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Lecture 14: Stochastic Trace Estimation
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Matrix Trace

Given a matrix A ∈ Rd×d our goal is to compute the trace:

Tr(A) =

d∑
i=1

Aii.

In terms of the eigenvalues, if A = UΛU> with Λ = diag[λ1, . . . , λd], we know:

Tr(A) =

d∑
i=1

λi.

In many situations, access to A available only implicitly through a matrix-vector
multiplication oracle. Estimate the trace implicitly (also called matrix-free)?
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Spectral Sums

Given a symmetric positive semidefinite (PSD) matrix A ∈ Rd×d with eigen-decompostion
A = UΛUT and eigenvalues {λi}di=1, and desired function f(·), compute the trace of the matrix
function f(A) = Uf(Λ)U>, i.e.,

Tr(f(A)) =

d∑
i=1

f(λi).

Popular examples: log-determinant (log(x)), numerical rank (step function), spectral density
δ(x− λi), Schatten p-norms (xp/2), von Neumann Entropy (x log(x)), Estrada index (exp(x)), trace
of matrix inverse ( 1

x
).

Applications: machine learning, graph signal processing, quantum algorithms, scientific computing,
statistics, computational biology and physics.

Naive approaches : Eigenvalue decomposition, Cholesky Decomposition, singular value decomposition
(SVD).
Cost: O(d3) or [Theory: O(dω) and ω = 2.373].
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Implicit trace estimation

Access to A implicitly through a matrix-vector multiplication oracle.

Typically useful when A is not stored explicitly, but we have an efficient algorithm for
multiplying A by a vector.

Matrix-vector products (Matvecs) cost O(nnz(A)).

Examples: Hessians in optimization, matrix functions as polynomials, structured matrices, etc.

How many matvecs Ax1, . . . ,Axm are needed to estimate the trace?
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A naive approach

Set xl = el for l = 1, . . . , d.

Return Tr(A) =
∑d
l=1 x

>
l Axl.

Total computational cost O(nnz(A)d).

Exact solution, but required d matvecs. Can we approximately estimate the trace with � d
matvecs?
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Stochastic Trace Estimation
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Hutchinson’s stochastic trace estimator

Hutchinson [Hutchinson, 1990] proposed a method for implicit matrix trace estimation:

Tr(A) ≈ 1

m

m∑
l=1

x>l Axl, (1)

where xl, l = 1, . . . ,m, are random vectors with i.i.d. random {+1,−1} entries.

Randomized method: Simple, powerful, and widely used method for trace estimation.

Theoretical analyses were presented in [Avron, Toledo 2011], [Roosta, Ascher 2015].
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Stochastic trace estimator

Theorem

Let A be an d× d symmetric positive semidefinite (PSD) matrix and xl, l = 1, . . . ,m be random
starting vectors with Radamacher distribution. Then, for T̃rm(A) = 1

m

∑m
l=1 x

>
l Axl, with

m = O
(

log(1/η)
ε2

)
, we have

Pr
[∣∣∣T̃rm(A)− Tr(A)

∣∣∣ ≤ ε|Tr(A)|
]
≥ 1− η.

Radamacher distribution: vectors with {±1} entries with equal probabilities.
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Expected Value Analysis

Hutchinson’s Estimator:

Draw xl, l = 1, . . . ,m, vectors with i.i.d. random {+1,−1} entries.

Return T̃rm(A) = 1
m

∑m
l=1 x

>
l Axl as approximation to Tr(A).

Expected value analysis:
For a single random ±1 vector x, we have

E[T̃rm(A)] = E[x>l Axl] = E
d∑
i=1

d∑
j=1

xixjAij =

d∑
i=1

d∑
j=1

E[xixjAij ] =

d∑
i=1

Aii

So the estimator is correct in expectation:

E[T̃rm(A)] = Tr(A).
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Variance Analysis

Hutchinson’s Estimator:

Draw xl, l = 1, . . . ,m, vectors with i.i.d. random {+1,−1} entries.

Return T̃rm(A) = 1
m

∑m
l=1 x

>
l Axl as approximation to Tr(A).

Variance analysis:

Var[T̃rm(A)] =
1

m
Var[x>

l Axl] =
1

m

[
E[(x>

l Axl)
2]− Tr(A)2

]
E[(x>

l Axl)
2] = E

(
∑
i,j

xixjAij)(
∑
i′,j′

xi′xj′Ai′j′)


= 2

∑
i 6=j

A2
ij +

∑
i 6=j

AiiAjj +
∑
i

A2
ii

We used that xixj and xi′xj′ are pairwise independent. Therefore,

Var[T̃rm(A)] =
2

m

∑
i 6=j

A2
ij ≤

2

m
‖A‖2F .
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Analysis

Chebyshev’s inequality : Pr(|X − E[X]| ≥ τ) ≤ Var(X)
τ2 .

We have E[T̃rm(A)] = Tr(A) and Var[T̃rm(A)] ≤ 2
m‖A‖

2
F . Choosing τ = ε · Tr(A):

Pr(
(∣∣∣T̃rm(A)− Tr(A)

∣∣∣ ≥ ε · Tr(A)
)
≤ Var(T̃rm(A))

(ε · Tr(A))2

≤ 2

m

‖A‖2F
(ε · Tr(A))2

=
2

mε2
.

For probability η, we can select m ≥ 2
ηε2 .

Can improve this to m = O
(

log(1/η)
ε2

)
, using Hanson-Wright inequality.
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Improved Analysis

Hanson-Wright inequality [Hanson & Wright, 1971] : Given a symmetric matrix A and
random vector x with i.i.d sub-Gaussian entries, with constant sub-Gaussian parameter C, we
have for t ≥ 0:

Pr
(∣∣x>Ax− E[x>Ax]

∣∣ ≥ t) ≤ 2 exp

(
−c ·min

(
t2

‖A‖2F
,

t

‖A‖2

))
,

for some universal constant c > 0 that only depending on C.

Markov’s inequality :

Pr(|X − E[X]| ≥ τ) ≤ E[Xq]

τ q
.

Choose τ = (2ε− ε2) · Tr(A) and q = log(1/η), then with some work we get the theorem with

m = O
(

log(1/η)
ε2

)
.

Alternatively, can also use the Markov’s inequality (the exponential version) and some recent
results, see [Roosta, Ascher 2015].
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Trace Estimation

Further Reading:

Randomized algorithms for estimating the trace of an implicit symmetric positive
semi-definite matrix. by H. Avron and S. Toledo.

Improved bounds on sample size for implicit matrix trace estimators by
Roosta-Khorasani and Uri Ascher.

Exercise:

Would the proof using the Chebyshev inequality work if xl’s are drawn from i.i.d Gaussian
distribution N (0, 1)? What are the expectation and the variance of the estimate?
(Hint: Note that yl = Uxl are also Gaussian for unitary U . χ2-distribution.)
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Hutch++
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Hutch++ : Improved trace estimator

Hutchinson’s estimator is powerful, and gives a good rate of convergence. But requires
m = O(1/ε2) random vectors and matvecs.

Recent results by Meyer et al., 2021, showed we can improve this to m = O(1/ε) matvecs.

Idea of Hutch++ - Matrices might have decaying eigenvalues. Trace of a low rank
approximation of the matrix is a good approximation to the matrix trace.

Split the trace (spectrum) as sum of trace of top k eigenvalues and bottom n− k eigenvalues.

Tr(A) = Tr(Ak) + Tr(A−Ak).

Meyer, Raphael A., et al. “Hutch++: Optimal stochastic trace estimation.” Symposium on Simplicity in
Algorithms (SOSA). Society for Industrial and Applied Mathematics, 2021.
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Hutch++

Explicitly estimate the top few eigenvalues of A. Use Hutchinson’s for the rest.

Find a good rank-k approximation Ãk.

Observe Tr(A) = Tr(Ãk) + Tr(A− Ãk).

Compute Tr(Ãk) exactly.

Return Hutch++(A) = Tr(Ãk) + T̃rm(A− Ãk)).

If k = m = O(1/ε), then |Hutch++(A)− Tr(A)| ≤ εTr(A).
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Good low rank approximation

Let Ak be the best rank-k approximation of A.

Lemma (Woo14)

Let S ∈ Rd×m have i.i.d. random entries from N (0, 1), Q = orth(AS) and Ãk = QQTA. Then if
m = O(k + log(1/δ)), with probability 1− δ,

‖A− Ãk‖F ≤ 2‖A−Ak‖F .

We can compute Tr(Ãk) with 2m matvecs with A and O(mn) space:

Tr(Ãk) = Tr(QQTA) = Tr(QT (AQ))
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Hutch++ Algorithm

Input: Number of matvecs m and input matrix A.

Sample S ∈ Rd×m/3 and G ∈ Rd×m/3 with i.i.d. entries from N (0, 1).

Compute Q = orth(AS).

Return Hutch++(A) = Tr(QT (AQ)) + 3
m Tr(GT (I −QQT )A(I −QQT )G).

We have the following result:

Lemma

Let A ∈ Rd×d be a PSD matrix and Ak be its best rank-k approximation. Then,

‖A−Ak‖F ≤
1

2
√
k

Tr(A)
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Hutch++ mean and variance

Theorem

Let A ∈ Rd×d be a PSD matrix, for fixed k and m, construct Q ∈ Rd×m as before. Let
Hutch++(A) = Tr(QT (AQ)) + T̃rm((I −QQT )A). Then,

E[Hutch+ +(A)] = Tr(A)

Var[Hutch+ +(A)] ≤ 1

km
Tr2(A)

For the mean, we have E[Hutch+ +(A)] = E[Tr(QT (AQ))] + E[E[T̃rm((I −QQT )A)|Q]].

For variance, we use the Conditional Variance Formula,

Var[Hutch+ +(A)] = E[Var[Hutch+ +(A)|Q]] + Var[E[Hutch+ +(A)|Q]].

Can show Var[E[Hutch+ +(A)|Q]] = 0.

UT Austin CSE 392/CS 395T/M 397C Mar, 2025 21 / 23



Exercise

Further Reading:

Meyer, Raphael A., et al. “Hutch++: Optimal stochastic trace estimation.” Symposium on
Simplicity in Algorithms (SOSA). Society for Industrial and Applied Mathematics, 2021.

https://ram900.com/hutchplusplus/

Hints for Problem 4 in HW2: Write ‖A−Ak‖F and Tr(A) in terms of eigenvalues. Next, use

the Holder’s inequality ‖v‖22 ≤ ‖v‖1‖v‖∞. Note the function γ →
√
aγ

b+γ is maximized at γ = b, so
√
aγ

b+γ ≤
√
ab
2b . Choose appropriate a and b to bound the ratio ‖A−Ak‖F

Tr(A) .
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Matlab Demo
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