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Lecture 19: Tucker decomposition, HOSVD.
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CP-Decomposition

Find the best tensor rank-r fit:

min
ai,bi,ci

‖X −
r∑

i=1

σi · ai ◦ bi ◦ ci‖F

I Extension of matrix rank

I Interpretable

I Summing r factors is sub-optimal

I Determining rank is NP-hard
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CP Decomposition - Existence and Ill-Posedness

For a problem to be well-posed, the following conditions are
required from its solution :

I Existence
I Uniqueness
I Stability

If either criterion is not satisfied, the problem is rendered ill-posed 1

Often, existence is taken for granted and an ill-posedness refers to either the lack of
uniqueness or stability in the solution

For CP, ill-posedness is more acute, as the existence of a solution is in question 2

The set of tensors of a given size that do not have a best rank-k approximation has
positive volume (i.e., positive Lebesgue measure) for at least some values of k,
which implies that lack of best approximation is rather common.

1
Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin. 1902

2
de Silva, Lim, Tensor rank and ill-posedness of the best low-rank approximation problem, 2008
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CP - Uniqueness

M = JA,B,CK is essentially unique if

rankk(A) + rankk(B) + rankk(C) ≥ 2r + 2

rankk(A) = maximum value of k such that any k columns of A are linearly
independent.

Matrix factorization does not share this property! Usually need orthogonality
constraint.
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Inconsistencies with Tensor Rank

Rank of real-valued tensor may be different
over R or C
Determining rank of tensor is NP-hard

Eckart-Young does not hold

The best rank-k approximation may not exist

Best approximation is on the boundary of the space of
rank-2 and rank-3 tensors. Since the space of rank-2
tensors is not closed, the sequence may converge to a
tensor X∗ of rank other than 2

Kruskal, Harshman, Lundy, How 3-MFA can cause degenerate PARAFAC solutions, among other relationships, in Multiway Data

Analysis, Coppi, Bolasco, eds., North-Holland, Amsterdam, 1989

Kolda and Bader, Tensor decompositions and applications, SIAM, 2009
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Tucker Decomposition3

Find the best multi-linear rank-(k1, k2 ,k3) fit:

min
Ak1

,Bk2
,Ck3

‖X − G ×1 Ak1 ×2 Bk2 ×3 Ck3‖F

I Higher-order PCA

I Compressible

I Truncation of full orth. sub-optimal

I Hard to interpret

3
Tucker, Problems in Measuring Change, 1963
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Tucker Decomposition - notation

The Tucker decomposition of a three-mode tensor X ∈ Rm×n×p is given by:

X ≈ G ×1 A×2 B ×3 C =: JG;A,B,CK,

where G ∈ Rk1×k2×k3 is called the core tensor and A ∈ Rm×k1 , B ∈ Rn×k2 and
C ∈ Rp×k3 are factor matrices.

Elementwise:

xij` ≈
k1∑
q=1

k2∑
r=1

k3∑
s=1

gqrsdiqbjrc`s for i ∈ [m], j ∈ [n], ` ∈ [p]
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Tucker Decomposition - matricized forms

The matricized forms (one per mode) of Tucker decomposition are:

X(1) ≈ AG(1)(C ⊗B)>,

X(2) ≈ BG(2)(C ⊗A)>,

X(3) ≈ CG(3)(B ⊗A)>
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TUCKER-ALS algorithm

Minimize the objective function:

F (G,A,B,C) = ‖X − JG;A,B,CK‖2F

The canonical TUCKER-ALS - repeatedly solve until convergence:

I At+1 = arg minA F (Gt,A,Bt,Ct) = arg minA

∥∥∥(Ct ⊗Bt)G
>
(1),tA

> −X>
(1)

∥∥∥2
F

I Bt+1 = arg minB F (Gt,At+1,B,Ct) = arg minB

∥∥∥(Ct ⊗At+1)G>
(2),tB

> −X>
(2)

∥∥∥2
F

I Ct+1 = arg minC F (Gt,At+1,Bt+1,C) = arg minC

∥∥∥(Bt+1 ⊗At+1)G>
(3),tC

> −X>
(3)

∥∥∥2
F

I Gt+1 = arg minG
∥∥(Ct+1 ⊗Bt+1 ⊗At+1)g(:) − x(:)

∥∥2
2
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Tucker Decompositions - Non-Uniqueness

Consider the three-way Tucker decomposition of X , also denoted JG; A,B,CK
Let U ∈ Rk1×k1 , V ∈ Rk2×k2 , and W ∈ Rk3×k3 be non-singular. Then

JG; A,B,CK = JG̃; AU−1,BV−1,CW−1K

where G̃ := G ×1 U×2 V ×3 W

The core G can be modified without affecting the overall fit as long as an inverse
modification is applied to the factor matrices

Offers freedom to choose transformations that simplify the core structure in some
way so that most of the elements of G are zero.
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Towards the HOSVD

Recall: Let A be an m× n real-valued matrix, then A has a singular value decomposition:

A = UΣV >,

where U is m×m orthogonal, V is n× n orthogonal, and Σ is m× n diagonal with
diagonal elements the singular values σ1 ≥ σ2 ≥ . . . σr > 0

The matrix U contains the left singular vectors
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HOSVD

Use left singular vectors of the SVDs of the matricizations (assuming ranks r1, r2, r3):

Compute U (1) from SVD of A(1), keep first r1 cols

Compute U (2) from SVD of A(2), keep first r2 cols.

Compute U (3) from SVD of A(3), keep first r3 cols.

G := A×1 (U (1))> ×2 (U (2))> ×3 (U (3))> which means, e.g.,

G(1) = (U (1))>A(1)(U
(3) ⊗U (2))

Now G is r1 × r2 × r3 and this is an EXACT representation:

A = G ×1 U
(1) ×2 U

(2) ×3 U
(3).

Three SVDs, independent of one another

Another notation A = JG; U(1),U(2),U(3)K
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HOSVD Algorithm

Inputs: Tensor A ∈ Rn1×n2×···×nd , ranks {r1, . . . , rd} ∈ N.

1 for ` = 1, . . . , d do

2 U (`) ← r` leading left singular vectors of A(`)

3 end for

4 G = A×1 U
(1)> ×2 U

(2)> · · · ×d U
(d)>

5 return G,U (1),U (2), · · · ,U (d)
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HOOI Algorithm

Inputs: Tensor A ∈ Rn1×n2×···×nd , ranks {r1, . . . , rd} ∈ N.

1 Initialize U (`) ∈ Rn`×r` for all ` ∈ [d]

2 repeat

3 for ` = 1, . . . , d do

4 Y = A×1 U
(1)> · · · ×`−1 U

(`−1)> ×`+1 U
(`+1)> · · · ×d U

(d)>

5 U (`) ← r` leading left singular vectors of Y(`)

6 end for

7 until fit ceases to improve or maximum iterations exhausted

8 G = A×1 U
(1)> ×2 U

(2)> · · · ×d U
(d)>

9 return G,U (1),U (2), · · · ,U (d)
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Truncated HOSVD

Use left singular vectors of the SVDs of the matricizations:

Compute U (1) from SVD of A(1), truncate to k1 ≤ r1 cols.

Compute U (2) from SVD of A(2), truncate to k2 ≤ r2 cols.

Compute U (3) from SVD of A(3), truncate to k3 ≤ r3 cols.

C := A×1 (U (1))> ×2 (U (2))> ×3 (U (3))> which means, e.g.,

C(1) = (U (1))>A(1)(U
(3) ⊗U (2))

so A ≈ Â := C ×1 U
(1) ×2 U

(2) ×3 U
(3)

where C is now k1 × k2 × k3
Truncating U (1),U (2),U (3) to k1, k2, k3 columns, resp, is not optimal, but can give a
compressed representation that is “reasonable”.
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Worst Case Error Bound

Theorem (Vannieuwenhoven et al, 2012)

Let Â = JC;U (1), . . . ,U (d)K where U (i) was truncated to ki columns (i.e. the
rank-(k1, k2, . . . , kd) approximation to the dth order tensor), then

‖A − Â‖2F ≤
d∑

j=1

‖A ×j (I−U (j)(U (j))>))‖2F =

d∑
j=1

nj∑
kj+1

σ2i (A(j)).

That is, the squared approximation error is bounded by the sum of the approximation
errors on each mode unfolding.
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tr-HOSVD Illustration

A-priori selection of the truncation bounds is difficult - cannot afford time/space to
compute the full and then use the error to truncate.

As an example, consider hyperspectral image data - 2 spatial dimensions, and wavelength.
For each spatial location, the wavelength ‘signature’ tells the composition.

commons.wikimedia.org/wiki/File:HyperspectralCube.jpg, NASA, 2007.
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tr-HOSVD Example: Hyperspectral Imaging

191 flyover images of the Washington DC mall. Downsampled images to 320 × 307.
HOSVD is orientation independent. Chose tensor as 320× 307× 191.

D. Landgrebe and L. Biehl, An introduction and reference for multispec., March 2019.
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tr-HOSVD Example

In the absence of any other information, arbitrarily chose to reduce each dimension by
about 80% (i.e. core is 64× 62× 39).

‖A − Â‖F
‖A‖F

= .18

Exercise: What percent of the original storage is required by the new (truncated) one ?
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tr-HOSVD Example

Difference in one wavelength:

Angles between spectral signatures at each of the 320 x 307 spatial positions.
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Variations on tr-HOSVD

Computing individual/independent full (or partial) SVDs can be costly. What if we give
up the independence of the actions, and project as we go?
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Sequential Truncated HOSVD (ST-HOSVD)

Choose an ordering in which to visit the modes

Once left singular vectors for a mode are computed, immediately project. Then only
operate on the projected core result

Example (ordering 1,2,3 and truncation (k1, k2, k3)):
I Compute U (1) from SVD of A(1)

I Compute U (2) from SVD of Ĉ := A×1 (U (1))>

I Compute U (3) from SVD of C̃ := Ĉ ×2 (U (2))>

I C = C̃ ×3 (U (3))>

Now let A ≈ [C; U(1),U(2),U(3)]. Worst case error bound is same as for tr-HOSVD.

Computing on successively smaller objects, more efficient; often near-comparable, or
better, behavior than tr-HOSVD!
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Best Approximation?

Let S = {Y ∈ Rn1×···nd |Y(j) has rank rj ≤ nj}
Define Aopt := arg minY∈S ‖A − Y‖F
Existence of Aopt is guaranteed4 but not unique since Tucker representations are not
unique (see previous slides)

Generally, computing Aopt requires solving an optimization problem via iteration

High Order Orthogonal Iteration (HOOI) attempts to find it, iterates by cycling, but
expensive

HOOI offer quasi-optimality4

‖A − Â‖F ≤
√
d‖A −Aopt‖F

4Hackbusch, 2012
UT Austin CSE 392/CS 395T/M 397C Mar, 2025 25 / 27



Hierarchical Tucker

Storage for truncated HOSVD on an m× n× p tensor A:

The m× k1, n× k2 and p× k3 factor matrices

The k1 × k2 × k3 core tensor.

If we repeat the factorization/truncation process on the core tensor, we get
a hierarchical Tucker approach.
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Matlab Demo
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