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This lecture

Topics to be covered today

Probability and properties.

Concentration measures.
I Markov and Chebyshev inequality
I CLT and tail bounds
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Probability review

Let x be a random variable taking value in some set S.
For continuous random variable, it might be S = R.

Expectation: E[x] =
∑

s∈S s · Pr[x = s]
For continuous case, E[x] =

∫
s∈S s · Pr[x = s]ds

Variance: Var[x] = E
[
(x− E[x])2

]
= E[x2]− E[x]2

Excerise 1: For any scalar α, show that E[αx] = αE[x] and Var[αx] = α2Var[x].
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Probability review

Let A and B be random events. Then,

Joint Probability: Pr(A ∩B) - The probability that both events happen.

Conditional Probability: Pr(A |B) = Pr(A∩B)
Pr(B) . Probability A happens

conditioned on the event that B happens.

Independence: A and B are independent events if: Pr(A |B) = Pr(A).
For independent events, we also have that

Pr(A ∩B) = Pr(A) · Pr(B)

Mutually exclusive events : Pr(A ∩B) = 0.

UT Austin CSE 392/CS 395T/M 397C Jan, 2025 6 / 24



Probability review

Random sampling can be:

with replacement

without replacement

Question: Which of the above event is independent?

Example: What is the probability that for two independent dice rolls taking values
uniformly in {1, 2, 3, 4, 5, 6}, the first roll comes up even and the second is < 4?
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Expectation

For random variables x and y,

Linearity of expectation: For constants c1, c2 ∈ R,

E[c1x + c2y] = c1E[x] + c2E[y].

Result holds irrespective of the dependence between x and y.

Law of Total Expectation: If the sample space is the disjoint union of events
A1, A2, . . . , then

E[x] =
∑
i

E[x |Ai] Pr(Ai).

Product of expectation: For any two independent random variables x and y,

E[x · y] = E[x] · E[y]

also Var[x + y] = Var[x] + Var[y].

UT Austin CSE 392/CS 395T/M 397C Jan, 2025 8 / 24



Norms of random variables

Moment norm: For a real random variable x and p ≥ 1, let

�x�p = E[|x|p]1/p.

We use � · � to distinguish from matrix/vector norm.

For real random variables x, y and p ≥ 1,
(Minkowski) �x + y�p ≤ �x�p + �y�p,
and for α ∈ R, �αx�p = |α|�x�p.
Centered random variables: Random variable x ∈ R is centered if E[x] = 0.

Tail from norms: For t > 0, for centered x,

Pr{|x| ≥ t} ≤ �x�pp/tp
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For centered x, �x�22 = E[x2] = Var[x]. So, �x�2 = sd[x].

We know that for two independent random variables x, y,

Var[x + y] = Var[x] + Var[y].

So, if they are also centered, then

�x + y�2 =
√

�x�22 + �y�22 ≤ �x�2 + �y�2.

Sub-Guassian norms: For a real random variable x,

�x�ψ2 ≡ sup
p≥1

�x�p/√p

If �x�ψ2 is bounded, we call x sub-Gaussian.
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Concentration inequalities

One of the key tools in analyzing randomized algorithms.
How likely a random variable x deviates a certain amount from its expectation E[x].

We will learn three fundamental concentration inequalities:

Markov’s Inequality - Applies to non-negative random variables.

Chebyshev’s Inequality - For random variables with bounded variance.

Hoeffding/Bernstein/Chernoff bounds - For sums of independent random
variables.
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Markov’s Inequality

For any random variable x which only takes non-negative values, and any positive t,

Pr[x ≥ t] ≤ E[x]

t
.

Equivalently, Pr[x ≥ α · E[x]] ≤ 1
α .

Proof: We have to show that E[x] ≥ t · Pr[x ≥ t]:
E[x] =

∑
k

k · Pr(x = k)

≥
∑
k≥t

k · Pr(x = k)

≥
∑
k≥t

t · Pr(x = k)

= t ·
∑
k≥t

Pr(x = k) = t · Pr(x ≥ t)
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Example

A coin is weighted so that its probability of landing on heads is 20%. Suppose the coin is
flipped 20 times. Find a bound for the probability it lands on heads at least 16 times.

Binomial distribution - n = 20, p = 0.2

E[x] = n · p = 20 ∗ 0.2 = 4.

Let us use Markov’s:

Pr[x ≥ 16] ≤ E[x]

16
= 0.25.

Is this a good estimate?

Popular applications: k-frequent items, hash functions, and others.
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Union Bound

Union Bound

For any random events A1, . . . , An:

Pr[A1 ∪A2 ∪ . . . ∪An] ≤ Pr[A1] + Pr[A2] + . . .+ Pr[An]

Proof: Choose xi = 1[Ai], and we apply Markov’s to S =
∑n

i=1 xi.
Hint: Express the union event A1 ∪A2 ∪ . . . ∪An in terms of S. What is E[xi] = ?
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Chebyshev’s Inequality

Let x be a random variable, then for any α > 0,

Pr(|x− E[x]| ≥ α) ≤ Var[x]

α2
.

Proof: Note that
Pr(|x− E[x]| ≥ α) = Pr((x− E[x])2 ≥ α2).

Applying Markov’s inequality to the random variable (x− E[x])2 gives us the result.

Alternatively, for any c > 0,

Pr(|x− E[x]| ≥ c · σx) ≤ 1

c2
,

where σx =
√

Var[x] =
√
E[(x− E[x])2], is the standard deviation of x.
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Properties of Chebyshev’s inequality

x need not be non-negative.

It is a two-sided bound, gives the probability that |x− E[x]| is large or not.
I.e., x is not too far above or below its expectation.
Markov’s only bounded probability that x exceeds E[x].

Probability of x being c times σ away from µ.

We need a bound on the variance of x.

It is worst case bound, may not be tight in many cases.
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Gaussian concentration

For x ∼ N (µ, σ2), we have:

Pr[x = µ± x] ∼ 1

σ
√

2π
e−x

2/2σ2

Gaussian Tail Bound:

For x ∼ N (µ, σ2),

Pr[|x− µ| ≥ α · σ] ≤ e−α2/2

Where as, using Chebyshev’s inequality we get Pr[|x− µ| ≥ α · σ] ≤ 1/α2

Gaussian random variables concentrate much tighter around their expectation than what
Chebyshev’s inequality predicts.
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Central limit theorem

Lindeberg–Levy CLT:

Suppose {x1, . . . , xn} is a sequence of i.i.d. random variables with E[xi] = µ and
Var[xi] = σ2 <∞. Then, as n approaches infinity, the random variables

√
n(x̄n − µ),

where x̄n =
∑n

i−1 xi/n converge in distribution to a normal N (0, σ2):

√
n (x̄n − µ)

a−→ N
(
0, σ2

)
.

CLT can be made rigorous to obtain tighter tail bounds than Chebyshev’s inequality.

Chernoff bound

Bernstein bound

Hoeffding bound

Different assumptions on random variables (e.g. binary vs. bounded), different forms
(additive vs. multiplicative error), etc.
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Chernoff Bound

Chernoff Bounds

Let S =
∑n

i=1 xi, where xi = 1 with probability pi and xi = 0 with probability 1− pi, and
all xi are independent. Let µ = E(S) =

∑n
i=1 pi. Then

Upper Tail:. Pr(S ≥ (1 + α)µ) ≤ e−
α2

2+α
µ for all α > 0;

Lower Tail: Pr(S ≤ (1− α)µ) ≤ e−
α2

2
µ for all 0 < α < 1;

Idea of proof:
Based on applying Markov’s inequality to moment generating function E[et|S−E[S]|].
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Bernstein Inequality

Bernstein Inequality

Let x1, . . . , xn be independent random variables with each xi ∈ [−c, c]. Let E[xi] = µi and
Var[xi] = σ2i . Let µ =

∑
i µi and σ2 =

∑
i σ

2
i . Then, for α > 0, S =

∑
i xi satisfies

Pr[|S − µ| ≥ α] ≤ 2e

(
−α2

2(σ2+cα/3)

)
.

Idea of proof:
Based on applying Markov’s inequality to eλ

∑
i xi for suitable choice of the parameter

λ > 0.
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Hoeffding Inequality

Hoeffding Inequality

Let x1, . . . , xn be independent random variables with each xi ∈ [ai, bi]. Let E[xi] = µi and
Var[xi] = σ2i . Let µ =

∑
i µi and σ2 =

∑
i σ

2
i . Then, for and α > 0, S =

∑
i xi satisfies

Pr[|S − µ| ≥ α] ≤ 2e
− 2α2∑

i(ai−bi)2 .

Idea of proof: Similar to Chernoff bounds. We use that for a real random variable
x ∈ [a, b] almost surely,

E
[
es(x−E[x])

]
≤ exp

(
1
8s

2(b− a)2
)
.
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Example

Coin flip application

We are given a biased coin which lands heads with probability p. How many n times
should we flip to ensure

Pr[|#heads− p · n| ≥ εn] ≤ δ.

Setup: Let xi = 1[ith flip is heads]. We want bound probability that S =
∑n

i=1 xi
deviates from the expectation.

Using Chebyshev: n ≥ ?
Using Chernoff/Hoeffding: n ≥ ?
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Reference

Recommended reading:
A good reference for introduction and proofs of the various concentration inequalities, see
Dr. Karthik Sridharan’s article:

A Gentle Introduction to Concentration Inequalities.
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https://www.cs.cornell.edu/~sridharan/concentration.pdf


Questions?
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