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What are Tensor Networks 7

o A network of tensors

o Alternative formulation to the standard, cumbersome
algebraic tensor representation

e Conceived by Roger Penrose in 1971 “It now ceases to be
important to maintain a distinction between upper and
lower indices”

Figure: Roger

o Instrumental in tensor computation and analysis Penrose

R Penrose. Applications of negative dimensional tensors. Combinatorial Mathematics and its Applications, Academic Press, 1971
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What are Tensor Networks 7

e Nodes (or vertices) represent individual tensors
e Edges are (typically) non-directed and represent tensor index
e Connected (standard) edges represent (Einstein) summation over an index

e Free (dangling) indices depicted as edges attached to a single vertex

Self-connecting edge (from a tensor to itself) represents trace operation

Number of edges on nodes indicate the order of the tensor
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What are Tensor Networks 7

o What are these tensor networks objects 7
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o What are these tensor networks objects 7
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What are Tensor Networks 7

o What are these tensor network objects?

o
scalar



What are Tensor Networks 7

o What are these tensor network objects?

« %

T
scalar vector



What are Tensor Networks 7

o What are these tensor network objects?

scalar vector matrix



What are Tensor Networks 7

o What are these tensor network objects?

xr
J
“ z* A i
scalar vector matrix tensor
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Tensor Network Applications

@ Some examples of tensor networks

input layer hidden layer 1 hidden layer 2 output layer
neural networks Feynman diagrams
[y
logical circuits quantum circuits
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How Powerful are Tensor Networks ?

e Tensor networks invariants / isomorphism offers means to analyze and identify (space
and time complexity) structure in high dimensional computation
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The Power of Tensor Networks

@ Such embarrassment can happen to anyone, unless one appreciates the power

tensor networks...
nature
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Tensor Network - Tensor Product

e Multiple disconnected tensors in the same diagram — multiplied by tensor product

; ¢
ST
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Tensor Network Invariants - Planner Deformation

@ What is the difference between these networks ?

Teet,
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Tensor Network Invariants - Planar Deformation

@ These networks are isomorphic

P it
P ~

————————
————————

e Tensors can freely roam past each other (planar deformation)

(1®B)A®1)=A®B=(A®1)(1® B)
5095



Tensor Network Invariants - Planar Deformation

@ Are these networks dissimilar ?
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Tensor Network Invariants - Planar Deformation

@ These networks are equivalent
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Tensor Network Relations

e What happens when we swap edge directions ?
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Tensor Network Transposition

o Edge swapping is akin to index swap (transposition in matrices)
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Tensor Network Invariants - Edge Detour

@ Tensor networks are indifferent to edges “detours”
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Tensor Network Swaps

@ Are tensor networks indifferent to swaps ?
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Tensor Networks - Penrose Duality

@ Penrose Duality - bijection induced by bending wires

e Specific tensors (wire, cup, cap) play the role of Kronecker’s delta and enable:
» Tensor index contraction by diagrammatic connection

» Raising and lowering indices

» Represent duality between maps, states and linear transformations

= J = 0"
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Anti-Symmetry

o A tensor is fully anti-symmetric if swapping any pair of indices changes its sign

e For example in 2D:
Ay = —Aj;

e The ¢;; tensor is used to represent the fully anti-symmetric Levi-Civita symbol

=)
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Tensor Network Contractions - Vector-Vector

e How do tensors interact 7
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Tensor Network Contractions - Vector-Vector

o Represents a dot-product between two vectors which entails a scalar

o Edge contraction implies summation over the joint index

! i .
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Tensor Network Contractions - Matrix-Vector

o How does a matrix and a vector contract 7
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Tensor Network Contractions - Matrix-Vector

e Matrix-vector from a tensor network perspective is effectively a vector
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Tensor Network Contractions - Matrix-Matrix

@ Similarly, matrix-matrix contraction over a single edge entails a matrix
(matrix-matrix product)

B T T
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Tensor Network Contractions - Tensor-Tensor

e How do tensors interact with other tensors?
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Tensor Network Contractions - Tensor-Tensor

e Two 3" degree tensors contracted by 2 indices form a matrix
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Tensor Network Contractions - Tensor-Tensor

e What would such contraction yield ?
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Tensor Network Contractions - Tensor-Tensor

e Four 3" order tensors, where all edges contracted, entails a scalar

> LR ST = a

ijkémn
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Tensor Network Contractions - Trace

o What contraction of a tensor to itself means 7
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Tensor Network Contractions - Trace

e What contraction of a matrix product to itself means ?
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Tensor Network Contractions - Partial Trace

e What partial contraction of a tensor product to itself means ?
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Tensor Network Contractions - Trace Cyclicity

e How can we prove trace cyclicity 7

e Trivially proven with tensor networks due to rotational invariance of the network
(graph isomorphism)

tr(ABC) tr(BCA) tr(CAB)
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Tensor Networks - Splits and Low-Rank Approximation

e How is it related to sketching and low rank approximations and tensor
algebra?
@ Split - inverse form of tensor contraction

I

— N
—_— Im| < |ml

J J J J

UT Austin CSE 392/CS 395T/M 397C Apr, 2025

35/38



Tensor Networks - Splits and Low-Rank Approximation

e Can we always split ?
» Can always compute SVD on matrices

e How do we extend this to tensors?

» Vectorize and then employ matrix SVD

m =kl
)
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Tensor Networks - Splits and Low-Rank Approximation
e Can we always split ?

by o ky 9 kn n
T - + ot
V1 vy Vn
» Can always compute SVD on matrices

y < 4
e How do we extend this to tensors? ) ’

» Vectorize and then employ matrix SVD
» Native tensor decompositions ...

4| [
T = v I
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