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Matrix Trace

@ Given a matrix A € R¥? our goal is to compute the trace:

@ In many situations, access to A available only implicitly through a matriz-vector
multiplication oracle. Estimate the trace implicitly (also called matrix-free)?
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Spectral Sums

Given a symmetric positive semidefinite (PSD) matrix A € R4*? with eigen-decompostion

A =UAUT and eigenvalues {\;}&_,, and desired function f(-), compute the trace of the matriz
function f(A) =Uf(AU', i.e.,
d

@ Popular examples: log-determinant (log(x)), numerical rank (step function), spectral density

8(z — Ai), Schatten p-norms (zP/?), von Neumann Entropy (zlog(x)), Estrada index (exp(z)), trace
of matrix inverse ().

@ Applications: machine learning, graph signal processing, quantum algorithms, scientific computing,
statistics, computational biology and physics.

@ Naive approaches : Eigenvalue decomposition, Cholesky Decomposition, singular value decomposition
(SVD).
Cost: O(d®) or [Theory: O(d¥) and w = 2.373].
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Implicit trace estimation

@ Access to A implicitly through a matriz-vector multiplication oracle.

Typically useful when A is not stored explicitly, but we have an efficient algorithm for
multiplying A by a vector.

Matrix-vector products (Matvecs) cost O(nnz(A)).

@ FEzxamples: Hessians in optimization, matrix functions as polynomials, structured matrices, etc.

N = e
b -

How many matvecs Axq,..., Az, are needed to estimate the trace?
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A naive approach

@ Set ;; =¢;forl=1,...,d.
@ Return Tr(A) = sz=1 z, Ax;.
o Total computational cost O(nnz(A)d).

o[=o]

0]

Exact solution, but required d matvecs. Can we approximately estimate the trace with < d
matvecs?
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Stochastic Trace Estimation
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Hutchinson’s stochastic trace estimator

@ Hutchinson [Hutchinson, 1990] proposed a method for implicit matrix trace estimation:
1 m
Tr(A) ~ — [ Az, 1
(A) m ; €T, Axg (1)

where ;,1 = 1,...,m, are random vectors with i.i.d. random {41, —1} entries.
@ Randomized method: Simple, powerful, and widely used method for trace estimation.

@ Theoretical analyses were presented in [Avron, Toledo 2011], [Roosta, Ascher 2015].

ﬁ -1 -1
+1 +1 -1
A -1 A +| ... -1
-1 -1 A +1
+1 -1 +1
il l a
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Stochastic trace estimator

Theorem

Let A be an d x d symmetric positive semidefinite (PSD) matriz and ®;,l = 1,...,m be random
starting vectors with Radamacher distribution. Then, for Tr,,(A) = % DD :ElTAa:l, with

m = O (bgi#), we have

Pr [[Tem(A) - Tr(4)| < ¢ Te(A)[] 21— 7.
Radamacher distribution: vectors with {41} entries with equal probabilities.
+1 -1 -1
+1 +1 -1
A -1 A +1 ... -1
-1 = A +1
+1 -1 +1
“ - 1
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Expected Value Analysis

Hutchinson’s Estimator:

@ Draw xz;,l = 1,...,m, vectors with i.i.d. random {+1, —1} entries.

o Return Tr,,(A) = LS @ Aw; as approximation to Tr(A).

Expected value analysis:
For a single random +1 vector , we have

d d
E[Tr,,(A)] = E[x] Az;] = EZ inxjA” Z ZE x5 Aqj)
i=1j=1 i=1j=1
So the estimator is correct in expectation:

E[Tr,, (A)] = Tr(A).
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Variance Analysis

Hutchinson’s Estimator:
@ Draw x;,l =1,...,m, vectors with i.i.d. random {+1, —1} entries.

@ Return Tr,,(A) = Ly, @] Az; as approximation to Tr(A).

Variance analysis:

- 1 1
Var[Tr(4)] = —Varle! Azi] = — [}E[(m,TAa;l)Q] - Tr(A)2]
E((@ Az)’] = E | w;Ay)() zvzj Aiy)
i,7 i’
= 2ZA?j + ZAiiAjj + ZAfz
i#j i#j i

We used that x;x; and xx;, are pairwise independent. Therefore,

- 2 2
Var[Trn (A)] = = >~ A% < | All%-
i#£]
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Analysis

Chebyshev’s inequality : Pr(|X —E[X]| > 7) < VaigX).

We have E[Tr,,(A)] = Tr(A) and Var[Tr,,(A)] < 2 || AJ|%. Choosing 7 = ¢ - Tr(A):

Var(Tr,,(A))
(e-Tr(A))?
2 Az _ 2

Pr((‘f‘rm(A) - Tr(A)‘ >e. Tr(A))

= m(e-Tr(A)2  me’

For probability 7, we can select m > n%

Can improve this to m = O (bg(e#} using Hanson- Wright inequality.
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Improved Analysis

Hanson-Wright inequality [Hanson & Wright, 1971] : Given a symmetric matrix A and
random vector & with i.i.d sub-Gaussian entries, with constant sub-Gaussian parameter C, we
have for ¢ > 0:

12 t
Pr(|e" Az — Elx" Az]| > t) < 2exp (—c - min <—, —)) ,
( @ Az]| 2 1) TATE T4l

for some universal constant ¢ > 0 that only depending on C.
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Improved Analysis

Hanson-Wright inequality [Hanson & Wright, 1971] : Given a symmetric matrix A and
random vector & with i.i.d sub-Gaussian entries, with constant sub-Gaussian parameter C, we
have for ¢ > 0:

t2 t
Pr(lz" Az —E[z" Az]| > t) < 2exp (—c - min <—, —)) ,
( 21) A% 1Al
for some universal constant ¢ > 0 that only depending on C.

Markov’s inequality :

E[X1
Pr(|X —EX]| >7) < [ . ]
-
Choose 7 = (2¢ — €2) - Tr(A) and g = log(1/7), then with some work we get the theorem with

m=0 (log 1/n) )
Alternatively, can also use the Markov’s inequality (the exponential version) and some recent
results, see [Roosta, Ascher 2015].
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Trace Estimation

Further Reading:

@ Randomized algorithms for estimating the trace of an implicit symmetric positive
semi-definite matriz. by H. Avron and S. Toledo.

o Improved bounds on sample size for implicit matriz trace estimators by
Roosta-Khorasani and Uri Ascher.

Exercise:

@ Would the proof using the Chebyshev inequality work if a;’s are drawn from i.i.d Gaussian
distribution N (0,1)? What are the expectation and the variance of the estimate?
(Hint: Note that y; = Uz, are also Gaussian for unitary U. y2-distribution.)
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Hutch-++ : Improved trace estimator

@ Hutchinson’s estimator is powerful, and gives a good rate of convergence. But requires
m = O(1/€%) random vectors and matvecs.

@ Recent results by Meyer et al., 2021, showed we can improve this to m = O(1/¢) matvecs.

@ Idea of Hutch++ - Matrices might have decaying eigenvalues. Trace of a low rank
approximation of the matrix is a good approximation to the matrix trace.

@ Split the trace (spectrum) as sum of trace of top k eigenvalues and bottom n — k eigenvalues.

Tr(A) = Tr(Ay) + Tr(A — Ay).

Meyer, Raphael A., et al. “Hutch++: Optimal stochastic trace estimation.” Symposium on Simplicity in
Algorithms (SOSA). Society for Industrial and Applied Mathematics, 2021.
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Hutch+-+

3
r<
gﬂ ||
u ||
III HWWH MM T o
head tail
(compute directly) (approximate with Hutchinson'’s)

Explicitly estimate the top few eigenvalues of A. Use Hutchinson’s for the rest.
@ Find a good rank-k approximation Ay
o Observe Tr(A) = Tr(Ay) + Tr(A — Ay).
o Compute Tr(Ay) exactly.
o Return Hutch++4(A) = Tr(Ay) + Tr,, (A — Ay)).
If k =m = O(1/¢), then [Hutch++(A) — Tr(A)| < e Tr(A).
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Good low rank approximation

Let Ay be the best rank-k approximation of A.
Lemma (Wool4)

Let 8 € R4*™ have i.i.d. random entries from N'(0,1), Q = orth(AS) and A, =QQTA. Then if

m = O(k + log(1/4)), with probability 1 — ¢,

|A — Ayllp < 2| A - Ag|p.

We can compute Tr(Ay) with 2m matvecs with A and O(mn) space:

Tr(Ax) = Tr(QQT A) = Tr(Q" (AQ))
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Hutch++ Algorithm

Input: Number of matvecs m and input matrix A.

Sample S € R¥*™/3 and G € R¥*™/3 with i.i.d. entries from N(0,1).
Compute Q = orth(AS).

Return Hutch++(A) = Tr(QT(AQ)) + 2 Tr(GT (I — QQT)A(I — QQT)G).

We have the following result:

Lemma

Let A € R be a PSD matriz and Ay, be its best rank-k approzimation. Then,

1
|A —Agllr < —=Tr(A)

2k
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Hutch+-+ mean and variance

Theorem

Let A € R¥*4 pe ¢ PSD matriz, Jor fizred k and m, construct Q € RI*™ g5 before. Let
Hutch++(A) = Tr(QT(AQ)) + Tr,, (I — QQT)A). Then,

E[Hutch + +(A)] = Tr(A)
Var[Hutch + +(A)] < % Tr?(A)

For the mean, we have E[Hutch + +(A)] = E[Tr(QT (AQ))] + E[E[Tr,, (I — QRT)A)|Q]].
For variance, we use the Conditional Variance Formula,

Var[Hutch + +(A)] = E[Var[Hutch + +(A)|Q]] + Var[E[Hutch + +(A)|Q]].
Can show Var[E[Hutch + +(A)|Q]] = 0.
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Exercise

Further Reading:

@ Meyer, Raphael A.; et al. “Hutch++: Optimal stochastic trace estimation.” Symposium on
Simplicity in Algorithms (SOSA). Society for Industrial and Applied Mathematics, 2021.

@ https://ram900.com/hutchplusplus/

Hints for Problem 4 in HW2: Write ||A — Ay||r and Tr(A) in terms of eigenvalues. Next, use

the Holder’s inequality ||v[|3 < [Jv]|1[|v]|sc. Note the function v — F‘/ﬂ is maximized at v = b, so
})/_; < ‘ﬁ Choose appropriate a and b to bound the ratio %.
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https://ram900.com/hutchplusplus/

Matlab Demo
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