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Lecture 19: Tucker decomposition, HOSVD.
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@ Tucker Decompostion

e HOSVD
@ Truncated HOSVD
e ST-HOSVD
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CP-Decomposition

e Find the best tensor rank-r fit:

a;,byi,c;

T
min X =) o;-a;0bi0c|p
i=1

» Extension of matrix rank » Summing r factors is sub-optimal

» Interpretable » Determining rank is NP-hard

UT Austin CSE 392/CS 395T/M 397C



CP Decomposition - Existence and Ill-Posedness

e For a problem to be well-posed, the following conditions are
required from its solution :
» Existence
» Uniqueness
» Stability

o If either criterion is not satisfied, the problem is rendered ill-posed !

e Often, existence is taken for granted and an ill-posedness refers to either the lack of

uniqueness or stability in the solution

e For CP, ill-posedness is more acute, as the existence of a solution is in question 2

o The set of tensors of a given size that do not have a best rank-k approximation has
positive volume (i.e., positive Lebesgue measure) for at least some values of k,
which implies that lack of best approximation is rather common.

1
Hadamard, Sur les problémes aux dérivées partielles et leur signification physique. Princeton University Bulletin. 1902

2de Silva, Lim, Tensor rank and ill-posedness of the best low-rank approximation problem, 2008
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CP - Uniqueness

o M = [A,B,C] is essentially unique if

ranky (A) + ranky(B) + rank;(C) > 2r + 2

e rank;(A) = maximum value of k£ such that any &k columns of A are linearly
independent.

e Matrix factorization does not share this property! Usually need orthogonality
constraint.
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Inconsistencies with Tensor Rank

o Rank of real-valued tensor may be different

over R or C Rank2 ' Rank3
@ Determining rank of tensor is NP-hard g
o Eckart-Young does not hold X

@ The best rank-k approximation may not exist o o %
x© x® X

Best approximation is on the boundary of the space of
rank-2 and rank-3 tensors. Since the space of rank-2
tensors is not closed, the sequence may converge to a
tensor X* of rank other than 2

Kruskal, Harshman, Lundy, How 3-MFA can cause degenerate PARAFAC solutions, among other relationships, in Multiway Data
Analysis, Coppi, Bolasco, eds., North-Holland, Amsterdam, 1989
Kolda and Bader, Tensor decompositions and applications, STAM, 2009
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Tucker Decomposition®

S— L7
g

=
2
&

By,

e Find the best multi-linear rank-(k;, ko ,k3) fit:

min X — g X1 Ak X9 Bk- X3 C;‘,.)) F
A BB, I . > ,
» Higher-order PCA » Truncation of full orth. sub-optimal
» Compressible » Hard to interpret

3Tucker, Problems in Measuring Change, 1963

UT Austin CSE 392/CS 395T/M 397C Mar, 2025

8/27



Tucker Decomposition - notation
g

X ~  |Ap,

By,

2

o The Tucker decomposition of a three-mode tensor X € R™*"*P ig given by:
X~@G X1 A XQB ><3C =: [[Q;A,B,C’]],

where G € RF1*k2xks i5 called the core tensor and A € R™**1 B € R™"*F2 and
C € RP*ks gre factor matrices.
o Elementwise:
ki ka ks

Tije = Z Zzgqrsdiqurcfs for i € [m]a] € [n],ﬂ € [p]

q=1r=1 s=1
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Tucker Decomposition - matricized forms

— L
g

il

By,

e The matricized forms (one per mode) of Tucker decomposition are:

X1~ AG;)(C®B)",
X(Q) ~ BG(Q)(C ® A)T,
X3 ~CGi(BoA)T
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TUCKER-ALS algorithm

e Minimize the objective function:
F(G,A,B,C) =||X - [G;A,B,C]|
@ The canonical TUCKER-ALS - repeatedly solve until convergence:
» A =argming F (G, A, By, Cy) = argmin 4 H(Ct ® By) GE';MAT — X(—';) HZF
» B4 =argming F (G, Ai41,B,C;) = argming H(Ct ® A1) Gy BT - X(T2)Hjm
» Cip1 = argming F (G, A¢y1, Biy1, C) = argming H(Bt—i-l ® A1) G(Tzs),tCT - X(E)H;
> Giy1 = argming ||(Cr1 ® Biy1 ® Aggr)g() — -’E(:)Hz
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Tucker Decompositions - Non-Uniqueness

e Consider the three-way Tucker decomposition of X, also denoted [G; A, B, ]
o Let U e RF ¥k VvV e RF2Xk2 and W e R¥3*#3 be non-singular. Then

[G;A,B,C] =[G;AU L, BV~ CW]
where §::gx1Ux2Vx3W

@ The core G can be modified without affecting the overall fit as long as an inverse
modification is applied to the factor matrices

e Offers freedom to choose transformations that simplify the core structure in some
way so that most of the elements of G are zero.
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Towards the HOSVD

Recall: Let A be an m x n real-valued matrix, then A has a singular value decomposition:
A=UxV',

where U is m x m orthogonal, V is n x n orthogonal, and ¥ is m x n diagonal with
diagonal elements the singular values o1 > 09 > ...0, >0

The matrix U contains the left singular vectors
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HOSVD

Use left singular vectors of the SVDs of the matricizations (assuming ranks 71,72, 73):
o Compute U from SVD of A1), keep first rq cols

o Compute U® from SVD of A(g), keep first ry cols.
e Compute U®) from SVD of A3), keep first r3 cols.
0 G:=Ax; (UM x3 (UP)T x3(UB)T which means, e.g.,

Gy =UY) AU 0U®)
Now G is 11 X 19 X r3 and this is an EXACT representation:

A=Gx; UY x, U? x, U,

Three SVDs, independent of one another
Another notation A = [G; U, u®, U(?’)]]
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HOSVD Algorithm

Inputs: Tensor A € R™M 72X XM ranks {ry,...,rq} € N.
Q@ for/=1,...,d do
Q U® ry leading left singular vectors of A(Z)
@ end for
Q@ G=Ax, UDT xUAT ..., UDT
@ return G, UM U® ... U@
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HOOI Algorithm

Inputs: Tensor A € R™*"2X X" ranks {ry,...,rq} € N.
© Initialize U®) € R™*"¢ for all £ € [d]
@ repeat
(8 for =1,...,d do
Qo V=Ax UDT ... x, ;UEDT 5, ;UEDT .5, UDT
(5 U® « r; leading left singular vectors of Y
o end for
@ until fit ceases to improve or maximum iterations exhausted
QG=Ax UV x,UAT... x,UDT
Q return G, UM U? ... U@
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Truncated HOSVD

Use left singular vectors of the SVDs of the matricizations:
e Compute UW from SVD of A(l), truncate to k1 < ry cols.

e Compute U® from SVD of A(2), truncate to k2 < 72 cols.
e Compute U®) from SVD of A(3), truncate to k3 < r3 cols.
0 C:=Ax; (UMT xo (UNT x5 (UB)T which means, e.g.,

Cay= UM TAHU® U®)

so Ax A:=Cx UV xo U® x3UB)
where C is now k1 X ko X k3
Truncating UD U2 UG to ky, ke, ks columns, resp, is not optimal, but can give a
compressed representation that is “reasonable”.
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Worst Case Error Bound

Theorem (Vannieuwenhoven et al, 2012)

Let A= IC; v, ..., U(d)]] where UD was truncated to k; columns (i.e. the
rank-(k1, ke, ..., kq) approzimation to the dth order tensor), then

JA— Al < Z A (L= U@ TR =3 3 oA

J=1 j=1k;+1

That is, the squared approximation error is bounded by the sum of the approximation
errors on each mode unfolding.
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tr-HOSVD Illustration

A-priori selection of the truncation bounds is difficult - cannot afford time/space to
compute the full and then use the error to truncate.

As an example, consider hyperspectral image data - 2 spatial dimensions, and wavelength.
For each spatial location, the wavelength ‘signature’ tells the composition.

commons.wikimedia.org/wiki/File:HyperspectralCube.jpg, NASA, 2007.
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tr-HOSVD Example: Hyperspectral Imaging

191 flyover images of the Washington DC mall. Downsampled images to 320 x 307.

HOSVD is orientation independent. Chose tensor as 320 x 307 x 191.

D. Landgrebe and L. Biehl, An introduction and reference for multispec., March 2019.
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tr-HOSVD Example

In the absence of any other information, arbitrarily chose to reduce each dimension by
about 80% (i.e. core is 64 x 62 x 39).

A - Alr _

18
1Al 7

Exercise: What percent of the original storage is required by the new (truncated) one ?
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tr-HOSVD Example

Difference in one wavelength:

4000 +a0m0
2000 12000
10000 10000
a0 00
a0 a0
a0 000

Angles between spectral signatures at each of the 320 x 307 spatial positions.
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Variations on tr-HOSVD

Computing individual /independent full (or partial) SVDs can be costly. What if we give
up the independence of the actions, and project as we go?
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Sequential Truncated HOSVD (ST-HOSVD)

Choose an ordering in which to visit the modes

Once left singular vectors for a mode are computed, immediately project. Then only
operate on the projected core result

Example (ordering 1,2,3 and truncation (k1, k2, k3)):
» Compute UD from SVD of Ay
» Compute U® from SVD of C := A x; (UM)T
» Compute U® from SVD of € :=C x5 uenT
» C=Cx3(UGHT
Now let A ~ [C; U(l), U(2), U(3)]. Worst case error bound is same as for tr-HOSVD.

Computing on successively smaller objects, more efficient; often near-comparable, or
better, behavior than tr-HOSVD!
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Best Approximation?

o Let S = {Y € R™*""4[));y has rank r; < nj;}
o Define A, := argminyes || A — V||r

o Existence of Ay is guaranteed* but not unique since Tucker representations are not
unique (see previous slides)

e Generally, computing A,y requires solving an optimization problem via iteration

e High Order Orthogonal Iteration (HOOI) attempts to find it, iterates by cycling, but
expensive

e HOOI offer quasi-optimality*

4 = Al p < V|| A = Aol

4Hackbusch, 2012
UT Austin CSE 392/CS 395T /M 397C Mar, 2025 25 /27



Hierarchical Tucker

Storage for truncated HOSVD on an m X n X p tensor A:
@ The m X k1, n X kg and p X k3 factor matrices

@ The k1 x k9 X k3 core tensor.

If we repeat the factorization/truncation process on the core tensor, we get
a hierarchical Tucker approach.
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Matlab Demo
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