation, some information on the
state of the quantum register is obtained by means of a special operation, called a
measurement
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Quantum Computation Model

e By convention, the initial quantum state of the quantum computing device is |0)

@ The input to a quantum computing device is a circuit, or a set of circuits, which are
then combined in an algorithm: the algorithm may be self-contained in the
quantum computer, or it may involve an external, classical computing
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Quantum Measurement

o Can we determine the state of a quantum system by measurement 7
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Quantum Measurement

e Can we determine the state of a quantum system by measurement ?

@ No, in a classical computer we can simply read the state of the bits, whereas in a
quantum computer we do not have direct, unrestricted access to the quantum
state

e Partial information regarding the quantum state can be gathered through a
measurement gate

A Quantum
EXPERIMEN ,

"‘w
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Quantum Measurement: Quantum Drill Sergeant

e Given a quantum system (e.g. a qubit) in an unknown state |¢)) = ale1) + Bles), can
we determine the quantum state ?
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Quantum Measurement: Quantum Drill Sergeant

e Given a quantum system (e.g. a qubit) in an unknown state |¢)) = ale1) + Bles), can
we determine the quantum state ?

@ No! quantum states are not directly observable - fundamental limitation of

QM
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Quantum Measurement: Quantum Drill Sergeant

e Given a quantum system (e.g. a qubit) in an unknown state |¢)) = ale1) + Bles), can
we determine the quantum state ?

@ No! quantum states are not directly observable - fundamental limitation of

QM

e The drill sergeant asks ‘Private |¢)), are you |e;) or
e2)? "
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Quantum Measurement: Quantum Drill Sergeant

e Given a quantum system (e.g. a qubit) in an unknown state |¢)) = ale1) + Bles), can
we determine the quantum state ?

@ No! quantum states are not directly observable - fundamental limitation of

QM

e The drill sergeant asks ‘Private |¢)), are you |e;) or
e2)? "

@ The poor private responds ‘I don’t know, I'm a
little bit of both”
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Quantum Measurement: Quantum Drill Sergeant

e Given a quantum system (e.g. a qubit) in an unknown state |¢)) = ale1) + Bles), can
we determine the quantum state ?

@ No! quantum states are not directly observable - fundamental limitation of

QM

e The drill sergeant asks ‘Private |¢)), are you |e;) or
e2)? 7

@ The poor private responds ‘I don’t know, I'm a
little bit of both”

o “I asked you a question private!”

o The terrified private conducts a quick experiment,
and says “I'm |ep) sir!”

o Thereafter, he remain |ej)...

o Measurement collapses the state to a classical state,
and the amplitudes are gone
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Complete Quantum Measurement

o Attempt to articulate the Quantum Measurement postulate : A quantum
measurement is described by an orthonormal basis |e;) for the state space

e If the initial state of the system is |¢)) then we get outcome j with probability

Pr(j) = (ejly)

amplitude

e The posterior state is |e;)

o If we expand [¢)) = ), a;le;), the amplitude o; can be found by the inner product

(ejlv) = e,]Zaz\el = 0ijQ; = @

o Problem : Not general enough to describe partial measurement

UT Austin CSE 392/CS 395T/M 397C Apr, 2025 40 / 44



(Partial) Measurement

e Quantum Measurement : A quantum measurement is described by a
spanning set of orthogonal subspaces V; with corresponding projectors II; (i.e.
H]‘Hk = 0 when _] 75 k})

o If the initial state of the system is [1)) then we get outcome j with probability

Pr(j) = ($|IHL]0)

1L |¢)
Pr(4)
o The measurement operators satisfy the completeness equation

annj -1

J

The posterior state is

The projectors to measure a single qubit k out of a register are
0)0fx ® I and  [1X1]; ® If
Apr, 2025 41/44



Quantum Measurement - Principle of Uncertainty

o Principle of Uncertainty : Measurement disturbs the qubit. Following the
measurement the measured qubit becomes classical and the original state is no
longer recoverable

@ The state of the quantum system after a measurement collapses to a linear
combination of only those basis states that are consistent with the outcome of
the measurement

e From an information theory standpoint, it implies that only finite amount of
classical information is storagable in a qubit
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Single Qubit Measurement

e Single Qubit Measurement : Given a ¢g-qubit quantum state [¢)) = Z?q:?)l a;lj), a

measurement gate on qubit k£ outputs 0 with probability > 1/ Bq)k=0 |aj|? and 1 with
probability > 5, —1 |oj|?

e That is summation over all j’s such that the binary representation of j is 0 or 1
respectively

o Let = € {0,1} be the measured value. Following the measurement, the quantum state

becomes o
2. L))
J:(iBg) k=2 \/Zj:(qu)k:x |
201

e Multiple Qubit Measurement : Given a ¢-qubit quantum state [i)) = ijo a;l7),

measurement of the ¢ qubits yields jB, with probability |a;|?, for j =0,...,29 — 1

UT Austin CSE 392/CS 395T/M 397C Apr, 2025 43 /44



Questions
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