CSE 392/CS 395T/M 397C: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2025

Lecture 2: Probability Review

Outline

1 Probability review

2 Concentration inequalities

This lecture

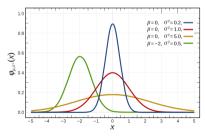
Topics to be covered today

- Probability and properties.
- Concentration measures.
 - Markov and Chebyshev inequality
 - ▶ CLT and tail bounds

Probability review

Let x be a random variable taking value in some set S. For continuous random variable, it might be $S = \mathbb{R}$.

- Expectation: $\mathbb{E}[x] = \sum_{s \in \mathbb{S}} s \cdot \Pr[x = s]$ For continuous case, $\mathbb{E}[x] = \int_{s \in \mathbb{S}} s \cdot \Pr[x = s] ds$
- Variance: $Var[x] = \mathbb{E}\left[(x \mathbb{E}[x])^2\right] = \mathbb{E}[x^2] \mathbb{E}[x]^2$



Excerise 1: For any scalar α , show that $\mathbb{E}[\alpha x] = \alpha \mathbb{E}[x]$ and $\operatorname{Var}[\alpha x] = \alpha^2 \operatorname{Var}[x]$.

UT Austin

Probability review

Let A and B be random events. Then,

- Joint Probability: $Pr(A \cap B)$ The probability that both events happen.
- Conditional Probability: $Pr(A | B) = \frac{Pr(A \cap B)}{Pr(B)}$. Probability A happens conditioned on the event that B happens.
- Independence: A and B are independent events if: Pr(A | B) = Pr(A). For independent events, we also have that

$$\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$$

• Mutually exclusive events : $Pr(A \cap B) = 0$.

Probability review

Random sampling can be:

- with replacement
- without replacement

Question: Which of the above event is independent?

Example: What is the probability that for two independent dice rolls taking values uniformly in $\{1, 2, 3, 4, 5, 6\}$, the first roll comes up even and the second is < 4?

Expectation

For random variables x and y,

• Linearity of expectation: For constants $c_1, c_2 \in \mathbb{R}$,

$$\mathbb{E}[c_1\mathbf{x} + c_2\mathbf{y}] = c_1\mathbb{E}[\mathbf{x}] + c_2\mathbb{E}[\mathbf{y}].$$

Result holds irrespective of the dependence between x and y.

• Law of Total Expectation: If the sample space is the disjoint union of events A_1, A_2, \ldots , then

$$\mathbb{E}[\mathbf{x}] = \sum_{i} \mathbb{E}[\mathbf{x} \mid A_i] \Pr(A_i).$$

• Product of expectation: For any two independent random variables x and y,

$$\mathbb{E}[x \cdot y] = \mathbb{E}[x] \cdot \mathbb{E}[y]$$

also Var[x + y] = Var[x] + Var[y].

Norms of random variables

• Moment norm: For a real random variable x and $p \ge 1$, let

 $|||\mathbf{x}|||_p = \mathbb{E}[|\mathbf{x}|^p]^{1/p}.$

We use $\| \cdot \|$ to distinguish from matrix/vector norm.

- For real random variables x, y and $p \ge 1$, (Minkowski) $|||x + y|||_p \le |||x|||_p + |||y|||_p$, and for $\alpha \in \mathbb{R}$, $|||\alpha x|||_p = |\alpha| |||x|||_p$.
- Centered random variables: Random variable $x \in \mathbb{R}$ is centered if $\mathbb{E}[x] = 0$.
- Tail from norms: For t > 0, for centered x,

 $\Pr\{|\mathbf{x}| \geq t\} \leq \|\!|\mathbf{x}\|\!|_p^p/t^p$

- For centered x, $\|\!|\!|\mathbf{x}|\!|\!|_2^2 = \mathbb{E}[\mathbf{x}^2] = \mathrm{Var}[\mathbf{x}].$ So, $\|\!|\!|\mathbf{x}|\!|\!|_2 = \mathrm{sd}[\mathbf{x}].$
- We know that for two independent random variables x, y,

$$Var[x + y] = Var[x] + Var[y].$$

So, if they are also centered, then

$$\|\mathbf{x} + \mathbf{y}\|_{2} = \sqrt{\|\|\mathbf{x}\|_{2}^{2} + \|\|\mathbf{y}\|_{2}^{2}} \le \|\|\mathbf{x}\|_{2} + \|\|\mathbf{y}\|_{2}.$$

• Sub-Guassian norms: For a real random variable x,

$$\|\mathbf{x}\|_{\psi_2} \equiv \sup_{p \ge 1} \|\mathbf{x}\|_p / \sqrt{p}$$

If $|||x|||_{\psi_2}$ is bounded, we call x *sub-Gaussian*.

Concentration inequalities

One of the key tools in analyzing randomized algorithms. How likely a random variable x deviates a certain amount from its expectation $\mathbb{E}[x]$.

We will learn three fundamental concentration inequalities:

- Markov's Inequality Applies to *non-negative* random variables.
- Chebyshev's Inequality For random variables with *bounded variance*.
- **Hoeffding/Bernstein/Chernoff bounds** For *sums* of *independent* random variables.

Markov's Inequality

For any random variable x which only takes *non-negative* values, and any positive t,

$$\Pr[\mathbf{x} \ge t] \le \frac{\mathbb{E}[\mathbf{x}]}{t}.$$

Equivalently, $\Pr[\mathbf{x} \ge \alpha \cdot \mathbb{E}[\mathbf{x}]] \le \frac{1}{\alpha}$.

Markov's Inequality

For any random variable x which only takes *non-negative* values, and any positive t,

$$\Pr[\mathbf{x} \ge t] \le \frac{\mathbb{E}[\mathbf{x}]}{t}$$

Equivalently, $\Pr[\mathbf{x} \ge \alpha \cdot \mathbb{E}[\mathbf{x}]] \le \frac{1}{\alpha}$.

Proof: We have to show that $\mathbb{E}[\mathbf{x}] \geq t \cdot \Pr[\mathbf{x} \geq t]$:

$$\begin{split} \mathbb{E}[\mathbf{x}] &= \sum_{k} k \cdot \Pr(\mathbf{x} = k) \\ &\geq \sum_{k \ge t} k \cdot \Pr(\mathbf{x} = k) \\ &\geq \sum_{k \ge t} t \cdot \Pr(\mathbf{x} = k) \\ &= t \cdot \sum_{k > t} \Pr(\mathbf{x} = k) = t \cdot \Pr(\mathbf{x} \ge t) \end{split}$$

UT Austin

Example

A coin is weighted so that its probability of landing on heads is 20%. Suppose the coin is flipped 20 times. Find a bound for the probability it lands on heads at least 16 times.

Example

A coin is weighted so that its probability of landing on heads is 20%. Suppose the coin is flipped 20 times. Find a bound for the probability it lands on heads at least 16 times.

Binomial distribution - n = 20, p = 0.2

$$\mathbb{E}[\mathbf{x}] = n \cdot p = 20 * 0.2 = 4.$$

Let us use **Markov's**:

$$\Pr[\mathbf{x} \ge 16] \le \frac{\mathbb{E}[\mathbf{x}]}{16} = 0.25.$$

Is this a good estimate?

Popular applications: *k*-frequent items, hash functions, and others.

Union Bound

Union Bound For any random events A_1, \ldots, A_n :

 $\Pr[A_1 \cup A_2 \cup \ldots \cup A_n] \le \Pr[A_1] + \Pr[A_2] + \ldots + \Pr[A_n]$

Union Bound

Union Bound

For any random events A_1, \ldots, A_n :

$$\Pr[A_1 \cup A_2 \cup \ldots \cup A_n] \le \Pr[A_1] + \Pr[A_2] + \ldots + \Pr[A_n]$$

Proof: Choose $\mathbf{x}_i = \mathbb{1}[A_i]$, and we apply Markov's to $S = \sum_{i=1}^n \mathbf{x}_i$. *Hint:* Express the union event $A_1 \cup A_2 \cup \ldots \cup A_n$ in terms of S. What is $\mathbb{E}[\mathbf{x}_i] = ?$

Chebyshev's Inequality

Let x be a random variable, then for any $\alpha > 0$,

$$\Pr(|\mathbf{x} - \mathbb{E}[\mathbf{x}]| \ge \alpha) \le \frac{\operatorname{Var}[\mathbf{x}]}{\alpha^2}.$$

Chebyshev's Inequality

Let x be a random variable, then for any $\alpha > 0$,

$$\Pr(|\mathbf{x} - \mathbb{E}[\mathbf{x}]| \ge \alpha) \le \frac{\operatorname{Var}[\mathbf{x}]}{\alpha^2}.$$

Proof: Note that

$$\Pr(|\mathbf{x} - \mathbb{E}[\mathbf{x}]| \ge \alpha) = \Pr((\mathbf{x} - \mathbb{E}[\mathbf{x}])^2 \ge \alpha^2).$$

Applying Markov's inequality to the random variable $(x - \mathbb{E}[x])^2$ gives us the result.

• Alternatively, for any c > 0,

$$\Pr(|\mathbf{x} - \mathbb{E}[\mathbf{x}]| \ge c \cdot \sigma_{\mathbf{x}}) \le \frac{1}{c^2},$$

where $\sigma_{\mathbf{x}} = \sqrt{\operatorname{Var}[\mathbf{x}]} = \sqrt{\mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])^2]}$, is the standard deviation of \mathbf{x} .

Properties of Chebyshev's inequality

- x need not be non-negative.
- It is a two-sided bound, gives the probability that |x − E[x]| is large or not.
 I.e., x is not too far above or below its expectation.
 Markov's only bounded probability that x exceeds E[x].
- Probability of x being c times σ away from μ .
- We need a bound on the variance of x.

It is worst case bound, may not be tight in many cases.

Gaussian concentration

For $\mathbf{x} \sim \mathcal{N}(\mu, \sigma^2)$, we have:

$$\Pr[\mathbf{x} = \mu \pm \mathbf{x}] \sim \frac{1}{\sigma \sqrt{2\pi}} e^{-\mathbf{x}^2/2\sigma^2}$$

Gaussian Tail Bound:For $\mathbf{x} \sim \mathcal{N}(\mu, \sigma^2)$, $\Pr[|\mathbf{x} - \mu| \ge \alpha \cdot \sigma] \le e^{-\alpha^2/2}$

Where as, using Chebyshev's inequality we get $\Pr[|\mathbf{x} - \mu| \ge \alpha \cdot \sigma] \le 1/\alpha^2$

Gaussian random variables concentrate *much tighter* around their expectation than what Chebyshev's inequality predicts.

Central limit theorem

Lindeberg–Levy CLT:

Suppose $\{x_1, \ldots, x_n\}$ is a sequence of i.i.d. random variables with $\mathbb{E}[x_i] = \mu$ and $\operatorname{Var}[x_i] = \sigma^2 < \infty$. Then, as *n* approaches infinity, the random variables $\sqrt{n}(\bar{x}_n - \mu)$, where $\bar{x}_n = \sum_{i=1}^n x_i/n$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$:

$$\sqrt{n} \left(\bar{\mathbf{x}}_n - \mu \right) \xrightarrow{a} \mathcal{N} \left(0, \sigma^2 \right).$$

CLT can be made rigorous to obtain tighter tail bounds than Chebyshev's inequality.

- Chernoff bound
- Bernstein bound
- Hoeffding bound

Different assumptions on random variables (e.g. binary vs. bounded), different forms (additive vs. multiplicative error), etc.

Chernoff Bound

Chernoff Bounds

Let $S = \sum_{i=1}^{n} \mathbf{x}_i$, where $\mathbf{x}_i = 1$ with probability p_i and $\mathbf{x}_i = 0$ with probability $1 - p_i$, and all \mathbf{x}_i are independent. Let $\mu = \mathbb{E}(S) = \sum_{i=1}^{n} p_i$. Then

- Upper Tail:. $\Pr(S \ge (1 + \alpha)\mu) \le e^{-\frac{\alpha^2}{2+\alpha}\mu}$ for all $\alpha > 0$;
- Lower Tail: $\Pr(S \le (1 \alpha)\mu) \le e^{-\frac{\alpha^2}{2}\mu}$ for all $0 < \alpha < 1$;

Idea of proof:

Based on applying Markov's inequality to moment generating function $\mathbb{E}[e^{t|S-\mathbb{E}[S]|}]$.

Bernstein Inequality

Bernstein Inequality

Let x_1, \ldots, x_n be independent random variables with each $x_i \in [-c, c]$. Let $\mathbb{E}[x_i] = \mu_i$ and $\operatorname{Var}[x_i] = \sigma_i^2$. Let $\mu = \sum_i \mu_i$ and $\sigma^2 = \sum_i \sigma_i^2$. Then, for $\alpha > 0, S = \sum_i x_i$ satisfies

$$\Pr[|S - \mu| \ge \alpha] \le 2e^{\left(\frac{-\alpha^2}{2(\sigma^2 + c\alpha/3)}\right)}$$

Idea of proof:

Based on applying Markov's inequality to $e^{\lambda \sum_i \mathbf{x}_i}$ for suitable choice of the parameter $\lambda > 0$.

Hoeffding Inequality

Hoeffding Inequality

Let x_1, \ldots, x_n be independent random variables with each $x_i \in [a_i, b_i]$. Let $\mathbb{E}[x_i] = \mu_i$ and $\operatorname{Var}[x_i] = \sigma_i^2$. Let $\mu = \sum_i \mu_i$ and $\sigma^2 = \sum_i \sigma_i^2$. Then, for and $\alpha > 0, S = \sum_i x_i$ satisfies

$$\Pr[|S - \mu| \ge \alpha] \le 2e^{-\frac{2\alpha^2}{\sum_i (a_i - b_i)^2}}$$

Idea of proof: Similar to Chernoff bounds. We use that for a real random variable $\mathbf{x} \in [a, b]$ almost surely,

$$\mathbb{E}\left[e^{s(\mathbf{x}-\mathbf{E}[\mathbf{x}])}\right] \le \exp\left(\frac{1}{8}s^2(b-a)^2\right).$$

Example

Coin flip application

We are given a biased coin which lands heads with probability p. How many n times should we flip to ensure

$$\Pr[|\#heads - p \cdot n| \ge \epsilon n] \le \delta.$$

Setup: Let $x_i = \mathbb{1}[i^{th} \text{ flip is heads}]$. We want bound probability that $S = \sum_{i=1}^{n} x_i$ deviates from the expectation.

Using Chebyshev: $n \ge ?$ Using Chernoff/Hoeffding: $n \ge ?$

Reference

Recommended reading:

A good reference for introduction and proofs of the various concentration inequalities, see Dr. Karthik Sridharan's article:

A Gentle Introduction to Concentration Inequalities.

Questions?