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Lecture 21: Tube-fiber product, t-product.
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Algebraic Context - Semantics

A binary composition ∗ on a set S is a function
S × S 3 (x, y) 7→ x ∗ y ∈ S

Semigroup: A set S with a binary composition ∗
that is associative

Monoid: A semigroup which has a unit element

Group: A monoid where each element has an inverse

Abelian group: A group whose binary composition
is commutative
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Algebraic Context - Ring and Field

Ring: A set R with two binary compositions, called addition (denoted by +) and
multiplication such that (R,+) is an abelian group, (R, ·) is a semigroup, and
multiplication is distributive over addition

Ring with unit: A ring R where (R, ·) is a monoid

Commutative ring: A ring with commutative multiplication

Field: A commutative ring with unit where each nnz element has a multiplicative inverse
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Algebraic Context - Module and Vector Space

Module: An abelian group (M,⊕) is called a module over the ring (R,+, ·), or an R -
module, if there is a function R×M 3 (r,m) 7→ rm ∈M, such that

(i) : 0m = 0 where 0 is the additive unit of R
(ii) : 1m = m if R has a multiplicative unit 1

(iii) : (r + r′)m = (rm)⊕ (r′m)

(iv) : r(m⊕m′) = (rm)⊕ (rm′)

(v) : (r · r′)m = r(r′m)

Vector space: A module over a field

UT Austin CSE 392/CS 395T/M 397C Apr, 2025 6 / 25



Algebraic Context - Algebra

Algebra - A structure comprising of addition, multiplication, and scalar multiplication
(may also include additional assumptions as associativity, commutativity, etc.)

Going forward we shall employ some of these constructs to define new tensorial algebras...
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Step Back to the Matrix SVD

Traditional workhorse, dim reduction/feature extraction: matrix singular value
decomposition (SVD)

PCA - directions of most variability; projections in ‘dominant’ directions allows for
dim reduction/relative comparison

Compression (reduce near redundancies) via truncated SVD expansion is optimal
(Eckart-Young)

For m× n A, and A = UΣV > =
∑r

i=1 σi(u
(i) ◦ v(i)),

B =

p∑
i=1

σi(u
(i) ◦ v(i)) solves

min ‖A−B‖F s.t. B has rank p ≤ r
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B =

p∑
i=1

σi(u
(i) ◦ v(i)) solves

min ‖A−B‖F s.t. B has rank p ≤ r

Implicit storage: only O(p(n+m)) numbers stored, vs mn.
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Step Back to the Matrix SVD

Traditional workhorse, dim reduction/feature extraction: matrix singular value
decomposition (SVD)

PCA - directions of most variability; projections in ‘dominant’ directions allows for
dim reduction/relative comparison

Compression (reduce near redundancies) via truncated SVD expansion is optimal
(Eckart-Young)

For m× n A, and A = UΣV > =
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i=1 σi(u
(i) ◦ v(i)),

B =

p∑
i=1

σi(u
(i) ◦ v(i)) solves

min ‖A−B‖F s.t. B has rank p ≤ r

Extension to higher dimensions?
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An Ideal Tensor Algebra
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Mimeticity | Mimeticity

scalar a
1× 1

tube a
1× 1× n

vector a

`× 1

lateral slice ~A
`× 1× n

matrix A

`×m

tensor A
`×m× n

Matrices are linear operators ↔ Tensors are t-linear operators
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Orientation Dependence

CP, Tucker were orientation independent. For the remainder, we fix the orientation, think
of a tensor as a matrix of tube fibers; matrix of lateral slices.

Tensor A Lateral slice ~AjFrontal slice A(k) Tube fibers aij

Using MATLAB-like notation: e.g. ~Aj = A:,j,:.

Find a way to express a tensor that leads to the possibility for optimally compressed
representation that maintains important features of the original tensor.

UT Austin CSE 392/CS 395T/M 397C Apr, 2025 11 / 25



Towards an Elemental Operation

We first consider a simple case - an option for the product between two tube fibers!
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Circulant Matrices and Convolution

Let v ∈ Rn. Then the n× n circulant matrix generated by v is

C = circ(v) =


v1 vn vn−1 · · · v2
v2 v1 vn · · · v3
...

. . .
. . .

. . . v4
vn vn−1 vn−2 · · · v1


Well known to be diagonalized by the (unitary) DFT matrix1:

C = FHΛF

where the eigenvalues can be computed from the fast-Fourier transform2 (FFT) of v.

1F is a Vandermonde matrix formed from the nth roots of unity. To compute this in Matlab use F =

1/sqrt(n) * fft(eye(n)) .
2v̂ = fft(v) ≡

√
nF
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Tensor Product for Tube Fibers

Discrete convolution between a,b ∈ Cn:

a ∗ b := circ(a)b = FHdiag(â)Fb = 1√
n
FH(diag(â)b̂) = 1√

n
FH(â4b̂) = ifft(ĉ),

where ĉ = â4b̂.

Discrete Convolution between two vectors is commutative (Exercise: show this.)

1-1 correspondence between 1× 1× n tube fiber (element in Kn) and a vector in Cn.

Let’s define the product of 2, length-n tube fibers to be convolution!

c
=

a

∗
b

We have a commutative ring. There is an identity element e (Exercise: what is it?)
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Tube-fiber Product

Elemental action: Compute

c
=

a

∗
b

The work can be done by n independent scalar multiplications in the Fourier domain as
follows.
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Tube-fiber Product Computation

ĉ
=

â

4
b̂

where 4 denotes face-wise scalar multiplication, analogous to the Hadamard product
between two vectors.

Then c is obtained by applying the inverse transform.

The algorithmic cost of the operation: cost to compute â, b̂ O(n log n) flops, the cost for
the n scalar products at O(n) flops, and the cost of the inverse transform on ĉ O(n log n)
flops.
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Exercise

Show that the t-product of two tube fibers can be expressed using the mode-wise notation
as follows:

Apply a DFT along the tube fibers a,b:
I Compute a×3 F, and b×3 F

Pointwise multiply the entries, call the result ĉ

Apply inverse DFT to ĉ: ĉ×3 F
−1.
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Algebraic Context - Algebra

Tensor A Lateral slice ~Aj Tube fibers aij

Next we define an entirely different tensor decomposition based on circulant algebra

In this factorization, a tensor in Rn1×n2×n3 is viewed as a n1 × n2 matrix of “tubes”
also known as elements of the ring Kn3 where addition is defined as vector addition and
multiplication as circular convolution.

This “matrix-of-tubes” formalism leads to definitions of a new multiplication for
tensors (“tubal multiplication”), a new rank for tensors (“tubal rank”), and a new
notion of a SVD for tensors (“tubal SVD”)
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The t-product

circ(A)



A(1) A(n) . . . A(3) A(2)

A(2) A(1) A(n) . . . A(3)

A(3) A(2) A(1) . . . . . .
...

. . .
. . .

. . . A(n)

A(n) . . . A(3) A(2) A(1)


The t-product is defined as:

A ∗ B = fold(circ(A) · unfold(B)).

It is obvious that if A is m× p× n, need B to be p× k × n, and the result is m× k × n.

Kilmer, Martin, Factorization Strategies for Third-Order Tensors, LAA, 2011
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Block Circulants

A block circulant can be block-diagonalized by a (normalized) DFT in the 2nd

dimension:

(F ⊗ I)circ(A)(F ∗ ⊗ I) =


Â1 0 · · · 0

0 Â2 0 · · ·

0 · · · . . . 0

0 · · · 0 Ân


Here ⊗ is a Kronecker product of matrices

If F is n× n, and I is m×m, (F ⊗ I) is the mn×mn block matrix, of n block rows
and columns, each block is m×m, where the ijth block is fi,jI

In practice, one never explicitly implement it this way because an FFT along tube
fibers of A yields a tensor, Â, whose frontal slices are the Âi
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T-product, General Case

A ∗ B = fold(circ(A) · unfold(B)).

Since the term in the middle can be computed using the previous observation (compare to
the case tube-fiber special case), we have:

The t-product can be computed in the Fourier domain with n, independent matrix-matrix
products Âi · B̂i, i = 1, . . . , n, and then moving back to the spatial domain with an inverse
transform of the result.
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T-product

Block circulants block-diagonalized via 1D FFTs ⇒ The t-product can be computed
in-place using FFTs:

Â ← fft(A, [ ], 3)

B̂ ← fft(B, [ ], 3)

Ĉ:,:,i = Â:,:,i · B̂:,:,i, i = 1, . . . , n

C = ifft(Ĉ, [ ], 3)
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Framework

Now that the t-product is defined, additional linear-algebraic like framework:

The `× `× n identity tensor I is the tensor whose frontal slice is the `× ` identity
matrix, and whose other frontal slices are all zeros. (Exercise: show this.)

An `× `× n tensor A has an inverse B provided that

A ∗ B = I, and B ∗ A = I.
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Transpose and Orthogonality

A ∈ R`×m×n ⇒ A> ∈ Rm×`×n is obtained by transposing each frontal slice & reversing
order of transposed frontal slices 2 through n.

U ∈ Rm×m×n is orthogonal if U> ∗ U = I = U ∗ U>.

Can show Frobenius norm invariance: ‖U ∗ A‖F = ‖A‖F .
Exercise: show (A ∗ B)> = B> ∗ A>
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Questions?
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